Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 27 maja 2025 22:22
  • Data zakończenia: 27 maja 2025 22:22

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Cyna funkcjonuje jako spoiwo wykorzystywane w procesie

A. wytłaczania
B. nawęglania
C. kalandrowania
D. lutowania
Cyna jest powszechnie stosowanym spoiwem w procesie lutowania, który jest kluczowym elementem w tworzeniu połączeń elektrycznych oraz łączeniu elementów metalowych. Lutowanie, jako technika, wykorzystuje ciepło do stopienia spoiwa, które następnie wypełnia szczeliny między elementami, tworząc mocne i trwałe połączenie. Cyna jest preferowanym materiałem ze względu na swoje właściwości, takie jak niska temperatura topnienia oraz dobra przewodność elektryczna. Przykładem zastosowania lutowania z cyną jest produkcja obwodów drukowanych, gdzie lutuje się elementy elektroniczne do płytek. Ponadto, cyna jest często używana w lutowaniu rur miedzianych w instalacjach wodociągowych. W standardach branżowych, takich jak IPC-A-610, określono wymagania dotyczące jakości połączeń lutowanych, co podkreśla znaczenie dobrego lutowania dla niezawodności i trwałości produktów elektronicznych oraz innych zastosowań przemysłowych.

Pytanie 2

Przekroczenie dopuszczalnej temperatury łożysk wskazuje na

A. ich prawidłowe funkcjonowanie
B. postępujące zużycie
C. odpowiednie smarowanie
D. wydłużenie ich trwałości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost temperatury łożysk ponad dopuszczalną normę jest istotnym wskaźnikiem postępującego zużycia. Wysoka temperatura łożysk może być spowodowana kilkoma czynnikami, takimi jak niewłaściwe smarowanie, nadmierne obciążenie czy zanieczyszczenie środowiska pracy. W kontekście praktycznym, należy zwrócić uwagę na to, że łożyska pracujące w podwyższonej temperaturze mogą prowadzić do uszkodzeń powierzchniowych, takich jak pitting, spękania czy matowienie, co w efekcie skraca ich żywotność. Na przykład, standard ISO 281 dotyczący trwałości łożysk podkreśla znaczenie monitorowania temperatury jako kluczowego wskaźnika stanu technicznego. Właściwe procedury konserwacyjne, takie jak regularne smarowanie i kontrola stanu łożysk, mogą znacząco wpłynąć na ich wydajność i trwałość. Zrozumienie wpływu temperatury na łożyska jest kluczowe dla utrzymania niezawodności maszyn i urządzeń w różnych branżach.

Pytanie 3

Jakim narzędziem dokonuje się pomiaru wysokości zęba koła zębatego?

A. suwmiarki o regulowanej długości.
B. wzornika ogólnego.
C. suwmiarki modułowej.
D. przyrządu mikrometryczno-czujnikowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar głowy zęba koła zębatego za pomocą suwmiarki modułowej jest najwłaściwszym wyborem, ponieważ ten typ przyrządu pomiarowego został zaprojektowany specjalnie do precyzyjnych pomiarów, takich jak wymiary zębów w mechanizmach zębatych. Suwmiarka modułowa umożliwia pomiar zarówno zewnętrznych, jak i wewnętrznych wymiarów zębów, co jest kluczowe dla zapewnienia prawidłowego ustawienia i współpracy kół zębatych w danej aplikacji. Standardy branżowe, takie jak normy ISO 9001, podkreślają znaczenie dokładnych pomiarów w procesie produkcyjnym, co wpływa na jakość i trwałość produktów. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary zębów kół zębatych są fundamentalne dla zapewnienia ich efektywności i bezpieczeństwa w działaniu. Użycie suwmiarki modułowej pozwala na osiągnięcie wymaganej dokładności, co jest istotne dla uzyskania optymalnych wyników operacyjnych oraz długotrwałej wydajności mechanizmów.

Pytanie 4

Do elementów diagnozowania maszyn i urządzeń nie należy badanie

A. stanu powierzchni.
B. szczelności.
C. liczby wyłączeń maszyny.
D. hałasu oraz drgań.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Liczba wyłączeń maszyny nie jest bezpośrednim elementem diagnostyki, ale raczej wskaźnikiem jej wydajności lub awaryjności. Diagnostyka maszyn i urządzeń jak najbardziej koncentruje się na ocenie ich stanu technicznego, co obejmuje m.in. badanie stanu powierzchni, monitorowanie hałasu i drgań oraz kontrolę szczelności. Te aspekty są kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Na przykład, badania drgań mogą ujawnić problemy z łożyskami lub niewyważeniem, a analiza hałasu może wskazać na zużycie elementów mechanicznych. W praktyce, regularne przeprowadzanie takich badań pomaga w optymalizacji procesów produkcyjnych oraz w planowaniu działań konserwacyjnych, co z kolei przyczynia się do zmniejszenia kosztów eksploatacyjnych i zwiększenia niezawodności maszyn. Warto przy tym pamiętać o standardach takich jak ISO 10816, które dostarczają wytycznych dotyczących oceny drgań maszyn.

Pytanie 5

Zakład usługowo-mechaniczny dokonuje remontu czterdziestu, dwuwrzecionowych obrabiarek miesięcznie.
Na podstawie danych zamieszczonych w tabeli, oblicz czas potrzebny na montaż wszystkich wrzecion.

Nr zabieguOpis zabieguPracochłonność – wartości średnie [min]
1.Przygotowanie elementów wrzeciona8,80
2.Montaż łożyskowania20,20
3.Montaż tulei14,34
4.Montaż wrzeciona w obudowie oraz sprawdzanie bicia23,25
5.Montaż dystansów28,41
6.Montaż zabezpieczeń wrzecienie39,16
7.Sprawdzenie techniczne wrzeciona30,84
SUMA165,00

A. 368,00 godzin.
B. 110,00 godzin.
C. 62,50 godziny.
D. 220,00 godzin.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 220,00 godzin jest prawidłowa, ponieważ obliczenia oparte są na rzeczywistych danych dotyczących montażu wrzecion. Przyjmuje się, że czas montażu jednego wrzeciona wynosi 11 godzin. Zatem dla czterdziestu dwuwrzecionowych obrabiarek otrzymujemy 40 obrabiarek x 2 wrzeciona na obrabiarkę x 11 godzin na wrzeciono, co daje 880 godzin całkowitego czasu montażu. Jednakże, gdy przeliczymy to na liczbę roboczogodzin, które są dostępne w miesiącu, oraz uwzględnimy standardy pracy w danej branży, wzięcie pod uwagę ilości i dostępności zasobów może prowadzić do bardziej efektywnego wykorzystania czasu. W praktyce, organizacje często próbują optymalizować procesy montażowe, aby zredukować czas przestojów i zwiększyć wydajność produkcji, co jest kluczowe w branży usługowo-mechanicznej.

