Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 29 marca 2025 11:22
  • Data zakończenia: 29 marca 2025 11:44

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Okablowanie pionowe w sieci strukturalnej łączy się

A. w głównym punkcie rozdzielczym z pośrednimi punktami rozdzielczymi
B. w głównym punkcie rozdzielczym do gniazda abonenckiego
C. w gnieździe abonenckim
D. w pośrednim punkcie rozdzielczym do gniazda abonenckiego
Wydaje mi się, że zaznaczenie gniazda abonenckiego jako punktu okablowania pionowego to błąd. Gniazdo abonenckie to w zasadzie końcowy punkt, gdzie my podłączamy nasze urządzenia, więc nie jest to miejsce, przez które główne okablowanie idzie. Jak mówisz, że okablowanie łączy się w gniazdach abonenckich lub w pośrednich punktach z gniazdem, to moim zdaniem pokazuje, że może nie do końca rozumiesz, jak to wszystko działa. Pośrednie punkty są po to, by przesyłać sygnał do gniazd, ale nie do łączenia całego okablowania pionowego, to powinno być w głównym punkcie. Zrozumienie, jak zbudowana jest sieć i gdzie co powinno być, to podstawa dla działania systemu. Często myli się gniazda z punktami rozdzielczymi, a to może skutkować tym, że sieć nie będzie działać dobrze. Dlatego warto się trzymać tych norm, żeby uniknąć takich wpadek i mieć pewność, że wszystko działa tak jak należy.

Pytanie 2

Wskaź na zakres adresów IP klasy A, który jest przeznaczony do prywatnej adresacji w sieciach komputerowych?

A. 127.0.0.0 - 127.255.255.255
B. 10.0.0.0 - 10.255.255.255
C. 172.16.0.0 - 172.31.255.255
D. 192.168.0.0 - 192.168.255.255
Adresy IP w zakresie od 10.0.0.0 do 10.255.255.255 są zarezerwowane dla prywatnej adresacji w sieciach komputerowych, co czyni je częścią standardu RFC 1918. Ten zakres jest często wykorzystywany w sieciach lokalnych, ponieważ pozwala na efektywne zarządzanie adresacją bez potrzeby korzystania z publicznych adresów IP, co z kolei pomaga zaoszczędzić cenną przestrzeń adresową. Przykładowo, wiele organizacji wdraża ten zakres w infrastrukturze sieciowej, aby stworzyć lokalne sieci LAN, które mogą komunikować się ze sobą, ale są izolowane od Internetu. Dzięki możliwości stosowania NAT (Network Address Translation), urządzenia w sieci lokalnej mogą korzystać z adresów prywatnych, a ich ruch może być tłumaczony na publiczny adres, umożliwiając komunikację z zewnętrznymi sieciami. W kontekście bezpieczeństwa, użycie prywatnych adresów IP zmniejsza ryzyko ataków z zewnątrz, ponieważ te adresy nie są routowane w Internecie. Warto również zauważyć, że prywatne adresy IP mogą być dowolnie używane w sieciach wewnętrznych, co sprawia, że są niezwykle popularne wśród administratorów sieci.

Pytanie 3

Ile punktów abonenckich (2 x RJ45) powinno być zainstalowanych w biurze o powierzchni 49 m2, zgodnie z normą PN-EN 50167?

A. 1
B. 4
C. 9
D. 5
Zgodnie z normą PN-EN 50167, w pomieszczeniu biurowym o powierzchni 49 m2 zaleca się zapewnienie pięciu punktów abonenckich 2 x RJ45. Odpowiednia ilość punktów abonenckich jest kluczowa dla zapewnienia wydajnej komunikacji sieciowej oraz dostępu do Internetu. W praktyce, każdy punkt abonencki powinien obsługiwać konkretne urządzenia, takie jak komputery, drukarki czy telefony IP. Przyjmując ogólną zasadę, że na każde 10 m2 powierzchni biurowej powinien przypadać przynajmniej jeden punkt abonencki, w przypadku 49 m2, można obliczyć zapotrzebowanie na 4,9 punktów, co zaokrąglone daje 5 punktów. Takie podejście nie tylko zwiększa komfort pracy w biurze, ale również uwzględnia możliwe przyszłe rozszerzenia infrastruktury sieciowej. Warto również zwrócić uwagę, że w przestrzeniach biurowych, gdzie może występować większa liczba użytkowników, komponenty sieciowe muszą być dostosowane do większego obciążenia, co potwierdza zasadność ustalonej liczby punktów abonenckich.

Pytanie 4

Aby telefon VoIP działał poprawnie, należy skonfigurować adres

A. IP
B. rozgłoszeniowy.
C. centrali ISDN
D. MAR/MAV
Aby telefon VoIP (Voice over Internet Protocol) mógł prawidłowo funkcjonować, kluczowym elementem jest skonfigurowanie adresu IP. VoIP umożliwia przesyłanie głosu za pomocą internetu, co oznacza, że wszystkie dane muszą być przesyłane przez sieć IP. Adres IP identyfikuje urządzenie w sieci oraz pozwala na nawiązywanie połączeń z innymi urządzeniami VoIP. W praktyce, odpowiednia konfiguracja adresu IP zapewnia stabilność i jakość połączeń głosowych, co jest szczególnie ważne w zastosowaniach komercyjnych, gdzie jakość komunikacji jest kluczowa. W kontekście standardów branżowych, VoIP często korzysta z protokołów takich jak SIP (Session Initiation Protocol) i RTP (Real-time Transport Protocol), które również opierają się na komunikacji przez sieć IP. Dlatego zrozumienie i prawidłowe skonfigurowanie adresu IP jest niezbędne do efektywnego korzystania z technologii VoIP, co przekłada się na wydajność i jakość komunikacji w firmach oraz w codziennym użytkowaniu.

Pytanie 5

Dodatkowe właściwości wyniku operacji przeprowadzanej przez jednostkę arytmetyczno-logiczna ALU zawiera

A. akumulator
B. wskaźnik stosu
C. rejestr flagowy
D. licznik rozkazów
Rejestr flagowy jest kluczowym elementem jednostki arytmetyczno-logicznej (ALU), który przechowuje informacje o wynikach ostatnich operacji arytmetycznych i logicznych. Flagi w rejestrze flagowym informują o stanach takich jak: przeniesienie, zero, parzystość czy znak. Na przykład, jeśli operacja doda dwie liczby i wynik przekroczy maksymalną wartość, flaga przeniesienia zostanie ustawiona. Praktycznie, rejestr flagowy umożliwia procesorowi podejmowanie decyzji na podstawie wyników operacji, co jest kluczowe w kontrolowaniu przepływu programów. W standardach architektury komputerowej, takich jak x86, rejestr flagowy jest niezbędny do realizacji instrukcji skoków warunkowych, co pozwala na implementację złożonych algorytmów. Zrozumienie działania rejestru flagowego pozwala programistom optymalizować kod i skutecznie zarządzać logiką operacyjną w aplikacjach o wysokiej wydajności.

Pytanie 6

Aby zmagazynować 10 GB danych na pojedynczej płycie DVD, jaki typ nośnika powinien być wykorzystany?

