Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 24 kwietnia 2025 23:44
  • Data zakończenia: 25 kwietnia 2025 00:06

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. pipetach i oznacza sprzęt kalibrowany "na wylew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. biuretach i oznacza sprzęt kalibrowany "na wlew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 2:3
B. 3:2
C. 3:5
D. 5:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 8

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. grupowy
B. specyficzny
C. selektywny
D. maskujący
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 9

Losowo należy pobierać próbki z opakowań

A. z krawędzi opakowania
B. z górnej części opakowania
C. z dolnej części opakowania
D. z kilku punktów w obrębie opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 10

Gęstość próbki cieczy wyznacza się przy użyciu

A. biurety
B. spektrofotometru
C. piknometru
D. refraktometru
Prawidłowa odpowiedź to piknometr, który jest instrumentem służącym do pomiaru gęstości cieczy. Działa na zasadzie porównania masy próbki cieczy z jej objętością. Piknometr jest precyzyjnym narzędziem wykorzystywanym w laboratoriach chemicznych do określania gęstości różnych substancji, co jest kluczowe w wielu dziedzinach, takich jak chemia analityczna, petrochemia, a także w przemyśle spożywczym. Na przykład, w przemyśle naftowym, znajomość gęstości olejów jest niezbędna do oceny ich jakości oraz do obliczeń dotyczących transportu. Piknometr jest zgodny z normami ASTM D287 oraz ISO 3507, co zapewnia wiarygodność wyników. Warto również zwrócić uwagę, że pomiar gęstości za pomocą piknometrów jest często preferowany ze względu na jego wysoką dokładność i powtarzalność wyników, w porównaniu do innych metod, takich jak pomiar przy użyciu hydrometru, który może być mniej precyzyjny w przypadku cieczy o złożonej strukturze chemicznej.

Pytanie 11

Podczas krystalizacji 210 g technicznego bezwodnego siarczanu(VI) cynku uzyskano 250 g ZnSO4 x 7H2O. Jaka była wydajność procesu krystalizacji?

A. 84% (Zn — 65 g/mol, S — 32 g/mol, O — 16 g/mol, H — 1 g/mol)
B. 66,8%
C. 63,5%
D. 202%
W analizie wydajności krystalizacji istotne jest zrozumienie, jak oblicza się wydajność i co ją wpływa. Błędne odpowiedzi mogą wynikać z niepełnego zrozumienia obliczeń dotyczących mas molowych oraz ich wpływu na wydajność procesu. Często popełnianym błędem jest mylenie masy uzyskanego produktu z masą teoretyczną substancji wyjściowej, co prowadzi do nadmiernej interpretacji wyników. Na przykład, zastosowanie wartości 202% w odpowiedzi wskazuje na fundamentalne błędne zrozumienie samej definicji wydajności, ponieważ nie może ona przekraczać 100%. Wynik powyżej 100% sugeruje, że ilość uzyskanego produktu jest większa niż ilość materiału wyjściowego, co jest fizycznie niemożliwe. Kolejnym typowym błędem jest niewłaściwe obliczenie mas molowych substancji, co może prowadzić do poważnych rozbieżności w wynikach. Przykładowo, jeśli nie uwzględnia się całkowitej masy wody w hydratach, może to skutkować nieprawidłowym oszacowaniem wydajności. Aby wyeliminować takie błędy, ważne jest nie tylko dokładne przeprowadzenie obliczeń, ale także stosowanie standardowych praktyk laboratorialnych, takich jak ważenie i analizy chemiczne, które umożliwiają precyzyjne określenie masy substancji. Zachowanie ostrożności w obliczeniach oraz zrozumienie chemicznych podstaw procesów krystalizacji jest kluczowe dla uzyskania wiarygodnych i użytecznych wyników.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(II) oraz wodór
B. tlenek azotu(II) oraz woda
C. tlenek azotu(V) oraz wodór
D. tlenek azotu(IV) oraz woda
Reakcja miedzi metalicznej ze stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz tlenku azotu(IV) i wody. Proces ten ilustruje, jak metale przechodzą w reakcje redoks z kwasami azotowymi, co jest ważnym zagadnieniem w chemii nieorganicznej. Tlenek azotu(IV), zwany również dwutlenkiem azotu (NO2), jest istotnym produktem, który w warunkach atmosferycznych może prowadzić do powstawania smogu i wpływać na jakość powietrza. Przykłady zastosowania wiedzy o takich reakcjach obejmują zarówno przemysł chemiczny, gdzie azotany są wykorzystywane jako nawozy, jak i analizę środowiskową, gdzie tlenki azotu są monitorowane ze względu na ich szkodliwość. Zrozumienie tego procesu jest kluczowe, aby podejmować świadome decyzje dotyczące ochrony środowiska oraz technologii chemicznej, co jest zgodne z najlepszymi praktykami w branży chemicznej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie procedury powinny być stosowane podczas ustalania miana roztworu?