Pytanie 6

Jakie elementy maszyn można naprawić, wykorzystując procesy strugania, szlifowania oraz skrobania?

A. Prowadnice
B. Wałki
C. Zawory
D. Łożyska

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prowadnice w maszynach są kluczowymi elementami, które mają na celu zapewnienie wysokiej precyzji ruchu komponentów. Procesy strugania, szlifowania i skrobania są istotne w obróbce prowadnic, ponieważ pozwalają na uzyskanie odpowiednich tolerancji wymiarowych oraz gładkości powierzchni. Struganie jest często stosowane do wstępnej obróbki prowadnic, gdzie usuwana jest nadmiarowa materia, a następnie szlifowanie precyzyjnie dopasowuje wymiary i kształt. Skrobanie jest zaś techniką, która ma na celu poprawę jakości powierzchni oraz usunięcie ewentualnych niedoskonałości, co jest kluczowe dla zapewnienia niskiego tarcia i długiej żywotności prowadnic. Standardy branżowe, takie jak ISO 2768, określają tolerancje wymiarowe i wymagania jakości powierzchni, które powinny być spełniane podczas obróbki prowadnic, co podkreśla znaczenie tych procesów w praktyce inżynieryjnej.

Pytanie 7

Z jakiego materiału nie produkuje się narzędzi do obróbki skrawaniem?

A. Azotku boru
B. Diamentu
C. Węglika krzemu
D. Polichlorku winylu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polichlorek winylu (PVC) jest materiałem, który nie jest stosowany do produkcji narzędzi skrawających, ponieważ jego właściwości mechaniczne oraz termiczne nie są odpowiednie do tak wymagających aplikacji. Narzędzia skrawające muszą charakteryzować się dużą twardością, odpornością na ścieranie oraz stabilnością w wysokich temperaturach, co jest kluczowe w procesach obróbczych. PVC, będąc tworzywem sztucznym, ma niską twardość i nie wytrzymuje wysokich temperatur, co sprawia, że nie może być używane w zastosowaniach, gdzie wymagana jest wydajność skrawania metali czy innych twardych materiałów. Przykładem odpowiednich materiałów do wytwarzania narzędzi skrawających są diamenty, które dzięki swojej ekstremalnej twardości są wykorzystywane w narzędziach do cięcia twardych materiałów, takich jak ceramika czy kompozyty. Azotek boru i węglik krzemu również są stosowane w narzędziach skrawających ze względu na swoje korzystne właściwości, oferując odporność na wysokie temperatury i ścieranie, co jest kluczowe w przemyśle obróbczy.

Pytanie 8

Nie można zweryfikować współosiowości osi wałów przekładni po zmontowaniu za pomocą

A. suwmiarki uniwersalnej
B. czujnika laserowego
C. przyrządów pomiarowych
D. czujnika zegarowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'suwmiarka uniwersalna' jest fajnie wybrana, ale, no niestety, to nie do końca to. Ta suwmiarka nie ma takiej precyzji, żeby dobrze ocenić, jak osiowo są ustawione wały po montażu. Owszem, suwmiarki są super do mierzenia różnych wymiarów, ale jak chodzi o pomiary osiowe, to jednak nie dają rady. W praktyce do takich rzeczy lepiej użyć czujników zegarowych, bo one pokazują nawet najmniejsze odchylenia. To pomaga naprawić ewentualne błędy przy składaniu. Można też pomyśleć o czujnikach laserowych, które są mega dokładne i używają światła do pomiarów. Dlatego w inżynierii, jak robisz takie pomiary, warto mieć pod ręką specjalistyczne narzędzia, bo to naprawdę pomaga uzyskać dobre wyniki.

Pytanie 9

Jakiego surowca należy użyć, aby w łatwy sposób połączyć rury podczas lutowania?

A. Stal
B. Żeliwo
C. Miedź
D. Staliwo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miedź to naprawdę super materiał do lutowania! Ma świetną przewodność cieplną, więc wszystko działa jak powinno. W branży hydraulicznej i przy instalacjach sanitarno-grzewczych lutowanie miedzi to norma. Łączenie jej z użyciem lutowia, które topnieje poniżej 450°C, daje trwałe i szczelne połączenia. Proces lutowania miedzi jest też dość szybki, co przydaje się w przemyśle. A jak wiadomo, miedź jest odporna na korozję, więc nadaje się idealnie do systemów wodociągowych. Pamiętaj tylko, że żeby wszystko zadziałało, trzeba odpowiednio przygotować powierzchnię – odpalać ją trzeba, użyć dobrego topnika, żeby lepiej się trzymało. Przykładem, gdzie lutowanie miedzi sprawdza się świetnie, jest montaż rur w instalacjach grzewczych. Tu ważne, żeby połączenia były szczelne, bo to klucz do efektywności całego systemu.

Pytanie 10

Jakie narzędzie jest używane do pomiaru średnicy otworu w korpusie maszyny?

A. wałek pomiarowy
B. sprawdzian tłoczkowy
C. liniał sinusowy
D. sprawdzian szczękowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzian tłoczkowy jest narzędziem pomiarowym, które służy do precyzyjnego pomiaru średnicy otworów. Jego konstrukcja pozwala na dokładne dopasowanie do wymiarów otworu, co czyni go idealnym instrumentem w procesach kontrolnych w przemyśle. Sprawdzian ten zazwyczaj składa się z cylindrycznego elementu, który może być wykonany z materiałów odpornych na zużycie, co zapewnia długowieczność i stabilność wymiarową. W praktyce, korzysta się z niego, aby upewnić się, że otwór spełnia określone tolerancje wymiarowe, co jest kluczowe dla prawidłowego funkcjonowania komponentów maszyn. W branży inżynieryjnej i produkcyjnej stosowanie sprawdzianów tłoczkowych jest zgodne z normami jakości ISO, które podkreślają potrzebę precyzyjnego pomiaru i kontroli wymiarów w procesie produkcyjnym. Tego rodzaju narzędzia są niezbędne w zapewnieniu, że elementy maszyn będą ze sobą prawidłowo współdziałać, co jest kluczowe dla utrzymania wysokiej jakości produkcji oraz minimalizacji odpadów.

Pytanie 11

Jakie jest główne zastosowanie frezarek w przemyśle?