A. DVD-5
B. DVD-18
C. DVD-9
D. DVD-10
Odpowiedź DVD-18 jest prawidłowa, ponieważ ten typ nośnika optycznego ma zdolność przechowywania do 17 GB danych, co jest wystarczające do zapisania 10 GB danych. DVD-18 to podwójna dwustronna płyta, co oznacza, że każda strona może pomieścić dane z wykorzystaniem technologii podwójnej warstwy. W praktyce, taki format jest używany w produkcji filmów i oprogramowania, gdzie duża pojemność jest kluczowa. Przykładem może być wydanie filmów w jakości HD, które wymagają więcej miejsca na dane. Standardizacja nośników DVD została ustalona przez DVD Forum, a znając formaty i ich możliwości, można lepiej dobierać nośniki do własnych potrzeb, co jest szczególnie ważne w przemyśle medialnym i rozrywkowym.

Pytanie 7

Redukcja liczby jedynek w masce pozwoli na zaadresowanie

A. mniejszej liczby sieci oraz większej liczby urządzeń
B. większej liczby sieci oraz większej liczby urządzeń
C. mniejszej liczby sieci oraz mniejszej liczby urządzeń
D. większej liczby sieci oraz mniejszej liczby urządzeń
Przyglądając się pozostałym odpowiedziom, można zauważyć, że kluczowym błędem jest mylenie liczby jedynek w masce sieciowej z liczbą zaadresowanych urządzeń. Odpowiedzi sugerujące, że zmniejszenie liczby jedynek prowadzi do mniejszej liczby urządzeń dotyczą nieporozumienia dotyczącego sposobu działania maski sieciowej. W rzeczywistości, im mniej bitów jest zarezerwowanych dla identyfikacji sieci, tym więcej bitów pozostaje dla hostów, co skutkuje większą liczbą adresów IP dostępnych w tej sieci. Koncepcje te są szczególnie istotne w kontekście projektowania sieci i planowania adresacji IP. Kolejnym powszechnym błędem jest zakładanie, że zmniejszenie liczby jedynek w masce sieciowej sprzyja zwiększeniu liczby sieci. W rzeczywistości, większa liczba bitów przeznaczonych dla części hosta prowadzi do mniejszej liczby dostępnych sieci. Na przykład, w przypadku klasycznego podziału na klasy adresów IP, zwiększenie liczby bitów przeznaczonych dla hostów ogranicza liczbę dostępnych podsieci, co jest niezgodne z zasadami projektowania sieci. Dlatego ważne jest, aby podczas tworzenia planu adresacji IP zrozumieć, jak maski sieciowe wpływają na liczby zarówno sieci, jak i hostów, aby uniknąć nieefektywności i problemów z zarządzaniem ruchem danych.

Pytanie 8

Funkcja systemu operacyjnego, która umożliwia jednoczesne uruchamianie wielu aplikacji w trybie podziału czasu, z tym że realizacja tego podziału odbywa się przez same aplikacje, nosi nazwę

A. wielozadaniowości z wywłaszczeniem
B. wielodostępowości
C. wieloprogramowości
D. wielozadaniowości kooperatywnej
Wielozadaniowość z wywłaszczeniem, choć brzmi podobnie, różni się fundamentalnie od kooperatywnej. W tym modelu system operacyjny samodzielnie przejmuje kontrolę nad procesorem, gdy jedna z aplikacji nie jest w stanie oddać czasu CPU, co skutkuje lepszym zarządzaniem zasobami. Wywłaszczenie pozwala na bardziej efektywne korzystanie z wielozadaniowości, eliminując ryzyko zamrożenia systemu przez nieodpowiadające programy. Przykładowo, w systemie Windows, jeżeli aplikacja nie reaguje, system operacyjny może przydzielić czas procesora innym aktywnym programom, co zapewnia płynność działania. Wielodostępność to koncepcja, która odnosi się do umożliwienia wielu użytkownikom korzystania z systemu jednocześnie, co nie jest bezpośrednio związane z zarządzaniem czasem procesora przez aplikacje. Również wieloprogramowość to termin, który odnosi się do możliwości uruchamiania wielu programów w systemie, ale nie definiuje konkretnego sposobu, w jaki te programy dzielą czas procesora. Typowym błędem jest mylenie tych terminów z koncepcją wielozadaniowości, co prowadzi do nieporozumień w kontekście projektowania i implementacji systemów operacyjnych. Aby zrozumieć różnice, kluczowe jest spojrzenie na sposób, w jaki aplikacje i system operacyjny współpracują w zakresie zarządzania czasem procesora i zasobami systemowymi.

Pytanie 9

Jakie oznaczenie nosi wtyk powszechnie znany jako RJ45?

A. 8P4C (8 Position 4 Contact)
B. 4P8C (4 Position 8 Contact)
C. 8P8C (8 Position 8 Contact)
D. 4P4C (4 Position 4 Contact)
Oznaczenie 8P8C (8 Position 8 Contact) odnosi się do wtyków, które są powszechnie stosowane w kablach Ethernetowych, szczególnie w standardzie 1000BASE-T, który obsługuje transfer danych na poziomie 1 Gbps. Wtyki te mają osiem pinów, co pozwala na przesyłanie danych w pełnym dupleksie, a ich konstrukcja zapewnia odpowiednią jakość sygnału oraz minimalizację zakłóceń elektromagnetycznych. W praktyce, RJ45 jest niezbędny w budowie sieci lokalnych (LAN) oraz w aplikacjach związanych z komunikacją internetową. Użycie wtyków 8P8C stało się standardem w branży telekomunikacyjnej, co pozwala na szeroką kompatybilność pomiędzy różnymi urządzeniami sieciowymi, takimi jak routery, przełączniki i komputery. Warto zauważyć, że stosowanie wtyków zgodnych z tym standardem jest istotne dla zachowania efektywności przesyłu danych oraz optymalizacji pracy sieci.

Pytanie 10

NOWY, GOTOWY, OCZEKUJĄCY oraz AKTYWNY to

A. stany programu.
B. stany procesu.
C. cechy wykwalifikowanego pracownika.
D. etapy życia projektowanej aplikacji.
Terminy NOWY, GOTOWY, OCZEKUJĄCY i AKTYWNY dotyczą tego, co dzieje się z procesami w systemach operacyjnych. Każdy z tych stanów to jakby etap w życiu procesu. Zaczynają się od NOWEGO, czyli momentu, gdy proces powstaje, potem mamy GOTOWY, kiedy już wszystko jest gotowe do działania, OCZEKUJĄCY, gdy czekają na to, co potrzebne, i na koniec AKTYWNY, kiedy proces właśnie wykonuje swoje zadania. W praktyce umiejętne zarządzanie tymi stanami jest super ważne, bo dzięki temu system operacyjny może lepiej wykorzystywać dostępne zasoby. Na przykład w systemie Unix mamy scheduler, który decyduje, który proces ma pracować w danej chwili. Jak dobrze rozumiemy te stany, to jako programiści czy administratorzy możemy lepiej optymalizować aplikacje i poprawiać ich wydajność. To zgodne z najlepszymi praktykami, na przykład w modelowaniu procesów czy analizie wydajności.