A. Ustalanie miana każdego roztworu powinno być wykonane natychmiast po jego przygotowaniu
B. Ustalanie miana roztworu polega na dokładnym określeniu stężenia roztworu, w reakcji z roztworem substancji podstawowej o precyzyjnie znanym stężeniu
C. Ustalanie miana roztworu polega na starannym zagęszczeniu roztworu, aby osiągnąć wcześniej ustalone stężenie
D. Ustalanie miana roztworu polega na dokładnym rozcieńczeniu roztworu, aby uzyskać wcześniej zaplanowane stężenie
Nastawianie miana roztworu to kluczowy proces w chemii analitycznej, który polega na dokładnym ustaleniu stężenia roztworu przez reakcję z roztworem substancji podstawowej o znanym stężeniu. Ta metoda jest niezwykle istotna, ponieważ precyzyjne określenie miana roztworu pozwala na uzyskanie wiarygodnych wyników analitycznych. Na przykład, w przypadku titracji, przy użyciu roztworu wzorcowego o znanym stężeniu, możemy ustalić stężenie substancji analitowanej, co ma kluczowe znaczenie w laboratoriach chemicznych oraz w badaniach jakościowych i ilościowych. Zgodnie z dobrą praktyką laboratoryjną, należy zapewnić, aby roztwory wzorcowe były przygotowane i przechowywane w odpowiednich warunkach, aby ich stężenie pozostało niezmienne. Ważne jest także wykonywanie pomiarów pod kontrolą określonych protokołów i standardów, jak np. ISO 17025, które zapewniają wysoką jakość i dokładność wyników pomiarów.

Pytanie 16

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
B. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
C. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
D. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 17

Oblicz, jaką ilość węglanu sodu w gramach należy przygotować, aby uzyskać 500 cm3 roztworu tej soli o stężeniu 0,1000 mol/dm3.
MNa = 23 g/mol, MC = 12 g/mol, MO = 16 g/mol

A. 7,5000 g
B. 7,0000 g
C. 5,3000 g
D. 5,0000 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 500 cm³ roztworu o stężeniu 0,1000 mol/dm³, należy najpierw obliczyć liczbę moli tej soli. Stężenie 0,1000 mol/dm³ oznacza, że w 1 dm³ (1000 cm³) roztworu znajduje się 0,1000 mola Na2CO3. Zatem, w 500 cm³ roztworu znajdować się będzie 0,0500 mola: 0,1000 mol/dm³ * 0,500 dm³ = 0,0500 mol. Następnie, należy obliczyć masę węglanu sodu, stosując wzór: masa = liczba moli * masa molowa. Masa molowa Na2CO3 wynosi: 23 g/mol (Na) * 2 + 12 g/mol (C) + 16 g/mol (O) * 3 = 106 g/mol. Zatem, masa Na2CO3 potrzebna do przygotowania roztworu wynosi: 0,0500 mol * 106 g/mol = 5,3000 g. Takie obliczenia są powszechnie wykorzystywane w laboratoriach chemicznych i są zgodne z zasadami przygotowywania roztworów. Zachowanie precyzji w obliczeniach jest kluczowe dla uzyskania pożądanych stężeń roztworów w praktyce.