A. Cięcie materiałów na wymiar
B. Malowanie powierzchni
C. Łączenie elementów metalowych
D. Obróbka powierzchni płaskich i kształtowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezarki to maszyny, które odgrywają kluczową rolę w przemyśle maszynowym i nie tylko. Ich główne zastosowanie to obróbka powierzchni płaskich i kształtowych, co oznacza, że są one używane do nadawania określonych kształtów i wymiarów częściom z różnych materiałów, takich jak metale, tworzywa sztuczne czy drewno. Frezowanie umożliwia precyzyjne formowanie powierzchni, zarówno prostych, jak i skomplikowanych, co jest niezbędne w produkcji części maszyn, narzędzi i urządzeń. Dzięki zastosowaniu różnorodnych narzędzi frezarskich możliwe jest wykonanie rowków, żłobków czy otworów. W praktyce frezarki są używane w wielu branżach, od motoryzacyjnej przez lotniczą, aż po produkcję mebli. Zaawansowane technologie, takie jak CNC, umożliwiają automatyzację procesu frezowania, co zwiększa precyzję i efektywność produkcji. Obecnie frezarki są niezastąpione w produkcji seryjnej, a także przy tworzeniu prototypów i elementów jednostkowych.

Pytanie 12

Materiały narzędziowe o dużej twardości znajdują zastosowanie w produkcji

A. elementów wibroizolacyjnych
B. narzędzi skrawających
C. korpusów maszyn
D. opakowań próżniowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Supertwarde materiały narzędziowe, takie jak węglik tungstenowy czy azotek boru, są kluczowe w produkcji narzędzi skrawających, ponieważ ich wyjątkowe właściwości mechaniczne umożliwiają efektywne przekształcanie surowców w gotowe produkty. Narzędzia skrawające, takie jak wiertła, frezy czy noże tokarskie, muszą charakteryzować się wysoką twardością i odpornością na zużycie, aby sprostać wymaganiom przy skrawaniu różnych materiałów, w tym stali, aluminium oraz kompozytów. Przykładowo, narzędzia wykonane z węglika tungstenowego są w stanie pracować w wysokotemperaturowych warunkach, co jest kluczowe w przemyśle metalowym. Zastosowanie tych materiałów pozwala na zwiększenie wydajności produkcji oraz precyzji obróbczej, co jest zgodne z najlepszymi praktykami branżowymi, które skupiają się na optymalizacji procesów technologicznych. Wiedza na temat właściwości supertwardych materiałów narzędziowych jest niezwykle ważna dla inżynierów i technologów zajmujących się obróbką skrawaniem, ponieważ pozwala na dobór najodpowiedniejszych narzędzi do konkretnych zastosowań.

Pytanie 13

Kontrole stanowiskowe pozwalają na ustalenie

A. kluczowych wymiarów części na stanowisku roboczym
B. wszystkich wymiarów produkowanej części
C. pełnej geometrii produkowanej części w warunkach laboratoryjnych
D. wad ukrytych struktury materiału obrabianego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdziany stanowiskowe są kluczowym narzędziem w procesie wytwarzania, które pozwala na weryfikację kluczowych wymiarów części w warunkach rzeczywistych, bezpośrednio na stanowisku roboczym. Ich głównym celem jest zapewnienie, że wszystkie istotne parametry wymiarowe są zgodne z projektem oraz spełniają wymagania jakościowe. Na przykład, w przypadku produkcji detali metalowych, sprawdziany mogą być stosowane do kontroli takich wymiarów jak średnice otworów, długości krawędzi czy równoległość powierzchni. W branży motoryzacyjnej, gdzie precyzja jest kluczowa, sprawdziany te pomagają uniknąć niezgodności, które mogą prowadzić do poważnych usterek w działaniu pojazdów. Zgodnie z normami ISO 9001, stosowanie sprawdzianów jest jednym z elementów zapewnienia jakości, które przyczynia się do zwiększenia efektywności produkcji oraz minimalizacji odpadów. Dzięki zastosowaniu sprawdzianów na stanowisku roboczym, inżynierowie mogą wprowadzać korekty w procesie produkcyjnym na bieżąco, co jest zgodne z ideą ciągłego doskonalenia i jakości produkcji.

Pytanie 14

Jaki jest główny cel stosowania cieczy chłodzących podczas procesów obróbczych?

A. Zwiększenie prędkości skrawania
B. Zmniejszenie temperatury i tarcia
C. Zwiększenie twardości materiału
D. Zwiększenie zużycia narzędzia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciecz chłodząca odgrywa kluczową rolę w procesach obróbczych, głównie poprzez zmniejszenie temperatury i tarcia. Podczas obróbki mechanicznej, narzędzia i obrabiany materiał generują duże ilości ciepła wskutek tarcia. Nadmierne ciepło może prowadzić do deformacji termicznych, co z kolei wpływa na precyzję wymiarową detalu. Dlatego właśnie ciecz chłodząca pomaga w skutecznym usuwaniu tego ciepła, co pozwala na utrzymanie stabilnych warunków pracy narzędzia. Oprócz tego, zmniejszenie tarcia między narzędziem a materiałem wydłuża żywotność narzędzia oraz poprawia jakość powierzchni obrabianego elementu. Wykorzystanie cieczy chłodzących jest zatem powszechną praktyką w branży obróbczej, a ich odpowiedni dobór i stosowanie to klucz do efektywności i precyzji w procesach obróbczych. Ciecze chłodzące mogą również pełnić rolę środków smarujących, co dodatkowo ogranicza zużycie narzędzi i poprawia jakość powierzchni. Dlatego w nowoczesnych zakładach przemysłowych, stosowanie odpowiednich cieczy chłodzących jest standardem, który pozwala na osiągnięcie optymalnej wydajności i jakości.

Pytanie 15

Koła zębate powstają w procesie toczenia oraz

A. tłoczenia i przeciągania
B. wytłaczania i frezowania
C. frezowania i dłutowania
D. kalandrowania i szlifowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezowanie i dłutowanie to kluczowe procesy obróbcze stosowane w produkcji kół zębatych. Frezowanie polega na usuwaniu materiału za pomocą narzędzia skrawającego, które obraca się wokół własnej osi. Dzięki tej metodzie można osiągnąć wysoką precyzję w formowaniu zębatek, co jest istotne dla prawidłowego funkcjonowania mechanizmów przekładniowych. Dłutowanie z kolei jest procesem, który umożliwia uzyskanie kształtów zewnętrznych oraz wewnętrznych detali, idealnych do produkcji kół zębatych o złożonej geometrii. Przykładem zastosowania tych technologii jest produkcja kół zębatych do przekładni w samochodach, gdzie precyzyjny kształt zębów ma kluczowe znaczenie dla ich wydajności i trwałości. W branży inżynieryjnej obowiązują normy ISO dotyczące tolerancji wymiarowych, które są przestrzegane podczas obróbki kół zębatych, co zapewnia ich niezawodność i kompatybilność z innymi komponentami.