Pytanie 11

Symbol przedstawiony na ilustracji oznacza rodzaj złącza

Ilustracja do pytania
A. COM
B. FIRE WIRE
C. HDMI
D. DVI
Symbol pokazany na rysunku przedstawia złącze FireWire które jest znane również jako IEEE 1394. FireWire jest standardem komunikacyjnym opracowanym przez firmę Apple w latach 90. XX wieku. Służy do szybkiego przesyłania danych między urządzeniami multimedialnymi takimi jak kamery cyfrowe komputery czy dyski zewnętrzne. W porównaniu do innych standardów takich jak USB FireWire oferuje wyższą przepustowość i bardziej zaawansowane funkcje zarządzania danymi co czyni go idealnym wyborem do zastosowań wymagających dużej przepustowości. FireWire był popularny w branży wideo zwłaszcza przy profesjonalnym montażu wideo i transmisji danych w czasie rzeczywistym. Standard ten obsługuje tzw. hot swapping co oznacza że urządzenia mogą być podłączane i odłączane bez wyłączania komputera. W praktyce złącza FireWire można spotkać w dwóch wersjach: 4-pinowej i 6-pinowej przy czym ta druga oferuje zasilanie dla podłączonych urządzeń. Mimo że technologia ta została w dużej mierze zastąpiona przez nowsze standardy takie jak Thunderbolt czy USB 3.0 FireWire wciąż znajduje zastosowanie w niektórych niszowych aplikacjach dzięki swojej niezawodności i szybkości.

Pytanie 12

Użytkownik o nazwie Gość jest częścią grupy Goście, która z kolei należy do grupy Wszyscy. Jakie uprawnienia do folderu test1 ma użytkownik Gość?

Ilustracja do pytania
A. użytkownik Gość ma uprawnienia tylko do odczytu folderu test1
B. użytkownik Gość ma uprawnienia jedynie do zapisu w folderze test1
C. użytkownik Gość dysponuje pełnymi uprawnieniami do folderu test1
D. użytkownik Gość nie ma uprawnień do folderu test1
Odpowiedź jest prawidłowa ponieważ użytkownik Gość nie posiada przypisanych żadnych uprawnień do folderu test1 w sposób pozwalający na dostęp do niego w jakiejkolwiek formie. W systemach operacyjnych takich jak Windows zarządzanie uprawnieniami odbywa się na poziomie użytkowników oraz grup. W tym przypadku użytkownik Gość należy do grupy Goście która z kolei należy do grupy Wszyscy. Pomimo że grupa Wszyscy może mieć pewne uprawnienia domyślnie przyznawane nie są one przekazywane bezpośrednio jeśli zostały ustawione konkretne ograniczenia. W tym przypadku na poziomie uprawnień dla folderu test1 użytkownik Gość ma zaznaczone odmowy co uniemożliwia mu wszelkie formy dostępu takie jak odczyt zapis czy modyfikację. Praktyką jest aby dla pewnych kont z ograniczonymi uprawnieniami wyraźnie określać brak dostępu co zwiększa bezpieczeństwo systemu. Zazwyczaj przyjętą praktyką w administracji IT jest stosowanie zasady najmniejszych uprawnień co oznacza że użytkownicy oraz grupy mają przyznawane tylko te prawa które są absolutnie niezbędne do wykonywania ich zadań co zmniejsza ryzyko nieautoryzowanego dostępu do zasobów.

Pytanie 13

Standardowe napięcie zasilające dla modułów pamięci RAM DDR4 wynosi

A. 1,35 V
B. 1,5 V
C. 1,65 V
D. 1,2 V
Wybór napięcia zasilania 1,5 V, 1,65 V lub 1,35 V dla modułów pamięci RAM DDR4 jest błędny, ponieważ napięcia te odpowiadają starym standardom lub innym technologiom pamięci. Napięcie 1,5 V jest charakterystyczne dla pamięci RAM DDR3, która była powszechnie stosowana przed wprowadzeniem DDR4. Przy pracy na wyższym napięciu, DDR3 generuje więcej ciepła, co prowadzi do obniżenia efektywności energetycznej systemu. Z kolei napięcie 1,65 V często jest związane z pamięcią RAM działającą na wyższych częstotliwościach, ale nie jest zgodne z DDR4. Używanie modułów z takimi specyfikacjami zasilania w systemach zaprojektowanych pod kątem DDR4 może prowadzić do uszkodzenia pamięci lub niestabilności systemu. Napięcie 1,35 V, choć jest stosowane w niektórych wariantach DDR4 (np. Low Voltage DDR4), nie jest standardowym napięciem dla ogólnych zastosowań DDR4. W praktyce, wybór niewłaściwego napięcia może prowadzić do problemów z kompatybilnością, co jest powszechnym błędem wśród użytkowników, którzy nie są świadomi różnic między wersjami pamięci. Kluczowe jest, aby przy projektowaniu i budowie systemów komputerowych przestrzegać specyfikacji JEDEC oraz stosować komponenty zgodne z tymi standardami, co zapewnia nie tylko stabilność, ale i wydajność sprzętu.

Pytanie 14

Termin określający zdolność do rozbudowy sieci to

A. nadmiarowością
B. kompatybilnością
C. skalowalnością
D. bezawaryjnością
Skalowalność to kluczowa cecha systemów informatycznych, która odnosi się do ich zdolności do rozbudowy i dostosowywania się do rosnących potrzeb użytkowników oraz zwiększającego się obciążenia. W kontekście sieci, oznacza to możliwość zwiększania liczby urządzeń, użytkowników lub przepustowości bez utraty wydajności. Przykłady skalowalnych rozwiązań obejmują architektury chmurowe, gdzie zasoby mogą być dynamicznie dostosowywane do potrzeb w czasie rzeczywistym. Dobre praktyki w projektowaniu skalowalnych systemów obejmują stosowanie mikroserwisów, które pozwalają na niezależną skalowalność poszczególnych komponentów, oraz implementację protokołów komunikacyjnych, które wspierają efektywne zarządzanie zasobami. W branży IT, standardy takie jak TOGAF czy ITIL również podkreślają znaczenie skalowalności jako fundamentu elastycznych i odpornych architektur przedsiębiorstw. Rozumienie skalowalności jest kluczowe dla inżynierów i architektów systemów, ponieważ pozwala na projektowanie rozwiązań, które będą mogły rosnąć razem z potrzebami biznesowymi.

Pytanie 15

Wirus komputerowy to aplikacja, która

A. uruchamia się, gdy użytkownik zainfekowanego systemu otworzy jakiś program
B. aktywizuje się, gdy nadejdzie odpowiedni moment
C. posiada zdolność do samodzielnego replikowania się
D. wymaga programu nosiciela
Robak komputerowy jest autonomicznym programem, który ma zdolność do samoreplikacji, co oznacza, że może bez pomocy użytkownika lub innych programów tworzyć swoje kopie. Działa to na zasadzie manipulacji zainfekowanym systemem, gdzie po raz pierwszy zainstalowany robak może wykonać kod, który generuje nowe instancje siebie. Przykładem robaka komputerowego jest Blaster, który replikował się poprzez luki w zabezpieczeniach systemu Windows i rozprzestrzeniał się w sieciach komputerowych. W kontekście bezpieczeństwa, rozumienie mechanizmów robaków jest kluczowe dla projektowania skutecznych systemów zabezpieczeń, które powinny obejmować regularne aktualizacje, monitorowanie ruchu sieciowego oraz stosowanie zapór sieciowych. Dobrze zrozumiane zagrożenia, jakie niosą robaki komputerowe, pozwala zespołom IT na wdrażanie skutecznych strategii obronnych, zgodnych z najlepszymi praktykami branżowymi, takimi jak zarządzanie podatnościami czy edukacja użytkowników końcowych.