Pytanie 18

Jaką substancję należy koniecznie oddać do utylizacji?

A. Chromian(VI) potasu
B. Glukoza
C. Gliceryna
D. Sodu chlorek
Chromian(VI) potasu to substancja chemiczna, która jest klasyfikowana jako niebezpieczny odpad. Ze względu na swoje właściwości toksyczne oraz rakotwórcze, jego pozostałości muszą być traktowane z najwyższą ostrożnością i nie mogą być usuwane w sposób standardowy. Zgodnie z regulacjami dotyczącymi gospodarki odpadami, takie substancje powinny być przekazywane do specjalistycznych zakładów zajmujących się ich utylizacją. Przykładowo, chromiany są szeroko stosowane w przemyśle, w tym w procesach galwanicznych oraz w produkcji barwników, dlatego ważne jest, aby procesy te były zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące zarządzania odpadami niebezpiecznymi. Utylizacja chromianu VI wymaga zastosowania odpowiednich metod, takich jak stabilizacja chemiczna, aby zapobiec przedostawaniu się szkodliwych substancji do gruntu czy wód gruntowych. Właściwe postępowanie z tymi materiałami jest kluczowe dla ochrony zdrowia publicznego oraz ochrony środowiska.

Pytanie 19

Ogólna próbka, jednostkowa lub pierwotna powinna

A. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
B. być tym mniejsza, im większa jest niejednorodność składu produktu
C. być tym większa, im bardziej jednorodny jest skład produktu
D. być tym większa, im bardziej niejednorodny jest skład produktu
Wielkość próbki nie jest kwestią prostego przydzielenia wartości według jednorodności składu. Odpowiedzi sugerujące, że próbka powinna być mniejsza im bardziej niejednorodny jest skład produktu, mylnie zakładają, że zmniejszenie rozmiaru próbki będzie korzystne w takich sytuacjach. W rzeczywistości, mniejsze próbki mogą prowadzić do zniekształcenia wyników, ponieważ nie będą w stanie oddać pełnego obrazu zróżnicowanego materiału. Na przykład, w przypadku materiałów budowlanych, jeśli pobierzemy zbyt małą próbkę z betonu, która nie uwzględnia wszystkich składników, może to prowadzić do błędnych analiz wytrzymałościowych. Podobnie, założenie, że próbka powinna być większa im bardziej jednorodny jest skład, jest również mylne. W rzeczywistości, w przypadku materiałów o jednolitym składzie, odpowiednia próbka może być mniejsza, ponieważ nie wymaga angażowania różnorodności składników. Takie podejście wzmacnia myślenie o próbkach jako o reprezentatywnych dla całego produktu. W procesach analitycznych istotne jest, aby stosować odpowiednie metody pobierania próbek, które są zgodne z normami takim jak ISO 8655 czy ISO 15189, co zapewnia rzetelność i wiarygodność analiz. Użytkownicy powinni być świadomi, że dobór wielkości próbki jest kluczowy dla jakości wyników analitycznych i powinien być oparty na teorii statystycznej oraz praktycznych zaleceniach, aby uniknąć błędów w ocenie jakości badanych materiałów.

Pytanie 20

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. uniwersalny papierek wskaźnikowy
B. roztwór chlorku baru
C. roztwór szczawianu potasu
D. roztwór azotanu srebra
Roztwór azotanu srebra (AgNO3) jest kluczowym odczynnikiem w analizie chemicznej do wykrywania jonów chlorkowych (Cl-) w wodzie mineralnej. Po dodaniu azotanu srebra do próby zawierającej jony chlorkowe, zachodzi reakcja, w wyniku której powstaje biały osad chlorku srebra (AgCl). Reakcja ta jest równaniem: AgNO3 + NaCl → AgCl + NaNO3. Osad chlorku srebra jest nierozpuszczalny w wodzie, co czyni tę metodę bardzo efektywną w jakościowym wykrywaniu anionów chlorkowych. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach analitycznych, gdzie monitoruje się jakość wód mineralnych, aby spełniały one normy zdrowotne. Ponadto, metoda ta jest zgodna z wytycznymi organizacji takich jak ISO, co podkreśla jej wiarygodność i powszechne uznanie w branży analitycznej.