Pytanie 16

Aby umożliwić użytkowanie przyrządu pomiarowego, konieczne jest jego

A. normalizacja
B. konserwacja
C. regulowanie
D. kalibracja

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kalibracja to naprawdę ważny proces, jeśli chodzi o dokładność pomiarów przyrządów. Chodzi o to, że musimy porównać, co pokazuje nasz przyrząd, z wartościami, które są uznawane za wzorcowe. Jeśli coś nie chce wskazywać prawidłowo, to się to dostosowuje, żeby wszystko się zgadzało z rzeczywistością. Na przykład, w chemii to jest mega istotne, żeby wagi czy pipety były kalibrowane, bo to wpływa na wyniki. Są normy, jak na przykład ISO 17025, które mówią, co i jak powinno być robione. Regularna kalibracja nie tylko sprawia, że pomiary są dokładniejsze, ale także pozwala spełniać różne normy i przepisy, co jest ważne podczas audytów. Można powiedzieć, że bez kalibracji nie ma mowy o dobrych wynikach w laboratorium.

Pytanie 17

Wybierz metodę, która umożliwia połączenie drewna z materiałem sztucznym.

A. Spawanie
B. Zgrzewanie
C. Klejenie
D. Lutowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klejenie drewna z tworzywem sztucznym to jedna z najczęściej stosowanych metod łączenia tych dwóch materiałów, ze względu na jej prostotę oraz efektywność. Kleje, takie jak kleje epoksydowe czy poliuretanowe, oferują doskonałe właściwości adhezyjne, które mogą skutecznie łączyć powierzchnie o różnych właściwościach fizycznych i chemicznych. W praktyce, klejenie jest szeroko stosowane w branży meblarskiej, budowlanej oraz w produkcji elementów dekoracyjnych, gdzie estetyka i funkcjonalność mają kluczowe znaczenie. Dobrze dobrany klej oraz odpowiednie przygotowanie powierzchni (np. szlifowanie, odtłuszczanie) mogą znacząco wpłynąć na jakość połączenia. Warto również zwrócić uwagę na normy, takie jak PN-EN 204, które określają klasyfikację klejów do użytku w budownictwie i meblarstwie. Zastosowanie klejenia pozwala również na uzyskanie połączeń, które są odporne na zmiany temperatury i wilgotności, co jest istotne w wielu zastosowaniach przemysłowych.

Pytanie 18

Tworzenie narostu prowadzi do

A. powstawania odchyłek kształtu i wymiarów powierzchni obrabianych
B. ulepszenia odprowadzania ciepła z ostrzy skrawających
C. wzrostu twardości obrabianego materiału
D. zmniejszenia tolerancji kształtu i wymiarów obrabianych części

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Powstawanie narostu na narzędziach skrawających jest zjawiskiem, które prowadzi do powstawania odchyłek kształtu i wymiarów powierzchni obrabianych. Narost, czyli nagromadzenie materiału na ostrzu narzędzia, wpływa na jego geometrę oraz kąt natarcia, co w rezultacie zmienia parametry obróbcze. W praktyce, narost może powodować, że proces skrawania staje się mniej stabilny, co prowadzi do niejednorodności w wymiarach obrabianych części. Na przykład, w obróbce stali, narost może być szczególnie problematyczny, ponieważ zmienia właściwości skrawania i może prowadzić do zwiększonego zużycia narzędzi. Zgodnie z najlepszymi praktykami, należy regularnie kontrolować stan narzędzi i stosować odpowiednie techniki, takie jak chłodzenie czy smarowanie, aby zminimalizować powstawanie narostów i zapewnić optymalną jakość obrabianych elementów. Dbałość o stan narzędzi jest kluczowa dla utrzymania tolerancji wymiarowych i kształtowych, co jest zgodne z normami ISO 2768 dotyczącymi tolerancji ogólnych dla wymiarów i kształtów.

Pytanie 19

Do budowy wanny, która ma służyć do przechowywania soku jabłkowego, należy użyć stali

A. narzędziowej
B. konstrukcyjnej
C. chromowo-niklowej
D. ocynkowanej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stali chromowo-niklowej do konstrukcji wanny do magazynowania soku z jabłek jest uzasadniony jej wyjątkowymi właściwościami. Stal chromowo-niklowa, znana również jako stal nierdzewna, charakteryzuje się wysoką odpornością na korozję, co jest kluczowe w kontekście przechowywania substancji takich jak sok jabłkowy, który ma tendencję do kwaszenia. Przykładem zastosowania stali nierdzewnej w przemyśle spożywczym jest produkcja zbiorników do fermentacji, w których zachowanie czystości i stabilności materiału jest niezbędne dla zachowania jakości produktu. Dodatkowo, stal chromowo-niklowa nie tylko spełnia normy sanitarno-epidemiologiczne, ale także jest łatwa do czyszczenia, co przyspiesza proces konserwacji i utrzymania sprzętu. W branży stosuje się różne klasy stali nierdzewnej, w tym austenityczną (np. 304, 316), która jest szczególnie ceniona za swoje właściwości antykorozyjne. Takie podejście jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa żywności oraz ochrony zdrowia, co czyni stal chromowo-niklową idealnym wyborem do produkcji wyposażenia przetwórstwa owocowego.

Pytanie 20

W oparciu o dane w tabeli dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejOpisZastosowanieUwagi
CyjanoakrylowyPrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnyPrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do luster, do niektórych plastików narażonych na stąpanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowyPrzeznaczone są do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowyPrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.

A. Epoksydowy.
B. Dyspersyjny.
C. Neoprenowy.
D. Cyjanokrylowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klej epoksydowy jest odpowiedni do łączenia elementów stalowych, szczególnie w warunkach, gdzie występują wibracje oraz wilgoć. Jego unikalna formuła chemiczna pozwala na tworzenie mocnych połączeń, które są odporne na różne obciążenia mechaniczne, takie jak skręcanie i uderzenia. W praktyce, kleje epoksydowe są szeroko stosowane w branży budowlanej i motoryzacyjnej, gdzie trwałość oraz odporność na czynniki zewnętrzne są kluczowe. Dodatkowo, kleje te mogą być stosowane w różnych aplikacjach, takich jak naprawy elementów metalowych w maszynach, spoiny w konstrukcjach stalowych, a także w produkcji sprzętu elektronicznego. W kontekście standardów branżowych, kleje epoksydowe spełniają wymogi norm ISO, co czyni je bezpiecznym wyborem w aplikacjach, gdzie wymagane jest wysokie bezpieczeństwo i trwałość. Warto również zaznaczyć, że przed zastosowaniem kleju epoksydowego, zaleca się odpowiednie przygotowanie powierzchni, co zwiększa jego skuteczność.

Pytanie 21

W jakich obrabiarkach wykorzystuje się stół obrotowo-podziałowy?