Pytanie 16

Podstawowym zadaniem mechanizmu Plug and Play jest

A. automatyczne usuwanie sterowników, które nie były używane przez dłuższy czas
B. automatyczne uruchamianie ostatnio zagranej gry
C. rozpoznanie nowo podłączonego urządzenia oraz automatyczne przydzielenie mu zasobów
D. automatyczne tworzenie kopii zapasowych danych na świeżo podłączonym nośniku pamięci
Odpowiedź numer 3 jest poprawna, ponieważ mechanizm Plug and Play (PnP) ma na celu automatyczne wykrywanie nowo podłączonego sprzętu i przypisywanie mu odpowiednich zasobów systemowych, takich jak numery przerwań (IRQ), adresy pamięci oraz dostęp do portów. Dzięki temu użytkownik nie musi ręcznie konfigurować urządzeń, co znacznie upraszcza proces instalacji i konfiguracji sprzętu. Przykłady zastosowania PnP obejmują podłączanie myszek, klawiatur, drukarek czy dysków zewnętrznych. Standardy Plug and Play są powszechnie stosowane w nowoczesnych systemach operacyjnych, takich jak Windows czy Linux, co zapewnia ich szeroką kompatybilność z różnorodnym sprzętem. Warto również zauważyć, że mechanizm ten jest zgodny z architekturą USB, która również wspiera automatyczne wykrywanie i konfigurację urządzeń. PnP znacząco podnosi użyteczność komputerów osobistych oraz innych urządzeń elektronicznych, pozwalając na łatwe dodawanie i usuwanie sprzętu bez potrzeby restartowania systemu czy ingerencji w ustawienia BIOS-u.

Pytanie 17

Przyczyną niekontrolowanego wypełnienia przestrzeni na dysku może być

A. częste defragmentowanie
B. niewłaściwie skonfigurowana pamięć wirtualna
C. zbyt małe jednostki alokacji plików
D. wirus komputerowy
Wirus komputerowy może być powodem niekontrolowanego zapełnienia dysku, ponieważ złośliwe oprogramowanie często generuje ogromne ilości danych, które mogą zajmować przestrzeń na dysku twardym. Przykładowo, wirusy mogą tworzyć duplikaty plików, pobierać niepożądane dane z internetu lub zainstalować dodatkowe oprogramowanie, które również zajmuje miejsce. W niektórych przypadkach, złośliwe oprogramowanie może wykorzystywać techniki takie jak keylogging, co prowadzi do zbierania danych w sposób, który może nie tylko zapełniać dysk, ale również stwarzać zagrożenie dla prywatności użytkownika. Aby skutecznie zapobiegać takim sytuacjom, zaleca się regularne skanowanie systemu antywirusowego, aktualizowanie oprogramowania oraz zachowanie ostrożności podczas pobierania plików z nieznanych źródeł. Przestrzeganie tych dobrych praktyk może pomóc w utrzymaniu systemu w dobrym stanie i ograniczeniu ryzyka związanym z wirusami.

Pytanie 18

Jaki jest maksymalny transfer danych napędu CD przy prędkości x42?

A. 6300 KiB/s
B. 6000 KiB/s
C. 3600 KiB/s
D. 2400 KiB/s
Wybór innej wartości transferu danych może wynikać z nieporozumienia dotyczącego obliczeń związanych z prędkością odczytu napędu CD. Napędy te operują na określonym standardzie transferu, gdzie prędkość x1 to 150 KiB/s. Dlatego, błędne odpowiedzi mogą wynikać z nieprawidłowych założeń przy mnożeniu lub błędnego rozumienia, czym jest prędkość przesyłu. Na przykład, odpowiedzi 2400 KiB/s i 3600 KiB/s byłyby poprawne dla znacznie niższych prędkości odczytu, takich jak x16 czy x24, co sugeruje brak znajomości standardowych prędkości transferu napędów optycznych. Natomiast 6000 KiB/s, mimo że jest bliższe poprawnej odpowiedzi, nie uwzględnia rzeczywistej wydajności dla x42. Dlatego, jeśli ktoś przyjąłby, że prędkość ta jest liniowa i pomnożyłby 150 KiB/s tylko przez 40, popełniłby błąd, nie zdając sobie sprawy z tego, że przy x42 rzeczywista wydajność przekracza 6000 KiB/s. Zrozumienie tej zależności jest kluczowe, aby uniknąć pomyłek oraz stosować się do standardów przesyłania danych w branży technologii informacyjnej.

Pytanie 19

Podczas monitorowania aktywności sieciowej zauważono, że na adres serwera przesyłano tysiące zapytań DNS w każdej sekundzie z różnych adresów IP, co doprowadziło do zawieszenia systemu operacyjnego. Przyczyną tego był atak typu

A. Mail Bombing
B. Flooding
C. DDoS (Distributed Denial of Service)
D. DNS snooping
W analizowanym pytaniu niepoprawne odpowiedzi dotyczą różnych form ataków, które nie są związane z opisanym fenomenem. DNS snooping odnosi się do techniki wykorzystania informacji z systemu DNS, aby zdobyć dane o infrastrukturze sieciowej lub o osobach korzystających z danej usługi. Nie jest to metoda ataku, a raczej technika zbierania informacji, która nie prowadzi do przeciążenia systemu. Mail Bombing, z drugiej strony, polega na wysyłaniu dużych ilości wiadomości e-mail do konkretnego odbiorcy, co może prowadzić do przeciążenia jego skrzynki pocztowej, ale nie wpływa na serwer DNS jako taki. Flooding, w kontekście cyberbezpieczeństwa, to termin ogólny odnoszący się do zasypywania systemu wieloma zapytaniami lub danymi, jednak niekoniecznie musi to być atak rozproszony, a zatem nie odpowiada dokładnie opisanej sytuacji. Typowe błędy myślowe, które mogą prowadzić do wybrania tych odpowiedzi, obejmują mylenie technik zbierania informacji z atakami oraz ograniczone rozumienie specyfiki ataków DDoS, które są zorganizowane i rozproszone, a nie pojedyncze akcje, jak te przedstawione w pozostałych odpowiedziach.

Pytanie 20

Jakie stwierdzenie o routerach jest poprawne?

A. Podejmują decyzje o przesyłaniu danych na podstawie adresów MAC
B. Działają w warstwie łącza danych
C. Działają w warstwie transportu
D. Podejmują decyzje o przesyłaniu danych na podstawie adresów IP
Ruter nie operuje w warstwie łącza danych, co jest fundamentalnym błędem w zrozumieniu jego funkcji. Warstwa łącza danych zajmuje się adresowaniem fizycznym, głównie za pomocą adresów MAC, co dotyczy lokalnych sieci, natomiast ruter, jako urządzenie sieciowe, analizuje adresy IP w warstwie sieci. Odpowiedzi sugerujące, że ruter podejmuje decyzje na podstawie adresów MAC, mylnie interpretują rolę rutera, ponieważ te adresy są używane przez przełączniki, a nie rutery. Ponadto, ruter nie działa w warstwie transportowej, gdzie protokoły, takie jak TCP i UDP, są odpowiedzialne za zarządzanie transmisją danych pomiędzy aplikacjami. Jest to często mylone z funkcjami związanymi z połączeniami oraz kontrolą przepływu, które są bardziej związane z warstwą transportową. Typowym błędem jest również nieodróżnianie funkcji routerów od funkcji przełączników, co prowadzi do zamieszania dotyczącego adresowania i kierowania ruchu w sieci. Zrozumienie tych podstawowych różnic jest kluczowe dla prawidłowej konfiguracji i administrowania sieciami komputerowymi.