Pytanie 21

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. równowaga reakcji została silnie przesunięta w prawo
B. alkohol uległ całkowitej reakcji
C. równowaga reakcji została silnie przesunięta w lewo
D. uzyskano ester o 100% wydajności
W przypadku reakcji estryfikacji, zastosowanie molowego stosunku alkoholu do kwasu acetylenowego wynoszącego 1:10 powoduje, że ilość dostępnego alkoholu jest znacznie większa w porównaniu do kwasu. Zgodnie z zasadą Le Chateliera, zwiększenie ilości reagentu (w tym przypadku alkoholu) prowadzi do przesunięcia równowagi reakcji w stronę produktów. W tym konkretnym przypadku oznacza to, że równowaga reakcji przesunie się w prawo, co skutkuje większą produkcją estru (CH3COOC2H5) oraz wody (H2O). Praktycznie, taki stosunek reagentów jest często stosowany w przemyśle chemicznym, aby zwiększyć wydajność produkcji estrów, co jest szczególnie istotne w syntezach organicznych i w produkcji aromatów. Warto zauważyć, że aby uzyskać optymalne wyniki, ważne jest monitorowanie warunków reakcji, takich jak temperatura oraz obecność katalizatorów, co może również wpływać na szybkość i wydajność reakcji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Działanie podejmowane po pobraniu próbki wody, mające na celu zachowanie jej składu chemicznego podczas transportu, określa się mianem

A. mianowania
B. utrwalania
C. oczyszczania
D. rozcieńczania
Utrwalanie próbki wody po jej pobraniu jest kluczowym etapem, który ma na celu zachowanie jej oryginalnego składu chemicznego w trakcie transportu i analizy. Proces ten polega na dodaniu odpowiednich substancji chemicznych lub zastosowaniu metod fizycznych, które zapobiegają zmianom w składzie wody, takim jak rozkład mikroorganizmów czy reakcje chemiczne, które mogą zachodzić w czasie transportu. Przykładem może być dodanie kwasu solnego do próbek wody morskiej w celu zatrzymania wzrostu bakterii. W kontekście standardów, wiele organizacji, w tym EPA i ISO, podkreśla znaczenie tego etapu w procedurach pobierania i analizy próbek wody. Utrwalanie jest istotne nie tylko dla uzyskania dokładnych wyników analitycznych, ale również dla zapewnienia bezpieczeństwa zdrowotnego, ponieważ niektóre zanieczyszczenia mogą mieć poważne konsekwencje dla zdrowia publicznego. Zrozumienie tego procesu pozwala na lepsze planowanie badań i optymalizację metod analitycznych, co jest niezbędne w pracy laboratoriach środowiskowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu mrówkowego
B. naważkę kwasu benzenokarboksylowego
C. odmierzoną ilość kwasu azotowego(V)
D. odmierzoną porcję roztworu kwasu octowego
Użycie naważki kwasu benzenokarboksylowego do przygotowywania miana roztworu wodnego wodorotlenku sodu jest właściwe z kilku istotnych powodów. Kwas benzenokarboksylowy jest znanym kwasem organicznym, którego właściwości chemiczne umożliwiają precyzyjne ustalanie stężenia zasady w roztworze. Przygotowanie roztworu wzorcowego polega na rozpuszczeniu dokładnie znanej masy substancji w wodzie, co pozwala na osiągnięcie pożądanej koncentracji. W praktyce laboratoryjnej, stosowanie substancji o dobrze znanym i stabilnym stężeniu, takich jak kwas benzenokarboksylowy, jest standardem, który zapewnia powtarzalność wyników oraz dokładność analizy. Dodatkowo, przy pomocy tego kwasu można przeprowadzać miareczkowanie, co jest kluczowe w procesach analitycznych oraz badaniach jakościowych. Tego rodzaju praktyki są zgodne z zasadami metrologii chemicznej, która kładzie nacisk na precyzyjne pomiary i standaryzację procesów.

