Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 29 maja 2025 06:38
  • Data zakończenia: 29 maja 2025 06:50

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +20cc
B. +10cc
C. +5cc
D. +15cc
Aby obliczyć błąd indeksu lunety, należy wykorzystać różnicę kątów pomierzonych w dwóch położeniach. W tym przypadku mamy kąt pionowy KL równy 95,0030g oraz kąt pionowy KP równy 304,9980g. Obliczamy różnicę pomiędzy tymi kątami: 304,9980g - 95,0030g = 209,9950g. Teoretycznie, w idealnych warunkach kąt ten powinien wynosić 200g, ponieważ luneta powinna mierzyć pełny obrót. W związku z tym, błąd indeksu wynosi: 209,9950g - 200g = 9,9950g. Ten błąd jest bliski wartości 10cc, co sugeruje, że zmierzone kąty mogą być zniekształcone przez błąd w ustawieniu lunety. Przyjmuje się, że w praktycznych zastosowaniach geodezyjnych zaleca się staranne kalibracje instrumentów, aby zminimalizować takie błędy i zapewnić wysoką dokładność pomiarów.

Pytanie 2

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. branżowej
B. inwentaryzacyjnej
C. topograficznej
D. zasadniczej
Odpowiedź "zasadnicza" jest poprawna, ponieważ projekt zagospodarowania działki lub terenu należy sporządzić na podstawie mapy zasadniczej, która jest oficjalnym dokumentem zawierającym szczegółowe informacje o terenach, w tym granice działek, infrastrukturę oraz istniejące zagospodarowanie. Mapa zasadnicza jest kluczowym narzędziem w procesie planowania przestrzennego, ponieważ odzwierciedla aktualny stan zagospodarowania przestrzennego oraz umożliwia analizę i projektowanie nowych rozwiązań. W praktyce, architekci i planiści często korzystają z map zasadniczych w celu oceny potencjału działki, identyfikacji ograniczeń (np. strefy ochrony środowiska) oraz planowania przyszłego zagospodarowania. Dobre praktyki w zakresie sporządzania projektów uwzględniają również aktualizację mapy zasadniczej, aby zapewnić zgodność z obowiązującymi przepisami prawa budowlanego i lokalnymi planami zagospodarowania przestrzennego. Dodatkowo, znajomość mapy zasadniczej jest niezbędna w kontekście pozyskiwania pozwoleń na budowę oraz w procesach inwestycyjnych.

Pytanie 3

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
B. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
C. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
D. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 4

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 250 m
B. 150 m
C. 400 m
D. 600 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 5

Wizury pomiędzy sąsiednimi punktami geodezyjnej osnowy poziomej powinny być przeprowadzone w trakcie

A. pomiarów rzeźby terenu
B. wywiadu terenowego
C. niwelacji punktów osnowy
D. sporządzania opisu topograficznego
Wybór niwelacji punktów osnowy jako odpowiedzi jest błędny, ponieważ niwelacja koncentruje się na pomiarach różnic wysokości, a nie na wizurach poziomych. W praktyce geodezyjnej niwelacja służy do ustalenia różnic wysokości pomiędzy punktami, co jest kluczowe w kontekście budownictwa czy inżynierii lądowej, ale nie ma bezpośredniego związku ze sprawdzaniem wizur. Ponadto, pomiary rzeźby terenu, choć ważne w kontekście analizy topograficznej, nie mają na celu weryfikacji widoczności pomiędzy punktami geodezyjnymi. Pomiary te koncentrują się na zbieraniu danych o ukształtowaniu terenu, co jest użyteczne w planowaniu przestrzennym, ale niekoniecznie odnosi się do analizy wizur geodezyjnych. Sporządzanie opisu topograficznego również nie jest związane z bezpośrednim sprawdzaniem wizur – opis ten ma na celu przedstawienie cech obszaru, ale nie jest techniką weryfikacji widoczności. Kluczowym błędem myślowym, który prowadzi do wyboru niepoprawnych odpowiedzi, jest mylenie rodzajów pomiarów i ich celów. Ważne jest zrozumienie, że każdy z wymienionych procesów ma swoje specyficzne zastosowanie i nie można je wymieniać zamiennie, co podkreśla znaczenie znajomości podstawowych pojęć i praktyk w geodezji.

Pytanie 6

Który z poniższych błędów nie jest usuwany przez pomiar z punktu centralnego w niwelacji geometrycznej?

A. Osadzenie instrumentu.
B. Refrakcja pionowa.
C. Zakrzywienie powierzchni ziemi.
D. Różne położenie zera pary łat.
Osiadanie instrumentu jest zjawiskiem, które może wystąpić, jeśli sprzęt nie jest prawidłowo umiejscowiony lub jeśli podłoże, na którym stoi, nie jest stabilne. Taki błąd można zminimalizować poprzez odpowiednie przygotowanie stanowiska pomiarowego, ale nie eliminuje go całkowicie. Refrakcja pionowa to zjawisko, które wpływa na przebieg promieni świetlnych w atmosferze, co może wprowadzać błędy w pomiarach geodezyjnych. Nawet mając na uwadze refrakcję, niwelacja geometryczna nie jest w stanie jej całkowicie wyeliminować, chociaż można stosować korekty w obliczeniach. Zakrzywienie powierzchni ziemi to kolejny czynnik, który należy brać pod uwagę, szczególnie na dużych odległościach, gdzie jego wpływ staje się zauważalny. Użycie metod niwelacyjnych wymaga uwzględnienia wszystkich tych zjawisk, lecz nie można ich wyeliminować jedynie poprzez pomiar ze środka. Często w praktyce geodezyjnej występuje mylne przekonanie, że odpowiedni pomiar ze środka rozwiąże wszystkie problemy związane z pomiarami, co jest błędne. W rzeczywistości, każdy z tych błędów wymaga innego podejścia i zastosowania odpowiednich metod korekcyjnych, aby uzyskać wiarygodne wyniki pomiarów.