Pytanie 21

Przycisk znajdujący się na obudowie rutera, którego charakterystyka zamieszczona jest w ramce, służy do

Ilustracja do pytania
A. włączania lub wyłączania sieci Wi-Fi
B. przywracania ustawień fabrycznych rutera
C. zresetowania rutera
D. włączenia lub wyłączenia urządzenia
Przycisk resetowania rutera jest narzędziem kluczowym do przywrócenia fabrycznych ustawień urządzenia. Jest to przydatne w sytuacjach, gdy ruter przestaje działać prawidłowo lub gdy użytkownik zapomni hasła dostępu do panelu administracyjnego. Przywrócenie ustawień fabrycznych oznacza, że wszystkie skonfigurowane wcześniej ustawienia sieci zostaną usunięte i zastąpione domyślnymi wartościami producenta. To działanie jest zgodne z dobrymi praktykami w branży IT, szczególnie gdy konieczne jest zapewnienie, że urządzenie funkcjonuje w środowisku wolnym od błędów konfiguracyjnych czy złośliwego oprogramowania. Przykładem praktycznego zastosowania resetowania jest przygotowanie rutera do odsprzedaży lub przekazania innemu użytkownikowi, co zapobiega nieautoryzowanemu dostępowi do wcześniejszych ustawień sieci. Warto również wiedzieć, że proces ten może wymagać użycia cienkiego narzędzia, jak spinacz biurowy, który pozwala na dotarcie do głęboko osadzonego przycisku resetowania. Zrozumienie funkcji tego przycisku i jego zastosowań jest niezbędne dla każdego specjalisty IT, który chce skutecznie zarządzać i konfigurować sieci komputerowe.

Pytanie 22

Jakie materiały są używane w kolorowej drukarce laserowej?

A. przetwornik CMOS
B. podajnik papieru
C. kartridż z tonerem
D. pamięć wydruku
Kartridż z tonerem to naprawdę ważny element w kolorowych drukarkach laserowych. To w nim znajduje się toner, taki proszek, który jest odpowiedzialny za to, jak wygląda wydruk na papierze. Kiedy drukujemy, bęben światłoczuły zostaje naładowany elektrostatycznie, a potem przywiera do niego toner. Potem papier jest podgrzewany, co sprawia, że toner mocno przylega do jego powierzchni. Korzystanie z kartridża z tonerem pozwala na uzyskanie świetnej jakości wydruku, a co więcej, tonery mają dużą wydajność, więc można sporo dokumentów wydrukować, zanim trzeba je zmienić. W mojej opinii, dobrze jest wybierać odpowiednie kartridże, bo to wpływa nie tylko na to, jak drukarka działa, ale też na koszty, szczególnie w firmach. Miej na uwadze, że są też zamienniki kartridży, ale powinny być dobrej jakości, żeby uniknąć problemów z działaniem drukarki i osiągnąć najlepsze rezultaty.

Pytanie 23

Informacje, które zostały pokazane na wydruku, uzyskano w wyniku wykonania

Ilustracja do pytania
A. netstat -r
B. ipconfig /all
C. route change
D. traceroute -src
Polecenie netstat -r jest używane do wyświetlania tabeli routingu dla systemu operacyjnego. Jest to kluczowe narzędzie w diagnostyce sieciowej, które pozwala administratorom zrozumieć, jak pakiety są kierowane przez różne interfejsy sieciowe. Wyjście z tego polecenia przedstawia zarówno tabele routingu IPv4, jak i IPv6, co jest widoczne na załączonym wydruku. Dzięki netstat -r można szybko zidentyfikować aktywne trasy sieciowe, co jest niezbędne przy rozwiązywaniu problemów z połączeniami i optymalizacji sieci. W kontekście dobrych praktyk branżowych, znajomość i umiejętność interpretacji tabel routingu jest podstawą efektywnego zarządzania siecią. W praktyce można wykorzystać to narzędzie do monitorowania konfiguracji sieci, audytów bezpieczeństwa oraz podczas zmian infrastruktury sieciowej. Warto również pamiętać, że netstat jest częścią standardowego zestawu narzędzi w większości systemów operacyjnych, co czyni je powszechnie dostępnym i uniwersalnym w użyciu rozwiązaniem w różnych środowiskach.

Pytanie 24

W jakim miejscu są przechowywane dane o kontach użytkowników domenowych w środowisku Windows Server?

A. W bazie SAM zapisanej na komputerze lokalnym
B. W pliku users w katalogu c:\Windows\system32
C. W plikach hosts na wszystkich komputerach w domenie
D. W bazie danych kontrolera domeny
Informacje o kontach użytkowników domenowych w systemach Windows Server są przechowywane w bazie danych kontrolera domeny, która jest częścią Active Directory. Active Directory (AD) jest kluczowym elementem zarządzania tożsamościami i dostępem w środowiskach Windows. Baza ta zawiera szczegółowe informacje o użytkownikach, grupach, komputerach oraz innych zasobach w domenie. Przechowywanie tych danych w centralnym repozytorium, jakim jest kontroler domeny, umożliwia efektywne zarządzanie i zapewnia bezpieczeństwo, ponieważ wszystkie operacje związane z uwierzytelnianiem i autoryzacją są scentralizowane. Praktyczne zastosowanie tego rozwiązania można zobaczyć w organizacjach, które korzystają z jednego punktu zarządzania dla wszystkich użytkowników, co pozwala na łatwe wdrażanie polityk bezpieczeństwa, takich jak resetowanie haseł, zarządzanie uprawnieniami oraz audyt działań użytkowników. Dobre praktyki zalecają również regularne tworzenie kopii zapasowych bazy Active Directory, aby zminimalizować ryzyko utraty danych w przypadku awarii systemu lub ataku złośliwego oprogramowania."

Pytanie 25

Ile hostów można zaadresować w podsieci z maską 255.255.255.248?

A. 510 urządzeń.
B. 246 urządzeń.
C. 4 urządzenia.
D. 6 urządzeń.
Wiele osób myli się przy obliczaniu liczby dostępnych hostów w podsieciach, co może prowadzić do błędnych wniosków. Odpowiedzi sugerujące, że w podsieci z maską 255.255.255.248 można zaadresować 246 lub 510 hostów, opierają się na niepoprawnym zrozumieniu zasad adresacji IP. W rzeczywistości, aby obliczyć liczbę dostępnych adresów dla hostów, należy wziąć pod uwagę ilość bitów zarezerwowanych dla adresów w podsieci. Dla maski /29, 3 bity są przeznaczone na adresy hostów, co daje 2^3 = 8 możliwych adresów. Z tych adresów, 2 są zawsze zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co efektywnie pozostawia 6 adresów do wykorzystania przez urządzenia w sieci. Odpowiedzi wskazujące na 4 hosty również są błędne, ponieważ także nie uwzględniają poprawnego obliczenia dostępnych adresów. Typowe błędy polegają na nieprawidłowym dodawaniu hostów lub myleniu zasad dotyczących rezerwacji adresów w danej podsieci. Dlatego, aby uniknąć podobnych pomyłek, ważne jest zrozumienie podstaw działającej logiki adresacji IP oraz umiejętność poprawnego stosowania masek podsieci w praktyce. Właściwe przeszkolenie w zakresie adresacji IP i praktyk sieciowych jest niezwykle istotne dla specjalistów IT, co zapewnia efektywne projektowanie i zarządzanie nowoczesnymi sieciami komputerowymi.