Pytanie 26

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. leki nasercowe
B. spirytus salicylowy
C. środki opatrunkowe
D. leki przeciwbólowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 27

Jakim narzędziem dokonuje się poboru próbki wody?

A. przelewki.
B. pływaka.
C. czerpaka.
D. odbieralnika.
Czerpak jest urządzeniem stosowanym do pobierania próbek wody, które umożliwia dokładne i kontrolowane uchwycenie próbki z określonego miejsca. W praktyce czerpaki są często wykorzystywane w laboratoriach analitycznych oraz w sytuacjach, gdzie zachowanie jakości próbki jest kluczowe. Czerpaki są projektowane w różnorodny sposób, aby dostosować się do specyfiki badanego medium oraz przeprowadzanych analiz. Na przykład, w przypadku pobierania wód gruntowych, czerpaki mogą być wyposażone w mechanizmy, które minimalizują zanieczyszczenia z zewnątrz. W kontekście standardów, takie jak ISO 5667, definiują metody pobierania prób wody, co jest istotne dla zapewnienia wiarygodności wyników badań. Dzięki zrozumieniu właściwego zastosowania czerpaka, technicy mogą efektywnie monitorować jakość wody i przeprowadzać analizy zgodnie z przyjętymi normami. W przypadku badań środowiskowych, czerpaki pozwalają na pobieranie prób wody z różnych głębokości, co jest istotne dla analizy jakości wód w zbiornikach wodnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W tabeli przedstawiono wymiary, jakie powinny mieć oznaczenia opakowań substancji niebezpiecznych.
Korzystając z informacji w tabeli, określ minimalne wymiary, jakie powinno mieć oznaczenie dla cysterny o pojemności 32840 dm3.

Pojemność opakowaniaWymiary (w centymetrach)
Nieprzekraczająca 3 litrówco najmniej 5,2 x 7,4
Ponad 3 litry, ale nieprzekraczająca 50 litrówco najmniej 7,4 x 10,5
Ponad 50 litrów, ale nieprzekraczająca 500 litrówco najmniej 10,5 x 14,8
Ponad 500 litrówco najmniej 14,8 x 21,0

A. 10,5 x 14,8 cm
B. 14,8 x 21,0 cm
C. 7,4 x 10,5 cm
D. 5,2 x 7,4 cm
Odpowiedź "14,8 x 21,0 cm" jest prawidłowa, ponieważ zgodnie z obowiązującymi normami dotyczącymi oznaczeń opakowań substancji niebezpiecznych, wymiary te są wymagane dla cystern o pojemności powyżej 500 litrów. W przypadku cysterny o pojemności 32840 dm³, co odpowiada 32840 litrów, konieczne jest stosowanie wyraźnych i większych oznaczeń, aby zapewnić odpowiednią widoczność i zrozumienie dla osób, które mogą mieć kontakt z tymi substancjami. Przykładem zastosowania tej wiedzy jest transport chemikaliów, gdzie prawidłowe oznakowanie ma kluczowe znaczenie dla bezpieczeństwa pracowników oraz osób postronnych. Oznaczenia muszą spełniać określone standardy, takie jak te ustalone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz przepisy krajowe, co gwarantuje, że są one odpowiednio przygotowane na wszelkie okoliczności, w tym na sytuacje awaryjne. Zastosowanie odpowiednich wymiarów oznaczeń nie tylko zwiększa bezpieczeństwo, ale również ułatwia identyfikację substancji niebezpiecznych w transporcie i przechowywaniu.

Pytanie 30

Jaką metodę wykorzystuje się w laboratorium do rozdzielenia osadu AgCl od cieczy macierzystej w probówkach?