Pytanie 7

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinien być pomiarowy
B. powinno znajdować się stanowisko instrumentu
C. powinno być ustawione lustro lub łata
D. powinien znajdować się obserwator
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 8

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Rozpoznania w terenie punktów osnowy geodezyjnej
B. Stabilizacji znaków punktów osnowy geodezyjnej
C. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
D. Uzyskania informacji o terenie, który ma być poddany pomiarom
Odpowiedź 'Stabilizacji znaków punktów osnowy geodezyjnej' jest prawidłowa, ponieważ stabilizacja znaków odbywa się w ramach prac geodezyjnych, które są realizowane po przeprowadzeniu wywiadu terenowego. Wywiad terenowy ma na celu zebranie niezbędnych informacji o terenie, a nie bezpośrednią stabilizację punktów. Stabilizacja znaków polega na ich odpowiednim umiejscowieniu oraz zapewnieniu długotrwałej, niezmiennej lokalizacji, co jest kluczowe dla późniejszych pomiarów i obliczeń. Przykładem zastosowania tej wiedzy jest sytuacja, gdy na obszarze planowanej budowy konieczne jest ustalenie punktów osnowy geodezyjnej, aby zapewnić dokładne pomiary i dokumentację geodezyjną. Takie działania są zgodne z normami i standardami, które określają procedury związane z geodezyjnym pozyskiwaniem danych i ich weryfikacją w terenie. W praktyce, po przeprowadzeniu wywiadu, geodeci mogą planować stabilizację punktów, co pozwala na długoterminowe i precyzyjne monitorowanie zmian w terenie.

Pytanie 9

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. murowanych gospodarczych w stanie surowym
B. murowanych mieszkalnych w etapie projektowania
C. drewnianych przeznaczonych do wyburzenia
D. drewnianych, które nie są zamieszkałe
Odpowiedzi, które wskazują na budynki drewniane niezamieszkałe, drewniane przeznaczone do rozbiórki, oraz murowane gospodarcze w stanie surowym, są błędne z kilku powodów. Po pierwsze, budynki drewniane niezamieszkałe, mimo że nie są aktualnie użytkowane, mogą być fizycznie obecne i w związku z tym powinny być zaznaczone na szkicach polowych. Z kolei budynki drewniane przeznaczone do rozbiórki, będąc obiektami już istniejącymi, również muszą być uwzględnione, ponieważ ich obecność wpływa na aktualny stan zagospodarowania terenu. W przypadku murowanych budynków gospodarczych w stanie surowym, które mogą być w trakcie budowy, również powinny być zaznaczone, ponieważ ich konstrukcja ma realny wpływ na otoczenie. Typowym błędem myślowym jest założenie, że tylko budynki w pełni ukończone powinny być przedstawiane na szkicach. W rzeczywistości, wszystkie obiekty budowlane, które mają istotny wpływ na analizowany teren, powinny być dokumentowane, niezależnie od ich statusu budowlanego. Zrozumienie zasadności uwzględniania różnych typów budynków na szkicach polowych jest kluczowe dla prawidłowego przeprowadzania analizy przestrzennej oraz dla zachowania spójności i kompletności dokumentacji urbanistycznej.

Pytanie 10

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. I
B. IV
C. II
D. III
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 11

Średni błąd pomiaru długości odcinka 200 m wynosi ±5 cm. Jaki jest błąd względny tego pomiaru?

A. 1:400
B. 1:4
C. 1:4000
D. 1:40
Obliczanie błędu względnego wymaga zrozumienia, na czym polega ten termin oraz jak odpowiednio zinterpretować wartości błędu. Nieprawidłowe odpowiedzi sugerują błędne podejście do obliczeń lub do zrozumienia zasadności stosowania błędu względnego. Na przykład, odpowiedzi 1:40, 1:4 i 1:400 mogą wynikać z nieprawidłowego podziału błędu na jednostki lub pomijania istotnych przeliczeń. Często błąd myślowy polega na mylnym przyjęciu, że błąd pomiaru jest bezpośrednio porównywalny z całkowitym wynikiem bez uwzględnienia, że błąd ten powinien być proporcjonalny do faktycznej wielkości mierzonych. Dodatkowo, może to być wynik nieumiejętności przekształcania jednostek lub błędnego przyjęcia, że im mniejszy błąd pomiaru, tym większy błąd względny. Prawidłowe podejście do tego zagadnienia wymaga umiejętności analizy i przemyślenia powiązań pomiędzy wartością pomiaru a jego błędem, co ma kluczowe znaczenie w kontekście praktycznych zastosowań pomiarowych. Warto zatem zwrócić uwagę na metody analizy błędów oraz ich wpływ na końcowe wyniki pomiarów w różnych dziedzinach nauki i techniki.