A. W walcarkach
B. W ciągarkach
C. We frezarkach
D. W wytłaczarkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "We frezarkach" jest poprawna, ponieważ stół obrotowo-podziałowy jest kluczowym elementem w obrabiarkach, które wykonują skomplikowane operacje frezarskie. Stół ten umożliwia precyzyjne ustawienie detalu w różnych pozycjach, co jest szczególnie istotne przy wieloaspektowym frezowaniu. Użycie stołu obrotowo-podziałowego pozwala na wykonywanie cięć w różnych płaszczyznach, co zwiększa dokładność i efektywność procesów produkcyjnych. Przykładem zastosowania może być obróbka elementów maszyn, które wymagają skomplikowanych kształtów i otworów. W branży inżynieryjnej oraz produkcyjnej stosuje się standardy takie jak ISO 9001, które podkreślają znaczenie precyzji obróbczej, a wykorzystanie stołów obrotowo-podziałowych w frezarkach wpisuje się w te normy, zapewniając wysoką jakość wytwarzanych produktów. Dzięki tej technologii, operatorzy mają możliwość zwiększenia wydajności oraz redukcji czasu cyklu produkcyjnego, co jest istotne w kontekście konkurencyjności na rynku.

Pytanie 22

Jakie rodzaje połączeń są rozłączne?

A. Lutowane
B. Zgrzewane
C. Klejone
D. Gwintowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenia gwintowe są klasyfikowane jako rozłączne, co oznacza, że można je łatwo demontować bez uszkodzenia elementów łączonych. Gwinty pozwalają na regulację i napinanie połączeń, co czyni je niezwykle praktycznymi w różnych zastosowaniach. Na przykład, w konstrukcjach mechanicznych, takich jak maszyny przemysłowe, gwintowe połączenia śrubowe umożliwiają szybkie i efektywne serwisowanie, co jest kluczowe dla utrzymania ciągłości produkcji. Dodatkowo, gwintowe połączenia są standardem w przemyśle budowlanym, gdzie wykorzystywane są do łączenia elementów stalowych, co zapewnia stabilność konstrukcji. W kontekście norm, takie połączenia spełniają wymagania wielu standardów, w tym ISO 898-1, co podkreśla ich niezawodność i wszechstronność. Ponadto, w zastosowaniach takich jak hydraulika czy pneumatyka, wykorzystanie gwintów do połączeń złączy umożliwia bezpieczne przenoszenie ciśnienia, co jest niezbędne w pracy z płynami pod ciśnieniem.

Pytanie 23

Realizacja rowka wpustowego w wale odbywa się w trakcie

A. frezowania
B. walcowania
C. ciągnienia
D. wtryskiwania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezowanie to proces obróbczy, w którym narzędzie skrawające wykonuje ruch obrotowy, a materiał obrabiany porusza się w kierunku narzędzia. Wykonanie rowka wpustowego w wałku jest zatem naturalnym zastosowaniem frezowania, ponieważ pozwala na precyzyjne usunięcie materiału wzdłuż wałka, tworząc otwór o wymaganym kształcie i głębokości. Frezowanie rowków wpustowych jest niezwykle istotne w inżynierii mechanicznej, ponieważ te rowki często służą do umiejscowienia elementów mocujących, takich jak śruby czy kołki. Dobre praktyki w obróbce polegają na zastosowaniu odpowiednich narzędzi skrawających oraz dostosowaniu parametrów obróbczych, takich jak prędkość obrotowa czy posuw, co znacząco wpływa na jakość wykończenia powierzchni oraz dokładność wymiarową. Frezowanie umożliwia także obrabianie różnych rodzajów materiałów, od metali po tworzywa sztuczne, co czyni je uniwersalnym procesem w produkcji elementów mechanicznych.

Pytanie 24

W trakcie trasowania niektórych produktów walcowych jako podstawy wykorzystuje się

A. cyrkiel
B. pryzmę
C. kątownik
D. liniał

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pryzma jest kluczowym elementem w procesie trasowania wyrobów walcowych, ponieważ zapewnia stabilność i dokładność podczas wykonywania pomiarów oraz cięcia. Jest to szczególnie ważne, gdy mamy do czynienia z wyrobami o dużych średnicach i niewielkich długościach, gdzie precyzja i równoległość są istotne dla końcowej jakości produktu. Pryzmy są często stosowane w warsztatach mechanicznych oraz przemysłowych, jako podstawki do precyzyjnego ustawienia obrabianych elementów, co pozwala na uzyskanie doskonałych tolerancji wymiarowych. Dobrą praktyką jest również stosowanie pryzm wykonanych z materiałów o wysokiej twardości, które minimalizują ryzyko deformacji w trakcie pracy. W standardach branżowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego ustawienia elementów w procesie obróbki, co czyni pryzmy niezastąpionym narzędziem w każdym warsztacie. Używanie pryzm w trasowaniu wyrobów walcowych zwiększa efektywność i jakość pracy, co jest kluczowe w kontekście nowoczesnych metod produkcyjnych.

Pytanie 25

Przy instalacji przewodów sztywnych należy

A. chronić przewody przed działaniem czynników wewnętrznych
B. zapewnić wymianę ciepła pomiędzy cieczą roboczą a otoczeniem
C. założyć elastyczne oprawy na przejścia przez przegrody
D. ochronić przewody przed stałymi temperaturami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Założenie elastycznych opraw na przejścia przez przegrody jest kluczowe dla zapewnienia prawidłowego funkcjonowania systemów przewodów sztywnych. Elastyczne oprawy umożliwiają nie tylko łatwiejszy montaż, ale także minimalizują ryzyko uszkodzeń przewodów spowodowanych ruchami i wibracjami, które mogą występować w instalacjach przemysłowych. Przewody sztywne, jeśli nie są odpowiednio zabezpieczone, mogą ulegać pęknięciom w miejscach przejść przez różne przegrody, co prowadzi do awarii systemu. Zastosowanie elastycznych opraw pomaga również w dostosowaniu do zmian wymagań w instalacji, co jest przydatne w dynamicznych środowiskach produkcyjnych. Dobrą praktyką według norm, takich jak ISO 9001, jest stosowanie komponentów, które zwiększają niezawodność oraz bezpieczeństwo systemów, co czyni elastyczne oprawy niezbędnymi w prawidłowym montażu przewodów. Oprócz tego, elastyczne oprawy ułatwiają również wykonanie konserwacji i ewentualnych napraw, co przekłada się na mniejsze przestoje w produkcji.

Pytanie 26

Jaka jest główna zaleta stosowania połączeń nitowych?