A. komplet sit.
B. wytrząsarkę.
C. krystalizator.
D. wirówkę.
Wybór metody oddzielania osadu od cieczy macierzystej ma kluczowe znaczenie dla efektywności analizy. Zastosowanie zestawu sit do separacji nie jest odpowiednie w przypadku osadów takich jak AgCl. Sita stosowane są w procesach mechanicznych oddzielania cząstek o różnej wielkości, jednak w przypadku drobnoziarnistych osadów wirówka jest znacznie bardziej wydajna, ponieważ siła odśrodkowa potrafi skutecznie przemieścić drobiny do dłuższej probówki, podczas gdy sita mogą nie poradzić sobie z tak małymi cząstkami. Również wytrząsarka, która służy do mieszania i homogenizacji próbek, nie ma zastosowania w procesie oddzielania osadu, gdyż jej działanie nie generuje siły odśrodkowej potrzebnej do separacji. Wykorzystanie krystalizatora do oddzielania osadów również jest nieodpowiednie, ponieważ urządzenie to służy do otrzymywania czystych kryształów substancji poprzez odparowanie rozpuszczalnika, a nie do separacji osadów z cieczy. Wybór niewłaściwej metody segregacji może prowadzić do nieprecyzyjnych wyników analiz chemicznych, co jest całkowicie niezgodne z najlepszymi praktykami laboratorialnymi, które kładą nacisk na precyzyjność i rzetelność wyników.

Pytanie 31

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, statyw, bagietka
B. Zlewka, lejek, trójnóg, tygiel
C. Zlewka, waga, tryskawka, bagietka
D. Zlewka, lejek, waga, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. manometr
B. areometr
C. piknometr
D. waga hydrostatyczna
Manometr jest przyrządem służącym do pomiaru ciśnienia gazów i cieczy. Nie jest on jednak przeznaczony do wyznaczania gęstości cieczy. Gęstość, definiowana jako masa na jednostkę objętości, wymaga zastosowania innych narzędzi pomiarowych. Manometr działa na zasadzie różnicy ciśnień, co sprawia, że jest istotny w wielu zastosowaniach przemysłowych, takich jak monitorowanie ciśnienia w systemach hydraulicznych czy pneumatycznych. W praktyce, aby określić gęstość cieczy, można wykorzystać piknometr, który pozwala na bezpośredni pomiar masy próbki i jej objętości, co umożliwia obliczenie gęstości. Innym przyrządem jest areometr, który działa na zasadzie pływania w cieczy i również dostarcza informacji o gęstości. W przemyśle chemicznym, precyzyjne pomiary gęstości są kluczowe w kontroli jakości, dlatego znajomość właściwych narzędzi pomiarowych jest niezbędna.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Woda, która została poddana dwukrotnej destylacji, to woda

A. ultra czysta
B. redestylowana
C. odmineralizowana
D. odejonizowana
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 36

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 0,56 g
B. 5,60 g
C. 56,00 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. topnienia próbki
B. wyprażenia próbki do stałej masy
C. mineralizacji próbki na sucho
D. mineralizacji próbki na mokro
Odpowiedź 'mineralizacji próbki na mokro' jest poprawna, ponieważ opisany proces odnosi się do analizy chemicznej, w której próbka poddawana jest mineralizacji przy użyciu kwasu siarkowego(VI) oraz katalizatora. Mineralizacja na mokro to technika, która polega na rozkładaniu substancji organicznych w cieczy, co umożliwia uzyskanie ich składników chemicznych w formie rozpuszczalnej. W procesie tym, ogrzewanie jest kluczowe, aby zapewnić efektywne działanie kwasu oraz katalizatora, co skutkuje pełnym utlenieniem organicznych składników próbki. Przykładem praktycznego zastosowania tej metody jest analiza zawartości azotu w próbkach żywności, gdzie proces ten pozwala na uzyskanie wyników w zgodzie z normami laboratoryjnymi, takimi jak ISO 16634. Dobrze przeprowadzona mineralizacja na mokro jest istotnym krokiem w wielu analizach chemicznych, umożliwiającym dalsze badania i uzyskiwanie precyzyjnych wyników.

Pytanie 40

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. mineralizacja mokra
B. roztworzenie
C. ekstrakcja do fazy stałej
D. mineralizacja sucha
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.