Pytanie 26

Polecenie dsadd służy do

A. zmiany atrybutów obiektów w katalogu
B. usuwania użytkowników, grup, komputerów, kontaktów oraz jednostek organizacyjnych z usługi Active Directory
C. dodawania użytkowników, grup, komputerów, kontaktów i jednostek organizacyjnych do usługi Active Directory
D. przemieszczania obiektów w ramach jednej domeny
Polecenie dsadd to całkiem ważne narzędzie w Active Directory. Dzięki niemu można dodawać różne obiekty jak użytkownicy, grupy, a nawet komputery czy kontakty. Z moich doświadczeń wynika, że dobra znajomość tego polecenia jest kluczowa dla każdego administratora, bo umożliwia lepsze zarządzanie strukturą organizacyjną. Przykładowo, gdy tworzysz nowego użytkownika, to właśnie dsadd pozwala wprowadzić wszystkie potrzebne dane, takie jak nazwa, hasło czy grupy, do których ten użytkownik ma przynależeć. Zastosowanie dsadd w życiu codziennym ułatwia automatyzację, co zdecydowanie zwiększa efektywność pracy. Co więcej, fajnie jest łączyć to z PowerShell, gdyż można wtedy masowo dodawać obiekty, co oszczędza sporo czasu, zwłaszcza w dużych firmach, gdzie użytkowników jest całkiem sporo.

Pytanie 27

W systemie Linux zarządzanie parametrami transmisji w sieciach bezprzewodowych jest możliwe dzięki

A. winipcfg
B. ifconfig
C. iwconfig
D. ipconfig
Odpowiedzi 'ifconfig', 'ipconfig' i 'winipcfg' są nieprawidłowe, ponieważ każda z tych opcji ma inny zakres zastosowania i nie spełnia funkcji zarządzania parametrami transmisji bezprzewodowej w systemie Linux. 'ifconfig' jest narzędziem używanym do konfiguracji interfejsów sieciowych w systemach UNIX i Linux, ale koncentruje się głównie na interfejsach przewodowych oraz ogólnych ustawieniach sieciowych, a nie zarządzaniu specyficznymi parametrami sieci bezprzewodowej. 'ipconfig' jest powiązane z systemem Windows i służy do wyświetlania lub zmiany konfiguracji pamięci IP, co również nie obejmuje funkcji dla połączeń bezprzewodowych w systemie Linux. Z kolei 'winipcfg' to starsze narzędzie, również dedykowane systemowi Windows, które pozwala zobaczyć informacje o konfiguracji IP, ale nie jest używane w kontekście sieci bezprzewodowych w Linuxie. Te błędne odpowiedzi wynikają z nieporozumienia dotyczącego funkcji narzędzi sieciowych oraz z pomylenia systemów operacyjnych. Ważne jest, aby znać różnice pomiędzy tymi narzędziami i ich zastosowaniem w odpowiednich środowiskach, co jest kluczowe dla efektywnego zarządzania sieciami.

Pytanie 28

Zarządzanie pasmem (ang. bandwidth control) w switchu to funkcjonalność

A. pozwalająca na ograniczenie przepustowości na wybranym porcie
B. pozwalająca na przesył danych z jednego portu równocześnie do innego portu
C. umożliwiająca zdalne połączenie z urządzeniem
D. umożliwiająca jednoczesne połączenie switchy poprzez kilka łącz
Zarządzanie pasmem, czyli kontrola przepustowości, jest kluczowym aspektem w administracji sieci, który pozwala na optymalne wykorzystanie zasobów dostępnych w infrastrukturze sieciowej. Odpowiedź, która mówi o ograniczaniu przepustowości na wybranym porcie, jest prawidłowa, ponieważ ta usługa umożliwia administratorom sieci precyzyjne zarządzanie ruchem danych, co przekłada się na zwiększenie wydajności i jakości usług sieciowych. Przykładem zastosowania tej funkcji może być sytuacja, w której firma chce zapewnić, że krytyczne aplikacje, takie jak VoIP lub wideokonferencje, mają priorytet w dostępie do pasma, także w przypadku, gdy sieć jest obciążona innymi, mniej istotnymi rodzajami ruchu. Dzięki zarządzaniu pasmem, administratorzy mogą wprowadzać polityki QoS (Quality of Service), które definiują poziomy usług dla różnych typów ruchu, co jest zgodne z najlepszymi praktykami w zakresie projektowania i zarządzania sieciami.

Pytanie 29

Komputer prawdopodobnie jest zainfekowany wirusem typu boot. Jakie działanie umożliwi usunięcie wirusa w najbardziej nieinwazyjny sposób dla systemu operacyjnego?

A. Restart systemu
B. Ponowne zainstalowanie systemu operacyjnego
C. Przeskanowanie programem antywirusowym z bootowalnego nośnika
D. Uruchomienie systemu w trybie awaryjnym
Ponowne zainstalowanie systemu operacyjnego z reguły jest postrzegane jako drastyczne rozwiązanie, które może prowadzić do utraty danych oraz wymaga czasochłonnej konfiguracji systemu i aplikacji. Ta metoda powinna być stosowana tylko w skrajnych przypadkach, gdy inne metody zawiodą. Restart systemu, choć może wydawać się logiczny, nie jest skutecznym rozwiązaniem na infekcje boot wirusami, ponieważ wirus może zostać załadowany ponownie podczas uruchamiania systemu. Uruchomienie systemu w trybie awaryjnym przy ograniczonej funkcjonalności może pozwolić na zminimalizowanie działań wirusa, ale nie gwarantuje jego całkowitego usunięcia, ponieważ wirusy mogą ukrywać się w procesach działających w tle nawet w tym trybie. Te podejścia mogą prowadzić do fałszywego poczucia bezpieczeństwa, podczas gdy zagrożenie nadal istnieje. Nieznajomość skutecznych metod usuwania wirusów może doprowadzić do niewłaściwych decyzji oraz narażenia systemu na długotrwałe problemy z bezpieczeństwem.

Pytanie 30

Który z parametrów okablowania strukturalnego wskazuje na relację mocy sygnału testowego w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Suma przeników zbliżonych i zdalnych
B. Suma przeników zdalnych
C. Przenik zdalny
D. Przenik zbliżny
Przenik zbliżny to kluczowy parametr okablowania strukturalnego, który określa stosunek mocy sygnału testowego w jednej parze do mocy sygnału, który został wyindukowany w sąsiedniej parze na tym samym końcu kabla. Jest to istotne z punktu widzenia jakości transmisji danych, ponieważ wysokie wartości przeniku zbliżnego mogą prowadzić do zakłóceń i obniżenia wydajności sieci. Przykładowo, w zastosowaniach takich jak Ethernet, przenik zbliżny jest szczególnie ważny, gdyż pozwala na właściwe funkcjonowanie sieci w warunkach dużych prędkości przesyłania danych. W standardach takich jak ISO/IEC 11801 czy ANSI/TIA-568, przenik zbliżny jest definiowany jako kluczowy wskaźnik jakości, który musi być monitorowany i utrzymywany w określonych granicach, aby zapewnić niezawodność i integralność przesyłanych sygnałów. Praktyczne podejście do tego zagadnienia obejmuje regularne testowanie i certyfikowanie kabli oraz komponentów w celu zapewnienia ich zgodności z przyjętymi standardami branżowymi.