A. Niska odporność na wibracje
B. Niska wytrzymałość na rozciąganie
C. Trwałość i niezawodność
D. Łatwość demontażu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Połączenia nitowe są powszechnie stosowane w przemyśle maszynowym i konstrukcjach metalowych ze względu na swoją trwałość i niezawodność. Są one szczególnie przydatne w miejscach, gdzie spawanie jest trudne lub niemożliwe do zastosowania. Nity zapewniają trwałe połączenie, które jest odporne na zmienne warunki środowiskowe, takie jak wilgoć, wysoka temperatura czy wibracje, co czyni je idealnym rozwiązaniem w przemyśle lotniczym, stoczniowym czy budowlanym. W praktyce, połączenia nitowe są wykorzystywane w miejscach, gdzie wymagana jest duża wytrzymałość mechaniczna, a jednocześnie istotne jest zachowanie strukturalnej integralności. Dzięki swojej niezawodności, nity są często wybierane do zadań, gdzie bezpieczeństwo i długowieczność konstrukcji są kluczowe. W standardach branżowych, takich jak normy ISO czy ASTM, połączenia nitowe są często zalecane jako preferowana metoda łączenia w specyficznych aplikacjach przemysłowych. Połączenia te, mimo że mogą być bardziej czasochłonne w montażu niż inne metody, oferują jednak nieporównywalną trwałość i pewność strukturalną, co jest nieocenione w wielu zastosowaniach inżynieryjnych.

Pytanie 27

W oparciu o dane w tabeli, dobierz rodzaj kleju do wypełnienia niewielkiego pęknięcia w pokrywie stalowej narażonej na wibracje i umieszczonej w środowisku wilgotnym.

KlejeOpisZastosowanieUwagi
CyjanoakrylowePrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnePrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do luster, do niektórych plastików narażonych na stąpanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowePrzeznaczone do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowePrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.

A. Dyspersyjny.
B. Neoprenowy.
C. Epoksydowy.
D. Cyjanokrylowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klej epoksydowy jest idealnym wyborem do wypełnienia pęknięcia w pokrywie stalowej, która jest narażona na wibracje oraz znajduje się w wilgotnym środowisku. Dzięki swojej strukturze chemicznej, kleje epoksydowe charakteryzują się doskonałą adhezją do metali, co czyni je odpowiednimi do zastosowań w przemyśle, gdzie wytrzymałość i niezawodność są kluczowe. Epoksydy są znane z odporności na działanie wody, chemikaliów oraz zmiennych temperatur, co sprawia, że idealnie nadają się do zastosowań w trudnych warunkach. W praktyce, kleje epoksydowe są powszechnie stosowane w budownictwie, motoryzacji oraz przy naprawach sprzętu, co potwierdza ich uniwersalność. W przypadku naprawy pokryw stalowych, które są narażone na wibracje, epoksydy nie tylko wypełniają pęknięcia, ale również zapewniają integralność strukturalną, co jest kluczowe dla bezpieczeństwa i trwałości. Zgodnie z normami branżowymi, stosowanie klejów epoksydowych w takich zastosowaniach stanowi najlepszą praktykę, ze względu na ich właściwości mechaniczne i odporność na obciążenia.

Pytanie 28

Do czego służy proces elektrodrążenia?

A. Łączenie elementów metalowych
B. Pokrywanie powierzchni farbą
C. Aplikacja powłok antykorozyjnych
D. Obróbka materiałów trudnoskrawalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces elektrodrążenia jest zaawansowaną technologią obróbki materiałów, która polega na usuwaniu materiału za pomocą wyładowań elektrycznych. Jest szczególnie przydatna w przypadku materiałów trudnoskrawalnych, takich jak stopy tytanu, węgliki spiekane czy stal hartowana, które są wyjątkowo odporne na tradycyjne metody obróbki mechanicznej. Proces ten umożliwia precyzyjne kształtowanie i wykańczanie elementów, które są trudne do obróbki innymi metodami. Elektrodrążenie jest szeroko stosowane w przemyśle narzędziowym do wykonania form wtryskowych, matryc, a także w przemyśle lotniczym i motoryzacyjnym. Dzięki możliwości uzyskania skomplikowanych kształtów oraz wysokiej dokładności wymiarowej, elektrodrążenie staje się niezastąpionym procesem w produkcji komponentów o wysokiej jakości. Technologia ta wykorzystuje właściwości erozyjne wyładowań elektrycznych, co pozwala na obróbkę bez bezpośredniego kontaktu narzędzia z materiałem, eliminując przy tym naprężenia mechaniczne. Jest to zgodne ze standardami przemysłowymi, które wymagają wysokiej precyzji oraz dbałości o jakość powierzchni obrabianych elementów.

Pytanie 29

Z czego wykonuje się rączki pilników ślusarskich?

A. z żeliwa
B. ze stali
C. z mosiądzu
D. z drewna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rączki pilników ślusarskich wykonuje się z drewna, ponieważ materiał ten oferuje doskonałe właściwości ergonomiczne oraz komfort użytkowania. Drewno jest materiałem ciepłym w dotyku, co zwiększa komfort pracy, zwłaszcza podczas długotrwałego użytkowania narzędzia. Dodatkowo, drewno jest wystarczająco wytrzymałe, aby znieść siłę i nacisk podczas pracy, jednocześnie zapewniając odpowiednią przyczepność. W praktyce, drewniane rączki są często lakierowane lub pokrywane innymi powłokami, co zwiększa ich odporność na uszkodzenia i wilgoć. W branży narzędziowej stosuje się różne gatunki drewna, takie jak buk czy dąb, które charakteryzują się wysoką twardością oraz odpornością na zarysowania. Zgodnie z normami ISO dla narzędzi ręcznych, drewno jako materiał rączek pilników przyczynia się do poprawy bezpieczeństwa i komfortu pracy. Warto również zauważyć, że wiele firm stosuje techniki obróbcze, które minimalizują odpady, co wpisuje się w aktualne standardy zrównoważonego rozwoju.

Pytanie 30

Zużycie prowadnic łoża tokarki skutkuje

A. gładką powierzchnią obrabianych elementów na tokarkach
B. minimalną ilością ciepła w obrabianym materiale
C. niedokładnością wymiarową w czasie toczenia
D. niewielką liczbą wiórów w trakcie obróbki skrawaniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niedokładności wymiarowe w toczeniu mogą wynikać z tego, jak zużyte są prowadnice łoża tokarki. Jak wiadomo, jeśli prowadnice są w dobrym stanie, narzędzie skrawające będzie poruszać się wzdłuż zaplanowanej drogi, co pomoże osiągnąć wymagania dotyczące wymiarów obrabianych elementów. Gdy jednak prowadnice się wytarły, narzędzie może nie działać w osiowym kierunku, co prowadzi do błędów. Na przykład, przy produkcji precyzyjnych części, jak wały korbowe, nawet małe różnice w dokładności mogą później sprawić poważne problemy w montażu. Moim zdaniem, zgodnie z normami ISO, regularne sprawdzanie stanu technicznego maszyn i ich konserwacja to klucz do uzyskania dobrej jakości produkcji.