Pytanie 12

Jaką osnowę powinno się założyć do geodezyjnej obsługi dużego zakładu przemysłowego, którego realizacja przebiegać będzie w etapach?

A. Realizacyjną typu A
B. Realizacyjną dwurzędową
C. Realizacyjną wydłużoną
D. Realizacyjną jednorzędową
Osnowa realizacyjna dwurzędowa to świetny wybór, jeśli chodzi o geodezję w dużych zakładach. Szczególnie, gdy prace są podzielone na etapy. Taka osnowa jest bardzo precyzyjna i elastyczna, a to naprawdę ważne przy inwestycjach, które rozwijają się w tempie błyskawicy. W praktyce to oznacza, że geodeci mogą szybko dostosować pomiary do zmieniających się warunków na budowie, co ułatwia kontrolowanie postępu w różnych częściach projektu. Dzięki osnowie dwurzędowej, możliwe jest równoczesne robienie kilku pomiarów, co znacząco przyspiesza realizację inwestycji. Na przykład w trakcie budowy fabryki można jednocześnie zajmować się pomiarami pod fundamenty, instalacjami technicznymi i rozmieszczaniem sieci infrastrukturalnych. To zdecydowanie zwiększa efektywność całego przedsięwzięcia. I co ważne, zgodne z normami, takimi jak PN-EN ISO 17123, użycie takiej osnowy w dużych projektach to klucz do zachowania wysokich standardów dokładności i rzetelności pomiarów.

Pytanie 13

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Biegunowa
B. Wcięć kątowych
C. Domiarów prostokątnych
D. Ortogonalna
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 14

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. 6,700 m
B. -0,670 cm
C. -0,670 m
D. 0,670 m
Wybór odpowiedzi, która nie jest zgodna z poprawnym wynikiem, może wynikać z kilku typowych błędów myślowych związanych z interpretacją odczytów niwelacyjnych. W przypadku błędnych odpowiedzi, takich jak 6,700 m, można zauważyć, że wynika to z mylnego założenia, iż obliczenia należy wykonać w jednostkach niezwiązanych z rzeczywistą różnicą wysokości. To podejście ignoruje fakt, że różnice wysokości powinny być podawane w metrach, a nie w centymetrach. Odpowiedzi, które sugerują zmiany w wysokości, są często wynikiem nieprawidłowego zrozumienia sposobu działania niwelacji, gdzie kluczowe jest rozróżnienie między odczytem wysokości a rzeczywistą różnicą wysokości między punktami. Warto również zwrócić uwagę na jednostki. Odpowiedź -0,670 cm jest niepoprawna, ponieważ zamiast tego powinno być -0,670 m. Użycie nieodpowiednich jednostek może prowadzić do dramatycznych różnic w interpretacji danych geodezyjnych. Kluczowe w tej dziedzinie jest przestrzeganie właściwych norm oraz praktyk, które wymagają, aby wyniki były jednoznaczne i precyzyjnie wyrażone w standardowych jednostkach miary. W związku z tym, aby uniknąć takich pomyłek, istotne jest zrozumienie podstawowych zasad niwelacji oraz poprawne stosowanie wzorów i jednostek. W praktyce geodezyjnej, znajomość odpowiednich norm i procedur jest niezbędna dla uzyskania dokładnych wyników pomiarów.

Pytanie 15

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. sprawozdań technicznych
B. obliczeń
C. szkiców polowych
D. wywiadów terenowych
Obliczenia, szkice polowe i sprawozdania techniczne są integralnymi elementami procesu przetwarzania wyników pomiarów i każda z tych czynności ma swoje specyficzne zastosowanie w kontekście analizy danych. Obliczenia są kluczowe, ponieważ pozwalają na przetworzenie surowych danych w użyteczne informacje, które mogą być interpretowane w kontekście badanego zjawiska. Na przykład, w badaniach hydrologicznych obliczenia mogą obejmować analizy przepływu wód gruntowych, co jest niezbędne do oceny dostępności wody i zarządzania zasobami wodnymi. Szkice polowe służą zaś do wizualizacji terenu oraz lokalizacji punktów pomiarowych, co jest istotne w kontekście dokładności i powtarzalności wyników. Sprawozdania techniczne natomiast stanowią formalne podsumowanie prac badawczych, prezentując wyniki oraz wnioski w sposób zrozumiały dla szerszego grona odbiorców. Często zapomina się, że te elementy są ze sobą ściśle powiązane, a ich prawidłowe wykonanie jest kluczowe dla uzyskania i interpretacji rzetelnych wyników. Właściwe zrozumienie różnicy między zbieraniem danych a ich przetwarzaniem jest istotne, aby uniknąć pomyłek w metodologii badań, co może prowadzić do błędnych wniosków i nieprawidłowego zarządzania danymi.