Pytanie 31

Jakie napięcie jest dostarczane przez płytę główną do pamięci typu SDRAM DDR3?

A. 1,5V
B. 1,2V
C. 3,3V
D. 2,5V
Odpowiedzi 1,2V, 2,5V i 3,3V są niewłaściwe w kontekście zasilania pamięci SDRAM DDR3. Wybór 1,2V jest często związany z pamięciami typu DDR4, które rzeczywiście operują na niższym napięciu, co czyni je bardziej efektywnymi pod względem energetycznym w porównaniu do DDR3. Jednak, dla DDR3, zasilanie z napięciem 1,2V nie zapewnia stabilności, co może prowadzić do błędów w danych oraz niestabilnego działania systemu. Z kolei odpowiedź 2,5V była standardem dla pamięci DDR2 i jest już przestarzała w kontekście nowoczesnych technologii pamięci. Użycie tak wysokiego napięcia w przypadku DDR3 mogłoby skutkować uszkodzeniem komponentów, a także zwiększonym wydzielaniem ciepła, co negatywnie wpływa na ogólną wydajność i żywotność sprzętu. Odpowiedź 3,3V również nie jest odpowiednia, ponieważ takie napięcie jest stosowane głównie w starszych systemach i dla niektórych typów chipów, ale nie w DDR3. Wybierając niewłaściwe napięcie, można napotkać problemy z kompatybilnością i stabilnością systemu, co jest typowym błędem myślowym, gdzie użytkownicy mogą mylnie porównywać różne standardy pamięci bez zrozumienia ich specyfikacji. Dlatego kluczowe jest, aby dobrze zrozumieć różnice w napięciach operacyjnych dla różnych typów pamięci oraz ich wpływ na wydajność i stabilność systemu.

Pytanie 32

Dobrze zaprojektowana sieć komputerowa powinna zapewniać możliwość rozbudowy, czyli charakteryzować się

A. nadmiarowością
B. redundancją
C. wydajnością
D. skalowalnością
Skalowalność to kluczowa cecha każdej nowoczesnej sieci komputerowej, która pozwala na jej rozbudowę w miarę potrzeb bez konieczności przeprowadzania kosztownych zmian w infrastrukturze. Oznacza to, że użytkownicy mogą dodawać nowe urządzenia, węzły lub usługi bez negatywnego wpływu na wydajność całego systemu. Przykładem zastosowania skalowalności jest architektura oparta na chmurze, która umożliwia elastyczne zwiększanie zasobów obliczeniowych w odpowiedzi na zmieniające się zapotrzebowanie. W praktyce, gdy firma rośnie, może łatwo dostosować swój system do nowych wymagań, dodając serwery lub korzystając z rozwiązań chmurowych, które automatycznie dostosowują się do obciążenia. Dobre praktyki w projektowaniu sieci, takie jak stosowanie protokołów routingu, jak OSPF czy BGP, czy zaprojektowanie sieci według architektury hierarchicznej, wspierają skalowalność. Dzięki tym podejściom, sieci mogą rosnąć w sposób zorganizowany, eliminując problemy związane z wydajnością oraz zarządzaniem ruchem.

Pytanie 33

Użycie skrętki kategorii 6 (CAT 6) o długości 20 metrów w sieci LAN oznacza jej maksymalną przepustowość wynoszącą

A. 10 Mb/s
B. 100 Gb/s
C. 10 Gb/s
D. 100 Mb/s
Skrętka kategorii 6 (CAT 6) jest standardem przewodów stosowanych w sieciach lokalnych (LAN), który zapewnia wyspecjalizowaną wydajność transmisji danych. Maksymalna przepustowość skrętki CAT 6 wynosi 10 Gb/s na dystansie do 55 metrów, co czyni ją odpowiednią do zastosowań wymagających dużych prędkości, takich jak przesyłanie strumieniowe wideo w jakości HD, gry online czy intensywne aplikacje chmurowe. Oprócz tego, CAT 6 jest zgodna z protokołami Ethernet, co oznacza, że może być używana w różnych konfiguracjach sieciowych. Standard ten również obsługuje częstotliwości do 250 MHz, co zwiększa jego zdolność do pracy w środowiskach o dużym zakłóceniu elektromagnetycznym. W praktyce, instalacje wykorzystujące CAT 6 są idealne dla biur i domów, gdzie wymagane są stabilne i szybkie połączenia, a ich konfiguracja jest stosunkowo prosta, co czyni je popularnym wyborem wśród inżynierów i techników. Dodatkowo, stosowanie odpowiednich komponentów, takich jak złącza i gniazda zaprojektowane dla kategorii 6, zapewnia uzyskanie maksymalnej wydajności.

Pytanie 34

Awaria drukarki igłowej może być spowodowana uszkodzeniem

A. elektromagnesu.
B. dyszy.
C. elektrody ładującej.
D. termorezystora.
Wybieranie dyszy jako przyczyny awarii w drukarce igłowej to spora pomyłka. Dysze są charakterystyczne dla drukarek atramentowych i tam odpowiadają za tusz, ale nie w igłowych, gdzie to wszystko działa inaczej. Często użytkownicy mylą się i szukają problemu w dyszy, co prowadzi do złych diagnoz. Podobnie, termorezystor reguluje ciepło w niektórych modelach, ale w drukarkach igłowych tego nie ma, bo one nie topnieją tuszem. Jeszcze elektrodę ładującą znajdziesz w drukarkach laserowych, a nie w igłowych. Takie myślenie może zaprowadzić do niepotrzebnych wydatków na części, które w ogóle nie są związane z problemem. Warto zrozumieć, że każdy typ drukarki ma swoje unikalne mechanizmy, a dobra diagnoza wymaga znajomości konkretnego modelu. Z mojego punktu widzenia, to nie tylko kwestia techniki, ale też wiesz, trzeba znać procedury serwisowe, które się przydają w praktyce.

Pytanie 35

Jakie polecenie jest wysyłane do serwera DHCP, aby zwolnić wszystkie adresy przypisane do interfejsów sieciowych?

A. ipconfig /displaydns
B. ipconfig /flushdns
C. ipconfig /renew
D. ipconfig /release
Polecenie 'ipconfig /release' jest używane do zwolnienia aktualnie przypisanych adresów IP przez klienta DHCP, co oznacza, że informuje serwer DHCP o zwolnieniu dzierżawy. Użycie tego polecenia jest kluczowe w sytuacjach, gdy użytkownik chce zmienić adres IP lub zresetować konfigurację sieciową. Na przykład, po zakończeniu korzystania z sieci Wi-Fi w biurze, użytkownik może użyć tego polecenia, aby zwolnić adres IP, który został mu przypisany. Dzięki temu serwer DHCP może przydzielić go innym urządzeniom w sieci. To podejście jest zgodne z dobrymi praktykami, ponieważ umożliwia efektywne zarządzanie zasobami adresów IP, szczególnie w dynamicznych środowiskach, gdzie urządzenia często łączą się i rozłączają z siecią. Dodatkowo, korzystanie z tego polecenia pomaga unikać konfliktów adresów IP, które mogą wystąpić, gdy dwa urządzenia próbują używać tego samego adresu jednocześnie, co jest szczególnie ważne w dużych sieciach.