Pytanie 31

Środkownik pozwala na określenie

A. płaskości powierzchni
B. długości powierzchni cylindrycznych wałków
C. środka płaskich powierzchni czołowych przedmiotów walcowych
D. średnicy rowków wewnętrznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Środkownik to narzędzie wykorzystywane w obróbce skrawaniem, które umożliwia precyzyjne wyznaczanie środka płaskich powierzchni czołowych przedmiotów walcowych. Dzięki zastosowaniu środkownika, operatorzy maszyn mogą skutecznie określić centralny punkt na takich powierzchniach, co jest kluczowe w procesach takich jak wiercenie, frezowanie czy toczenie. Przykładowo, w tokarstwie, idealne umiejscowienie narzędzia skrawającego w osi obrotu przedmiotu obrabianego jest istotne dla zapewnienia symetrii oraz estetyki finalnego produktu. W standardach przemysłowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego wyznaczania środków w kontekście tolerancji wymiarowych. W praktyce, wykorzystanie środkownika pozwala na uzyskanie wyższej jakości obróbki oraz minimalizację odchyleń, co bezpośrednio wpływa na wydajność produkcji oraz redukcję kosztów materiałowych.

Pytanie 32

Jakie narzędzie jest używane do wykonywania otworów na prasie mimośrodowej?

A. nóż tokarski
B. wykrojnik
C. wiertło lufowe
D. frez

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykrojnik to narzędzie specjalistyczne używane do wykonywania otworów w materiałach, które charakteryzują się wysoką precyzją i powtarzalnością. Jest to narzędzie o stałym kształcie, które działa na zasadzie wycinania materiału z podłoża, co czyni je idealnym do produkcji seryjnej. Wykrojniki są najczęściej stosowane w procesach takich jak tłoczenie, gdzie materiał jest umieszczany pomiędzy wykrojnikiem a matrycą. W przypadku prasy mimośrodowej, wykrojnik jest umieszczany w ruchomym ramieniu, które, poprzez swoje działanie mimośrodowe, generuje dużą siłę niezbędną do przecinania. Przykłady zastosowań wykrojników obejmują przemysł motoryzacyjny, gdzie wykorzystywane są do produkcji blach karoserii oraz w branży elektronicznej, gdzie precyzyjne otwory są kluczowe dla montażu podzespołów. Wykrojniki spełniają normy branżowe dotyczące jakości i precyzji, co czyni je niezastąpionym narzędziem w nowoczesnym przemyśle produkcyjnym.

Pytanie 33

Terminologia TIG, MIG oraz MMA odnosi się do rodzajów połączeń

A. nitowanych
B. klejonych
C. zgrzewanych
D. spawanych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenia TIG, MIG oraz MMA odnoszą się do różnych metod spawania, które są kluczowe w procesach łączenia materiałów metalowych. TIG (Tungsten Inert Gas) to proces, w którym elektroda wolframowa nie topnieje i stosuje się gaz osłonowy, co pozwala na uzyskanie wysokiej jakości spoiny. MIG (Metal Inert Gas) z kolei wykorzystuje topniejącą elektrodę oraz gaz osłonowy, co czyni go szybkim i efektywnym procesem, szczególnie w przypadku większych grubości materiałów. MMA (Manual Metal Arc) to tradycyjna metoda spawania elektrodą otuloną, która jest łatwiejsza w użyciu i często stosowana w warunkach budowlanych lub w terenie. Wszystkie te metody są szeroko stosowane w różnych branżach, takich jak przemysł motoryzacyjny, stoczniowy, budowlany i wiele innych. Każda z tych technik ma swoje unikalne zastosowania, w zależności od wymagań dotyczących jakości, wytrzymałości i estetyki spoiny. W praktyce, znajomość tych technologii pozwala inżynierom i technikom na dobór odpowiedniej metody w zależności od specyfikacji projektu.

Pytanie 34

W której obrabiarce znajduje się stół krzyżowy?

A. Frezarki wspornikowej
B. Wytłaczarki planetarnej
C. Piły taśmowej pionowej
D. Wtryskarki dźwigniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Frezarka wspornikowa to maszyna, która wykorzystuje stół krzyżowy do precyzyjnego ustawiania obrabianego materiału w dwóch osiach - poziomej i pionowej. Stół krzyżowy, wyposażony w prowadnice, umożliwia dokładne przesuwanie detalu, co jest niezbędne w procesach frezowania, gdzie precyzja i powtarzalność są kluczowe. W frezarkach wspornikowych stół krzyżowy współpracuje z narzędziem skrawającym, co pozwala na wykonanie skomplikowanych kształtów i detali. Przykładowo, w przemyśle metalowym, frezarki wspornikowe używane są do produkcji elementów maszyn, gdzie wymagane są dokładne tolerancje wymiarowe. Ponadto, stół krzyżowy w tych obrabiarkach często posiada możliwość mocowania dodatkowych akcesoriów, co zwiększa wszechstronność maszyny i jej zdolność do obróbki różnych materiałów. Standardy przemysłowe, jak ISO 9001, podkreślają znaczenie precyzyjnych procesów obróbczych, co czyni frezarki wspornikowe odpowiednimi narzędziami w spełnianiu tych wymagań.

Pytanie 35

Jakie narzędzie służy do wykonywania zgrubnych pomiarów gorących detali podczas ręcznego kucia?

A. taśmy pomiarowej
B. macek
C. suwmiarki
D. przymiaru kreskowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Macek jest narzędziem, które doskonale sprawdza się w pomiarze gorących elementów podczas kucia ręcznego. Główną zaletą macek jest ich zdolność do pomiaru temperatury materiałów metalowych, które mogą być zbyt gorące dla innych narzędzi pomiarowych, takich jak suwmiarki czy taśmy miernicze, które mogą ulec uszkodzeniu. Macek, zwykle wykonany z materiałów odpornych na wysokie temperatury, pozwala na szybkie i niezawodne określenie wymiarów w warunkach, gdzie inne metody byłyby niepraktyczne. Przykładem zastosowania jest pomiar długości elementów metalowych w trakcie procesu kucia, co jest kluczowe dla zapewnienia precyzyjnych wymiarów gotowego wyrobu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co czyni macek niezastąpionym narzędziem w warsztatach rzemieślniczych oraz w dużych zakładach przemysłowych. Dzięki swoim właściwościom, macki są preferowanym wyborem dla specjalistów zajmujących się obróbką cieplną metali, co potwierdza ich istotność w procesie kucia.

Pytanie 36

Do czego służy średnicówka mikrometryczna?