Pytanie 16

Jaki dokument geodezyjny jest kluczowy do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Szkic przeglądowy
B. Dziennik pomiaru boków osnowy
C. Opis topograficzny punktu
D. Dziennik pomiaru kątów osnowy
Wybór odpowiedzi, które nie są związane z opisem topograficznym punktu, prowadzi do błędnych wniosków na temat geodezyjnego procesu lokalizacji punktów osnowy. Szkic przeglądowy, choć przydatny w kontekście przedstawiania ogólnej orientacji punktów w obszarze, nie dostarcza wystarczających szczegółów, aby precyzyjnie zlokalizować dany punkt w terenie. Jest to narzędzie wizualne, które może ułatwić zrozumienie układu punktów, ale nie zawiera szczegółowych informacji o otoczeniu konkretnego punktu. Dzienniki pomiaru boków oraz kątów osnowy są dokumentami skupionymi na wynikach pomiarów, a nie na lokalizacji punktów. Oferują one informacje o długościach bądź kątowych relacjach między punktami, co jest istotne na etapie obliczeń i analizy, ale nie odnoszą się do praktycznych aspektów odnajdywania punktów w terenie. Typowym błędem myślowym jest mylenie różnych typów dokumentacji geodezyjnej oraz ich zastosowań. Kluczowe jest zrozumienie, że w procesie geodezyjnym każdy dokument pełni specyficzną rolę i niezbędne jest wykorzystanie właściwych narzędzi i informacji w odpowiednich kontekstach. Aby skutecznie prowadzić prace geodezyjne, niezbędne jest korzystanie z precyzyjnych i szczegółowych opisów topograficznych, co zapewnia zgodność z najlepszymi praktykami w branży.

Pytanie 17

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/5000
B. 1/50
C. 1/500
D. 1/100
Analizując pozostałe odpowiedzi, można zauważyć, że wiele z nich opiera się na błędnych założeniach dotyczących obliczania błędu względnego. Przyjmując, że błąd pomiarowy wynosi 5 cm, niektóre odpowiedzi, takie jak 1/100 czy 1/50, mogą wydawać się na pierwszy rzut oka atrakcyjne, ale nie uwzględniają rzeczywistego kontekstu pomiaru. Odpowiedź 1/100 sugeruje, że błąd pomiarowy stanowi 1% całkowitej długości, co jest znacznie wyolbrzymione, biorąc pod uwagę, że 5 cm to tylko 0,02% z 250 m. Podobnie, odpowiedź 1/50 również jest nieprawidłowa, ponieważ wskazuje na dużo większy błąd względny, niż jest to rzeczywiście zasadne. Typowym błędem myślowym w takich przypadkach jest niewłaściwe przeliczenie jednostek lub niedocenianie wpływu skali na błąd pomiarowy. Odpowiedzi te mogą wskazywać na brak zrozumienia, jak proporcjonalnie mały błąd w stosunku do dużych wartości może wpływać na obliczenia. W praktyce inżynieryjnej i naukowej ważne jest, aby analizy były dokładne i zgodne z uznanymi standardami, takimi jak normy ISO dotyczące metrologii, które promują precyzyjne i konsekwentne podejście do pomiarów i obliczeń.

Pytanie 18

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Teodolitu i tyczki
B. Dalmierza i łaty
C. Niwelatora i łaty
D. Taśmy i tyczki
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 19

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:2000
B. 1:250
C. 1:1000
D. 1:500
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to DAB = 33,00 m (rzeczywista długość) oraz dAB = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako DAB / dAB, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 20

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. libeli pudełkowej
B. kolimacji
C. inklinacji
D. libeli rurkowej
Wybór błędnych odpowiedzi wynika z nieporozumienia dotyczącego pojęć związanych z błędami pomiarowymi. Libela pudełkowa oraz libela rurkowa to narzędzia służące do poziomowania, jednak nie są one związane z błędem inklinacji. Libela pudełkowa jest narzędziem wykorzystywanym do sprawdzania poziomości powierzchni, polegającym na umieszczeniu poziomnicy w płaszczyźnie poziomej, podczas gdy libela rurkowa, zawierająca ciecz, służy do oceny poziomu w dłuższych odcinkach. Żadne z tych narzędzi nie odnoszą się do konkretnego błędu pomiarowego dotyczącego prostopadłości osi obrotu lunety do osi obrotu instrumentu. Z kolei kolimacja to termin odnoszący się do ustawienia optyki w taki sposób, aby oś optyczna instrumentu była zgodna z osią mechaniczną. To pojęcie może prowadzić do błędnej interpretacji, gdyż choć kolimacja jest kluczowym elementem precyzyjnych pomiarów, nie obejmuje problemu inklinacji. Użycie niewłaściwych terminów może prowadzić do nieścisłości w analizach oraz wnioskach, dlatego istotne jest, aby stosować precyzyjne definicje i zrozumienie różnych typów błędów pomiarowych.