Pytanie 36

Do jakiego typu wtyków przeznaczona jest zaciskarka pokazana na ilustracji?

Ilustracja do pytania
A. SC/PC
B. RJ45
C. BNC
D. E2000
Zaciskarka, którą widzisz na zdjęciu, to naprawdę fajne narzędzie do montażu złącz BNC. Te złącza, znane jako BNC (Bayonet Neill-Concelman), są używane wszędzie, gdzie mamy do czynienia z telekomunikacją i wideo, zwłaszcza w systemach CCTV czy profesjonalnym sprzęcie audio-wideo. Dzięki swojemu bagnetowemu mechanizmowi te złącza montuje się bardzo szybko i pewnie. Zaciskarka jest zaprojektowana, żeby dobrze zacisnąć metalowe elementy złącza na kablu koncentrycznym, co z kolei daje nam trwałe połączenie. Ważne, aby dobrze skalibrować narzędzie, bo inaczej możemy uszkodzić złącze. Podczas montażu złączy BNC musimy też dbać o integralność dielektryka w kablu, bo to wpływa na jakość sygnału. Praca z tym narzędziem wymaga, żeby technik znał standardy dotyczące kabli koncentrycznych i wiedział, jakich narzędzi i procedur używać, jak opisano w normach EIA/TIA. Ta wiedza jest naprawdę kluczowa, żeby instalacje działały prawidłowo i były trwałe.

Pytanie 37

Jak nazywa się pamięć podręczna?

A. VLB
B. Cache
C. EIDE
D. Chipset
Odpowiedź 'Cache' jest poprawna, ponieważ pamięć podręczna (cache) to rodzaj pamięci, który przechowuje często używane dane i instrukcje, aby przyspieszyć dostęp do nich przez procesor. W każdej architekturze komputerowej pamięć podręczna odgrywa kluczową rolę w optymalizacji wydajności systemu. Dzięki temu, że cache działa z dużą szybkością i jest zlokalizowana blisko procesora, znacznie zmniejsza czas potrzebny na dostęp do pamięci RAM. Przykładem zastosowania pamięci podręcznej jest buforowanie danych w nowoczesnych procesorach, które mogą mieć różne poziomy pamięci podręcznej (L1, L2, L3). W praktyce oznacza to, że gdy procesor musi wykonać operację na danych, które już znajdują się w pamięci podręcznej, może to zrobić znacznie szybciej niż w przypadku, gdy musiałby odwołać się do pamięci RAM. Dobre praktyki branżowe zalecają projektowanie systemów z uwzględnieniem pamięci podręcznej, aby zwiększyć efektywność obliczeń i zminimalizować opóźnienia. Warto również zauważyć, że pamięć podręczna jest wykorzystywana nie tylko w komputerach, ale także w urządzeniach mobilnych, serwerach i systemach rozproszonych, co czyni ją uniwersalnym elementem architektury komputerowej.

Pytanie 38

Prawo majątkowe twórcy dotyczące oprogramowania komputerowego

A. nie jest ograniczone czasowo
B. nie jest prawem, które można zbyć
C. można je przekazać innej osobie
D. obowiązuje przez 25 lat od daty pierwszej publikacji
Autorskie prawo majątkowe do programu komputerowego rzeczywiście można przenosić na inną osobę. Oznacza to, że twórca oprogramowania ma prawo do sprzedaży, licencjonowania czy innego przekazywania swoich praw majątkowych. W praktyce oznacza to, że jeśli programista stworzy oprogramowanie, może zawrzeć umowę z firmą technologiczną, która zechce wykorzystać jego program. W takim przypadku prawa majątkowe są przenoszone na nowego właściciela, co może obejmować zarówno pełne prawo do użytkowania, jak i prawo do dystrybucji. Warto zaznaczyć, że przeniesienie praw powinno być dokładnie określone w umowie, aby uniknąć przyszłych konfliktów dotyczących użytkowania oprogramowania. W Polsce kwestie te regulowane są przez Ustawę o prawie autorskim i prawach pokrewnych, która w jasny sposób definiuje zasady dotyczące przenoszenia praw. Dobrą praktyką jest konsultowanie się z prawnikiem specjalizującym się w prawie autorskim przy tworzeniu umów licencyjnych.

Pytanie 39

Aby zminimalizować wpływ zakłóceń elektromagnetycznych na przesyłany sygnał w tworzonej sieci komputerowej, jakie rozwiązanie należy zastosować?

A. ekranowaną skrętkę
B. cienki przewód koncentryczny
C. światłowód
D. gruby przewód koncentryczny
Jasne, że światłowód to naprawdę rewelacyjny wybór, jeśli chodzi o zminimalizowanie wpływu zakłóceń elektromagnetycznych. W porównaniu do zwykłych miedzianych kabli, światłowody przesyłają dane jako impulsy świetlne. I przez to nie są narażone na różne zakłócenia. To naprawdę ważne w miejscach, gdzie mamy do czynienia z dużą ilością urządzeń elektrycznych czy w przemyśle. Na przykład, telekomunikacja na tym bazuje, bo muszą mieć super stabilny sygnał i dużą przepustowość. Słyszałem o standardach jak IEEE 802.3 czy ITU-T G.652, które mówią, że światłowody są naprawdę niezawodne na dłuższych dystansach. No i są lżejsze i cieńsze, co jeszcze bardziej ułatwia ich wykorzystanie w nowoczesnych sieciach. Tak czy inaczej, światłowody to zdecydowanie strzał w dziesiątkę, jeśli chodzi o jakość usług telekomunikacyjnych.

Pytanie 40

Który algorytm służy do weryfikacji, czy ramka Ethernet jest wolna od błędów?

A. MAC (Media Access Control)
B. CRC (Cyclic Redundancy Check)
C. LLC (Logical Link Control)
D. CSMA (Carrier Sense Multiple Access)
Cyclic Redundancy Check (CRC) to technika wykrywania błędów, która jest kluczowym elementem w zapewnieniu integralności danych przesyłanych w sieci. Algorytm CRC generuje skrót na podstawie danych (np. ramki Ethernet) i dołącza go do ramki. Odbiorca może ponownie obliczyć skrót z odebranych danych, porównując go z dołączonym. Jeśli skróty się różnią, oznacza to, że wystąpiły błędy w transmisji. To podejście jest szeroko stosowane w standardach IEEE 802, w tym w Ethernet, gdzie błędy mogą wynikać z zakłóceń elektromagnetycznych lub uszkodzeń fizycznych. CRC ma kilka zalet: jest efektywny obliczeniowo, potrafi wykrywać wiele typów błędów i jest stosunkowo prosty do zaimplementowania. W praktyce, w urządzeniach sieciowych, takich jak przełączniki i routery, CRC jest automatycznie stosowane podczas przesyłania danych, co znacząco zwiększa niezawodność komunikacji w sieciach komputerowych.