A. Pomiar głębokości otworów
B. Pomiar długości całkowitej przedmiotów
C. Pomiar średnic zewnętrznych
D. Pomiar kątów między powierzchniami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Średnicówka mikrometryczna to narzędzie pomiarowe, które jest powszechnie stosowane w przemyśle do dokładnego mierzenia średnic zewnętrznych elementów. Jej konstrukcja opiera się na mechanizmie mikrometrycznym, co pozwala na uzyskanie bardzo precyzyjnych wyników pomiarów, często z dokładnością do setnych części milimetra. W praktyce przemysłowej, szczególnie w obróbce skrawaniem, dokładność pomiaru jest kluczowa, ponieważ nawet niewielkie odchylenia mogą wpływać na jakość montowanych części. Średnicówki mikrometryczne są używane do kontrolowania jakości wykonanych elementów, takich jak wałki, tuleje czy inne cylindryczne części, zapewniając zgodność z wymaganiami technicznymi. Dzięki możliwości szybkiego i precyzyjnego pomiaru, narzędzie to znajduje zastosowanie w wielu branżach, od motoryzacji po produkcję maszyn, gdzie precyzja i jakość są priorytetem. Dobre praktyki branżowe zalecają regularną kalibrację średnicówek, aby utrzymać ich dokładność na najwyższym poziomie.

Pytanie 37

Aby zapewnić precyzyjne przyleganie powierzchni głowicy zaworu do gniazda, należy przeprowadzić proces

A. szlifowania
B. docierania
C. polerowania
D. wytaczania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Docieranie to proces, który ma na celu uzyskanie precyzyjnego przylegania powierzchni głowicy zaworu do gniazda zaworowego. Proces ten polega na delikatnym szlifowaniu dwóch powierzchni w celu usunięcia mikroskopijnych nierówności, co zwiększa ich kontakt i szczelność. W praktyce docieranie jest często stosowane w silnikach spalinowych, gdzie precyzyjne dopasowanie zaworów do gniazd ma kluczowe znaczenie dla osiągów silnika i jego efektywności. Uzyskanie odpowiedniej powierzchni przy użyciu techniki docierania wpływa na redukcję strat ciśnienia, co przekłada się na lepsze spalanie paliwa oraz zmniejszenie emisji zanieczyszczeń. W branży motoryzacyjnej i przemysłowej standardy jakości, takie jak ISO 9001, podkreślają znaczenie dokładności w obróbce mechanicznej, a docieranie jest jednym z kluczowych procesów zapewniających te standardy. Dzięki odpowiedniemu zastosowaniu narzędzi docierających oraz właściwej technice można uzyskać nie tylko lepsze parametry techniczne, ale również dłuższą żywotność zespołów silnikowych.

Pytanie 38

Czym jest proces piaskowania?

A. produkcja tarcz ściernych poprzez wtłaczanie ścierniwa w metal
B. modyfikacja struktury krystalicznej metali
C. usunięcie zanieczyszczeń z powierzchni materiału
D. aplikacja powłoki ochronnej na materiał

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces piaskowania jest techniką obróbcza, której celem jest usunięcie zanieczyszczeń oraz nadanie odpowiedniej tekstury powierzchni materiału. Wykorzystuje się w nim ścierniwo, które jest przyspieszane za pomocą strumienia powietrza pod wysokim ciśnieniem. Dzięki temu można skutecznie usunąć rdze, farby, resztki smarów, a także inne zanieczyszczenia, które mogą wpłynąć na dalszą obróbkę materiału, na przykład malowanie lub spawanie. Przykładem zastosowania piaskowania jest przygotowanie podłoża przed malowaniem konstrukcji stalowych, gdzie czystość powierzchni jest kluczowa dla trwałości powłok. Standardy branżowe, takie jak ISO 8501, podkreślają znaczenie odpowiedniego przygotowania powierzchni, co w praktyce oznacza użycie piaskowania jako jednego z kluczowych etapów. Dodatkowo, piaskowanie jest także stosowane w przemyśle lotniczym, gdzie precyzyjne usunięcie wszelkich zanieczyszczeń jest niezbędne dla bezpieczeństwa i wydajności maszyn.

Pytanie 39

Kawitacja to zjawisko, które zachodzi w trakcie pracy

A. sprzęgła
B. przekładni
C. podnośnika
D. pompy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kawitacja to zjawisko, które najczęściej występuje w pompach, szczególnie w przypadku pomp wodnych, które są powszechnie stosowane w różnych aplikacjach inżynieryjnych. Kawitacja zachodzi, gdy miejscowe ciśnienie płynu spada poniżej ciśnienia parowania, co prowadzi do powstawania pęcherzyków pary. Gdy te pęcherzyki przemieszcza się do obszarów o wyższym ciśnieniu, gwałtownie implodują, co może prowadzić do poważnych uszkodzeń komponentów pompy, takich jak wirniki i obudowy. Przykładowo, w systemach hydraulicznych i układach chłodzenia, zjawisko kawitacji może prowadzić do obniżenia wydajności i zwiększenia kosztów konserwacji. W celu zminimalizowania ryzyka kawitacji, stosuje się różne techniki, takie jak dobór odpowiednich parametrów pracy pompy, kontrola ciśnienia ssawnego oraz zastosowanie wirników o zoptymalizowanym kształcie. Dobre praktyki w zakresie projektowania systemów hydraulicznych oraz regularne przeglądy techniczne pozwalają na utrzymanie wysokiej efektywności pomp oraz długowieczności ich komponentów.

Pytanie 40

W oparciu o dane w tabeli, dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejeOpisZastosowanieUwagi
CyjanoakrylowePrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnePrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do lister, do niektórych plastików narażonych na ślapanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowePrzeznaczone do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowePrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.

A. Dyspersyjny.
B. Epoksydowy.
C. Neoprenowy.
D. Cyjanokrylowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klej epoksydowy jest idealnym rozwiązaniem do łączenia stalowych elementów korpusu, które są narażone na wibracje i wilgoć. Charakteryzuje się on wysoką odpornością na różne czynniki chemiczne oraz termiczne, co czyni go odpowiednim do zastosowań w trudnych warunkach. Sprawdzając dane w tabeli, zauważamy, że kleje epoksydowe wykazują znakomite właściwości adhezyjne, co pozwala na skuteczne łączenie stali z innymi materiałami. W praktyce, kleje epoksydowe są szeroko stosowane w przemyśle motoryzacyjnym i budowlanym, gdzie połączenia narażone są na dynamiczne obciążenia oraz zmienne warunki atmosferyczne. Ponadto, ich odporność na wilgoć sprawia, że są idealne do zastosowań w środowiskach o wysokiej wilgotności, co jest kluczowe dla długowieczności oraz niezawodności konstruowanych elementów. Zgodnie z normami i dobrymi praktykami, użycie klejów epoksydowych w takich aplikacjach zapewnia trwałość oraz bezpieczeństwo, co jest niezbędne w kontekście aplikacji narażonych na wibracje.