Pytanie 21

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 578,00 m
B. 278,00 m
C. 2578,00 m
D. 1578,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 22

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 100g
B. 400g
C. 200g
D. 300g
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 23

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Biegunową oraz niwelacji geometrycznej
B. Biegunową oraz niwelacji trygonometrycznej
C. Ortogonalną oraz niwelacji trygonometrycznej
D. Ortogonalną oraz niwelacji geometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 24

Dokumentacja, która zawiera wyniki geodezyjnych pomiarów sytuacyjnych oraz wysokościowych, jak również efekty przetworzenia tych danych, jest kompletowana i przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego w formie operatu

A. katastralnego
B. szacunkowego
C. technicznego
D. pomiarowego
Odpowiedź 'technicznego' jest prawidłowa, ponieważ operat techniczny to dokumentacja, która zawiera szczegółowe dane dotyczące geodezyjnych pomiarów sytuacyjnych i wysokościowych. W skład operatu technicznego wchodzą nie tylko wyniki pomiarów, ale również ich opracowanie oraz analizy, co czyni go kluczowym dokumentem w procesie przekazywania informacji do Państwowego Zasobu Geodezyjnego i Kartograficznego. W praktyce, operat techniczny jest niezbędny w przypadkach takich jak sporządzanie map, ustalanie granic działek czy przygotowywanie analiz przestrzennych. Zgodnie z normami branżowymi, operaty techniczne powinny być sporządzane zgodnie z odpowiednimi przepisami prawa geodezyjnego, co zapewnia ich rzetelność i zgodność z obowiązującymi standardami. Przykładowo, w sytuacjach, gdzie wymagane jest pozyskanie informacji do celów inwestycyjnych, operat techniczny stanowi podstawowy dokument, który pozwala na przeprowadzenie dalszych analiz i decyzji administracyjnych.

Pytanie 25

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. tyczenia
B. polowy
C. pomiarowy
D. dokumentacyjny
Odpowiedź "dokumentacyjny" jest poprawna, ponieważ wyniki geodezyjnego opracowania projektu zagospodarowania działki są przede wszystkim poddawane formalnej dokumentacji, która stanowi podstawę do dalszych działań projektowych i administracyjnych. Dokument ten zawiera szczegółowe informacje na temat lokalizacji, wymiarów, granic działki oraz wszelkich istotnych danych geodezyjnych, które są niezbędne do uzyskania decyzji administracyjnych oraz do realizacji inwestycji. Przykładowo, w przypadku projektowania budynku, dokumentacyjny szkic geodezyjny jest często wymagany przy składaniu wniosków o pozwolenie na budowę, co podkreśla jego kluczowe znaczenie w procesie inwestycyjnym. Ponadto, zgodnie z polskimi normami geodezyjnymi, taki dokument musi być wykonany zgodnie z określonymi standardami, co zapewnia jego wiarygodność i użyteczność w przyszłych etapach realizacji projektu.

Pytanie 26

Zgodnie z ustawodawstwem geodezyjnym oraz kartograficznym mapy zasadnicze powinny być sporządzane w następujących skalach:

A. 1:10 000, 1:25 000, 1:50 000
B. 1:500, 1:1000, 1:2000, 1:5000
C. 1:1000, 1:2000, 1:5000, 1:10 000
D. 1:25 000, 1:50 000, 1:100 000
Mapa zasadnicza to kluczowy dokument w geodezji, który odzwierciedla rzeczywiste warunki na terenie, w tym granice działek, infrastrukturę oraz inne istotne elementy. Zgodnie z prawem geodezyjnym i kartograficznym, mapy zasadnicze powinny być wykonywane w skalach 1:500, 1:1000, 1:2000 oraz 1:5000, co pozwala na dokładne odwzorowanie szczegółów terenu. Te skale są stosowane w praktyce do planowania przestrzennego, budowy oraz zarządzania nieruchomościami. Na przykład, skala 1:500 jest często wykorzystywana w projektach budowlanych, gdzie precyzyjne odwzorowanie terenu jest kluczowe dla projektantów i architektów. W przypadku dużych obszarów, takich jak planowanie strategiczne czy zagospodarowanie przestrzenne, skala 1:5000 może być bardziej odpowiednia, ponieważ daje szerszy kontekst geograficzny. Wybór odpowiedniej skali jest więc istotny dla zapewnienia dokładności i użyteczności map, co jest zgodne z najlepszymi praktykami w branży geodezyjnej.

Pytanie 27

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Geodeta Powiatowy
B. Geodeta uprawniony
C. Starosta
D. Marszałek Województwa
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 28

Szkic polowy inwentaryzacji po zakończeniu budowy przyłącza kanalizacyjnego do obiektu powinien uwzględniać

A. rysunek instalacji wewnętrznej w budynku.
B. materiał, z którego wykonano przewód.
C. kąt nachylenia przewodu.
D. średnicę przewodu.
Wybierając inne odpowiedzi, można wpaść w pułapkę i myśleć, że wie się, co jest naprawdę ważne w inwentaryzacji powykonawczej przyłącza kanalizacyjnego. Nachylenie przewodu, mimo że ważne, wcale nie jest kluczową sprawą na szkicu, bo bardziej chodzi o jego rozmieszczenie w terenie i efektywne odprowadzanie ścieków. Z kolei nazwa materiału, z którego zrobiony jest przewód, jest ważna przy ocenie jakości instalacji, ale nie ma wpływu na funkcjonalność czy przepustowość całego układu, więc w kontekście inwentaryzacji jest to raczej mało efektywna informacja. Co do szkicu instalacji wewnątrz budynku – mimo że daje przydatne info o rozkładzie systemu, to w etapie inwentaryzacji zewnętrznego przyłącza nie jest to potrzebne. Z doświadczenia wiem, że wybierając złe odpowiedzi, można mieć mylne pojęcie o tym, jak działa instalacja kanalizacyjna, co w przyszłości może prowadzić do błędnych wniosków podczas projektowania czy audytów. Trzeba zrozumieć, że każda wartość w dokumentacji ma swoje miejsce, ale nie wszystkie są kluczowe do polowego szkicu, co jest niezbędne, żeby utrzymać dobre standardy w branży budowlanej.

Pytanie 29

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. słup granitowy
B. bolec żelazny
C. słup betonowy
D. palik drewniany
Wybór błędnych odpowiedzi takich jak słup betonowy, słup granitowy czy palik drewniany wskazuje na niepełne zrozumienie wymagań dotyczących oznakowania punktów sytuacyjnej osnowy pomiarowej. Słup betonowy, mimo swojej solidności, jest zbyt masywny i niepraktyczny w kontekście oznaczania punktów pomiarowych na nawierzchniach. W przypadku geodezyjnych pomiarów, konieczne jest, aby oznaczenia były łatwe do zauważenia i jednocześnie mobilne. Słup granitowy, chociaż estetyczny i wytrzymały, również nie jest odpowiedni, ponieważ jego ciężar i rozmiar mogą utrudniać transport i instalację. Palik drewniany, z kolei, może być mało trwały i narażony na działanie szkodników oraz warunków atmosferycznych, co wpływa na jego stabilność. W praktyce, występującą tendencją jest stosowanie materiałów, które są odporniejsze na zmiany otoczenia, a także mniej podatne na uszkodzenia. Wybierając materiał do oznakowania, kluczowe jest zrozumienie, że powinien on spełniać określone normy dotyczące trwałości i widoczności w terenie. Często występują błędy myślowe, które polegają na przyjęciu, że większe i cięższe oznakowania są lepsze, co w rzeczywistości prowadzi do trudności w ich użyciu i nieefektywności w zastosowaniach geodezyjnych.

Pytanie 30

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0300 mm
B. 3000 mm
C. 1300 mm
D. 0030 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 31

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Numery obiektów
B. Sytuacyjne szczegóły terenowe
C. Domiary prostokątne
D. Wysokości punktów terenu
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 32

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:5000
B. 1:1000
C. 1:2000
D. 1:500
Odpowiedzi, które wskazują na skale 1:1000, 1:500 oraz 1:2000, mogą prowadzić do nieporozumień w kontekście zastosowania map zasadniczych i ich oznaczeń. Skala 1:1000 jest często stosowana w przypadku map do celów budowlanych i lokalizacyjnych, co może wzbudzać mylne przekonanie, że jest odpowiednia dla mapy zasadniczej. Jednakże, w kontekście mapy oznaczonej kodem 6.115.27.4, skala 1:1000 jest zbyt szczegółowa, a tego typu mapy nie są standardowo klasyfikowane jako mapy zasadnicze. Podobnie, skala 1:500, choć przydatna dla bardzo lokalnych analiz, jest również nieodpowiednia w tym przypadku, ponieważ nie odpowiada standardowym klasyfikacjom map zasadniczych, które są bardziej skoncentrowane na ogólnym przedstawieniu obszarów. Z kolei skala 1:2000, chociaż bliska prawidłowej skali, również nie spełnia wymogów, ponieważ nie dostarcza wystarczającej szczegółowości dla typowych zastosowań map zasadniczych. Warto zauważyć, że stosowanie niewłaściwych skal w analizach przestrzennych może prowadzić do błędnych interpretacji danych, co w konsekwencji wpływa na decyzje administracyjne czy inwestycyjne. Dlatego kluczowe jest, aby zawsze odnosić się do odpowiednich norm oraz standardów branżowych, które precyzyjnie definiują zasady tworzenia i użycia map, co pozwoli uniknąć typowych błędów myślowych i nieporozumień.

Pytanie 33

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:1000
B. 1:500
C. 1:5000
D. 1:2000
Analizując inne skale, takie jak 1:1000, 1:2000 czy 1:500, warto zauważyć, że każda z nich odnosi się do różnych zakresów szczegółowości odwzorowania terenu. Skala 1:1000 jest znacznie bardziej szczegółowa i jest zazwyczaj stosowana w geodezji i projektowaniu budynków, jednak nie jest typowo używana w kontekście mapy o numerze 6.115.27.25.3.4. Z kolei skala 1:2000, mimo że również może być używana do przedstawiania terenów miejskich, nie odpowiada standardowi wskazanemu w godle. Skala 1:500 jest skrajnie szczegółowa, co czyni ją odpowiednią dla planów zagospodarowania terenu, lecz nie w kontekście ogólnych map topograficznych. Typowym błędem myślowym jest założenie, że im mniejsza liczba w skali, tym większa szczegółowość, co prowadzi do mylnej interpretacji. W rzeczywistości każda skala ma swoje zastosowanie w określonych kontekstach, dlatego kluczowe jest zrozumienie, jak poszczególne skale wpływają na przekazywaną informację. Standardy kartograficzne w Polsce wyraźnie definiują zastosowanie poszczególnych skal w zależności od ich celów i kontekstu, co podkreśla znaczenie znajomości tych zasad w pracy zawodowej.

Pytanie 34

W niwelacji powierzchniowej przy użyciu punktów rozproszonych dystans mierzonych pikiet względem stanowiska pomiarowego oblicza się według wzoru: D = kl + c. Mając odczyty z łaty niwelacyjnej, wykonane kreską górną oraz dolną siatki dalmierczej instrumentu, wartość l należy obliczyć wg wzoru:

A. l = g - d
B. l = g/d
C. l = g + d
D. l = g · d
Odpowiedź l = g - d jest poprawna, ponieważ w kontekście niwelacji powierzchniowej, 'g' odnosi się do odczytu z łaty niwelacyjnej, a 'd' to różnica wysokości pomiędzy górną a dolną kreską siatki dalmierczej. W obliczeniach niwelacyjnych, kluczowym celem jest określenie odległości l, która reprezentuje rzeczywistą odległość mierzonych pikiet od stanowiska pomiarowego. Poprawne zastosowanie wzoru D = kl + c oraz zrozumienie jego składników jest istotne dla osiągnięcia precyzyjnych wyników. Przykładowo, jeśli na łacie odczytano wartość g = 2.5 m, a różnica między kreskami wynosi d = 0.3 m, to obliczenie l daje 2.5 m - 0.3 m = 2.2 m. Taki sposób obliczeń jest zgodny z praktykami branżowymi, które zalecają dokładne pomiary oraz analizowanie różnic wysokości w kontekście punktów referencyjnych. Dbałość o detale w takiej procedurze może znacząco wpłynąć na jakość projektu budowlanego czy inżynieryjnego, dlatego ważne jest, aby stosować sprawdzone metody i wzory.

Pytanie 35

Jakie informacje można uzyskać z mapy zasadniczej?

A. Informacje o strefach klimatycznych (takie informacje nie są zawarte na mapach zasadniczych).
B. Informacje o przebiegu infrastruktury technicznej i granicach nieruchomości.
C. Informacje o rozmieszczeniu fauny w okolicy (mapy zasadnicze nie obejmują takich danych).
D. Informacje o gatunkach roślin występujących w regionie (to nie jest zakres map zasadniczych).
Mapa zasadnicza to kluczowe narzędzie w geodezji i planowaniu przestrzennym, które dostarcza szczegółowych informacji o terenie. Zawiera dane o granicach działek, lokalizacji budynków, sieci uzbrojenia terenu jak kanalizacja, gazociągi, linie energetyczne oraz inne elementy infrastruktury technicznej. Z mojego doświadczenia, szczególnie w projektowaniu urbanistycznym, mapa zasadnicza jest nieocenionym źródłem informacji. Dzięki niej można dokładnie zidentyfikować ograniczenia terenu, co jest niezbędne przy planowaniu nowych inwestycji. Ponadto, mapa zasadnicza często zawiera informacje o ukształtowaniu terenu, co jest kluczowe przy analizie możliwości zagospodarowania przestrzeni. W praktyce zawodowej niejednokrotnie spotkałem się z przypadkami, gdzie błędna interpretacja danych z mapy zasadniczej prowadziła do problemów prawnych lub technicznych. Dlatego tak ważne jest, by umiejętnie korzystać z tego narzędzia i rozumieć, jakie informacje są na niej zawarte. Współczesne mapy zasadnicze są również zintegrowane z systemami informacji przestrzennej (GIS), co umożliwia ich łatwiejszą aktualizację i analizę danych w kontekście większej skali urbanistycznej.

Pytanie 36

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z urzędu miasta
B. z państwowego zasobu geodezyjnego i kartograficznego
C. z urzędu wojewódzkiego
D. z ewidencji gruntów oraz budynków
Odpowiedź "z państwowego zasobu geodezyjnego i kartograficznego" jest prawidłowa, ponieważ to właśnie ten zasób stanowi kompleksowe źródło aktualnych i wiarygodnych danych geodezyjnych i kartograficznych, które są niezbędne do aktualizacji mapy zasadniczej. W Polsce państwowy zasób geodezyjny i kartograficzny jest gromadzony i udostępniany przez Główny Urząd Geodezji i Kartografii (GUGiK), a jego zawartość obejmuje m.in. dane o granicach nieruchomości, infrastrukturze oraz elementach zagospodarowania przestrzennego. Przykładowo, przy aktualizacji mapy zasadniczej, geodeta powinien korzystać z ortofotomap oraz modelu 3D, które są dostępne w ramach tego zasobu. Warto też zaznaczyć, że korzystanie z państwowego zasobu geodezyjnego i kartograficznego jest zgodne z obowiązującymi przepisami prawa, w tym Ustawą z dnia 17 maja 1989 r. – Prawo geodezyjne i kartograficzne, co zapewnia rzetelność i aktualność pozyskiwanych danych, co jest kluczowe dla precyzyjnego odwzorowania rzeczywistości na mapach.

Pytanie 37

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Planowana skala mapy
B. Metoda realizacji rysunku polowego
C. Liczba osób przeprowadzających pomiar
D. Typ używanego sprzętu pomiarowego
Wybór rodzaju sprzętu do pomiaru, liczby osób wykonujących pomiar oraz sposobu wykonania szkicu polowego nie ma bezpośredniego wpływu na gęstość i rozmieszczenie pikiet w kontekście pomiarów wysokościowych. Właściwy sprzęt jest oczywiście istotny dla uzyskania dokładnych wyników, jednak to nie on decyduje o tym, jak wiele pikiet należy umieścić w terenie. W zależności od wybranej metody pomiarowej, technologia może znacznie różnić się, ale każda z nich powinna być dostosowana do specyfiki mapy, a nie odwrotnie. Liczba osób wykonujących pomiar ma znaczenie w kontekście wydajności i tempa pracy, ale nie wpływa na rozmieszczenie pikiet. Zbyt mała lub zbyt duża liczba pracowników może prowadzić do nieefektywnego wykorzystania zasobów, ale sama koncepcja pomiaru nie zmienia się. Sposób wykonania szkicu polowego również jest ważny, ale to jego wykonanie zależy od wcześniej ustalonej gęstości pikiet, więc nie wpływa na nią bezpośrednio. Często pojawia się mylne przekonanie, że różne aspekty organizacyjne pomiarów mogą zdefiniować techniczne parametry, co prowadzi do nieporozumień w planowaniu pomiarów w terenie. W rzeczywistości, kluczowym czynnikiem determinującym gęstość pikiet pozostaje zamierzona skala mapy oraz szczegółowość informacji, które chcemy przekazać w końcowym produkcie.

Pytanie 38

Aktualną miarę na linii pomiarowej, podczas pomiaru szczegółów metodą ortogonalną, określamy mianem

A. podpórką
B. czołówką
C. odciętą
D. rzędnej
Wybór odpowiedzi takich jak 'rzędna', 'czołówka' czy 'podpórka' może wynikać z nieporozumienia w terminologii stosowanej w geodezji. Rzędna odnosi się do wysokości punktu względem umownej płaszczyzny odniesienia, co oznacza, że nie jest bezpośrednio związana z pomiarami ortogonalnymi, lecz dotyczy pomiarów w pionie. Czołówka, z kolei, często używana jest w kontekście geodezyjnego osprzętu pomiarowego, a nie jako miara bieżąca, co prowadzi do mylnego zastosowania tego terminu w kontekście pytania. Podpórka natomiast jest terminem, który nie odnosi się do pomiarów, ale do wsparcia konstrukcyjnego. Typowym błędem myślowym jest przenoszenie terminologii z jednego obszaru zastosowań na drugi, co powoduje zamieszanie i niewłaściwe interpretacje. Kluczowe jest zrozumienie, że w geodezji precyzyjne definiowanie terminów ma fundamentalne znaczenie dla prawidłowego przeprowadzania pomiarów i ich interpretacji. Dlatego warto zwrócić uwagę na właściwe zrozumienie terminów, aby unikać błędów w analizie danych pomiarowych.

Pytanie 39

Kontrolę tyczenia, polegającą na weryfikacji długości boków oraz przekątnych pojedynczych prostokątów, kwadratów lub ich zestawień, wykonuje się w trakcie prac niwelacyjnych

A. punktów rozproszonych
B. siatkową
C. tras
D. profili
Odpowiedzi wskazujące na kontrolę tyczenia profili, trasy oraz punktów rozproszonych opierają się na niepełnym zrozumieniu koncepcji niwelacji i jej zastosowań w praktyce inżynieryjnej. Kontrola profili dotyczy najczęściej określenia kształtu i wymiarów elementów konstrukcyjnych, co nie obejmuje szczegółowej weryfikacji geometrii siatki. W przypadku tras, chodzi głównie o wyznaczanie ścieżek dla dróg lub linii kolejowych, a więc kontrola tyczenia nie odnosi się bezpośrednio do geometrycznej dokładności prostokątów czy kwadratów. Z kolei punkty rozproszone są używane do pomiarów lokalizacji różnych obiektów, co również nie przekłada się na kontrolę kształtów i wymiarów prostokątów. Zrozumienie, że kontrola tyczenia w kontekście niwelacji powinno dotyczyć siatki geodezyjnej, a nie pojedynczych elementów, jest kluczowe. Często błędne odpowiedzi wynikają z mylnego interpretowania terminologii oraz niewłaściwego odniesienia do praktycznych zastosowań w geodezji. Właściwe podejście do kontroli tyczenia zapewnia jakość i bezpieczeństwo konstrukcji, dlatego ważne jest, aby stosować odpowiednie metody oraz standardy w tej dziedzinie.

Pytanie 40

W celu ustabilizowania punktu osnowy realizacyjnej można zastosować

A. drewniany palik
B. narysowany znak
C. ceramiczną rurkę
D. znak wykonany z kamienia
Rurki ceramiczne, namalowane znaki czy paliki drewniane mogą wydawać się dobrą alternatywą do stabilizacji punktów osnowy, ale mają sporo ograniczeń, które mogą komplikować życie geodetom. Rurki ceramiczne, mimo że nie rdzewieją, mogą łatwo się zniszczyć mechanicznie, a ich stabilność w gruncie to już inna sprawa. Znaków namalowanych w ogóle nie polecam - znikają szybko pod wpływem deszczu czy słońca, więc trudno je potem znaleźć. Paliki drewniane, chociaż tanie, nie są za bardzo trwałe i łatwo mogą ulec zniszczeniu przez zwierzęta czy po prostu przez pogodę. Wybór niewłaściwych metod do stabilizacji może prowadzić do błędów w pomiarach, a to może skutkować dużymi problemami w projektach budowlanych. W moim odczuciu, lepiej trzymać się sprawdzonych metod, jak znak z kamienia, żeby uniknąć takich sytuacji.