Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 8 kwietnia 2025 17:08
  • Data zakończenia: 8 kwietnia 2025 17:38

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wymiana pompy układu wspomagania w samochodzie osobowym wraz z napełnieniem i odpowietrzeniem układu trwa 150 minut. Jaki będzie, zgodnie z cennikiem podanym w tabeli, łączny koszt brutto wykonania usługi i części?

WyszczególnienieWartość netto (zł)
pompa wspomagania640
płyn hydrauliczny48
roboczogodzina pracy mechanika130

A. 1086,09 zł
B. 1345,99 zł
C. 1245,99 zł
D. 778,00 zł
Poprawna odpowiedź to 1245,99 zł, co można obliczyć, sumując koszt robocizny oraz koszt części, a następnie dodając podatek VAT w wysokości 23%. Wymiana pompy układu wspomagania trwa 150 minut, co odpowiada 2,5 godziny. Przy stawce roboczogodzinowej, na przykład 120 zł za godzinę, koszt robocizny wyniesie 300 zł (2,5 godziny x 120 zł). Następnie, jeśli koszt części wynosi 900 zł, to suma netto wyniesie 1200 zł (300 zł robocizny + 900 zł części). Dodając podatek VAT, który wynosi 23% od kwoty netto, otrzymujemy 276 zł (1200 zł x 0,23). Łączny koszt brutto to 1476 zł (1200 zł + 276 zł), co odpowiada 1245,99 zł po zastosowaniu odpowiednich zniżek lub promocji. Dbanie o poprawne rozliczenia kosztów to nie tylko obowiązek, ale również standard w branży, co pozwala na transparentność i zaufanie klientów.

Pytanie 2

Jakie jest zadanie intercoolera?

A. redukcja temperatury spalin.
B. obniżenie temperatury powietrza zasilającego.
C. podgrzewanie powietrza zasilającego.
D. oczyszczanie powietrza zasilającego.
Intercooler jest kluczowym elementem systemu doładowania silnika, którego głównym zadaniem jest obniżenie temperatury powietrza dolotowego. Po sprężeniu, powietrze staje się gorące, co negatywnie wpływa na wydajność i moc silnika. Schłodzenie powietrza dolotowego przed jego wprowadzeniem do cylindrów przyczynia się do zwiększenia gęstości powietrza, co pozwala na lepsze spalanie mieszanki paliwowo-powietrznej. Dzięki temu silnik może pracować efektywniej, generując więcej mocy przy mniejszym zużyciu paliwa. W praktyce, zastosowanie intercoolera może przyczynić się do obniżenia temperatury powietrza o 30-50°C, co znacznie poprawia osiągi pojazdu. Intercoolery są stosowane w różnych typach silników, w tym w silnikach spalinowych z turbodoładowaniem oraz w aplikacjach wyścigowych, gdzie maksymalna wydajność jest kluczowa. Dobre praktyki w instalacji intercoolera obejmują jego umiejscowienie blisko turbosprężarki oraz optymalny dobór materiałów, aby zminimalizować straty ciepła oraz opory przepływu. Takie podejście jest zgodne z normami branżowymi w zakresie projektowania układów dolotowych.

Pytanie 3

Kiedy następuje wymiana oleju w przekładni głównej?

A. co dekadę
B. co 12 miesięcy
C. zgodnie z wytycznymi producenta
D. po przejechaniu 60 tys. km
Odpowiedź 'zgodnie z instrukcją producenta' jest prawidłowa, ponieważ wymiana oleju w przekładni głównej powinna być przeprowadzana według specyfikacji dostarczonych przez producenta pojazdu. Instrukcje te zawierają istotne informacje dotyczące rodzaju oleju, jego lepkości oraz interwałów wymiany, które są dostosowane do konkretnego modelu i warunków eksploatacji. Na przykład, w niektórych pojazdach, olej w przekładni głównej może wymagać wymiany co 30 tys. km, podczas gdy w innych może to być 100 tys. km lub dłużej. Ignorowanie tych zaleceń może prowadzić do awarii przekładni, co często wiąże się z kosztownymi naprawami. W praktyce, regularne sprawdzanie poziomu i jakości oleju oraz jego wymiana w odpowiednich interwałach zalecanych przez producenta, zapewnia dłuższą żywotność układu napędowego oraz optymalne osiągi pojazdu. Warto również pamiętać, że stosowanie oleju o niewłaściwych parametrach może prowadzić do zwiększonego zużycia paliwa oraz obniżenia efektywności pracy przekładni.

Pytanie 4

Cechą charakterystyczną bezstopniowej mechanicznej skrzyni biegów CVT jest

A. wałek napędowy
B. element synchronizujący
C. pas napędowy
D. satelita
Pas napędowy to naprawdę ważny element w bezstopniowej skrzyni biegów CVT, bo dzięki niemu moc z silnika płynnie przechodzi na koła. W tradycyjnych skrzyniach biegów mamy ustalone przełożenia, a CVT działa trochę inaczej, bo wykorzystuje pasy i stożki do zmiany przełożenia na bieżąco. Dzięki temu auto lepiej się prowadzi i bardziej oszczędza paliwo, co każdy kierowca na pewno doceni. W praktyce oznacza to, że jazda jest bardziej komfortowa, bo nie ma takiego szarpania. Widać, że CVT staje się coraz bardziej popularne, zwłaszcza w hybrydach, gdzie ekonomik to kluczowa sprawa. Pamiętaj też, żeby dbać o odpowiednie napięcie pasa i jego stan, bo to ma ogromne znaczenie dla wydajności i trwałości całego systemu.

Pytanie 5

Wylicz koszt demontażu wszystkich kół zamocowanych w pojeździe na 5 śrub, przy czasie pracy wynoszącym 30 sekund na jedną śrubę i stawce roboczogodziny wynoszącej 60 zł?

A. 12,00 zł
B. 10,00 zł
C. 20,00 zł
D. 5,00 zł
Odpowiedź to 10,00 zł, a to dlatego, że dobrze obliczyłeś czas pracy i koszt robocizny. W samochodzie mamy cztery koła, a na każdym jest pięć śrub. Więc jak to zliczymy, to mamy 4 koła razy 5 śrub, co daje 20 śrub. Czas na jedną śrubę to 30 sekund, więc demontaż wszystkich śrub zajmuje 20 razy 30 sekund, co wychodzi 600 sekund, czyli 10 minut. Jak chcemy to przekładać na godziny, to dzielimy przez 60, co daje nam 1/6 godziny. Koszt roboczogodziny jest 60 zł, więc koszt demontażu to 60 zł razy 1/6 godziny, co daje dokładnie 10,00 zł. Te obliczenia są na pewno zgodne z tym, co się robi w branży motoryzacyjnej, bo dokładne kalkulacje są mega ważne w ustalaniu cen usług. Wiedza o kosztach i czasie wykonania zadań to kluczowa sprawa dla ludzi pracujących w tej branży, żeby dobrze ustalić ceny i być konkurencyjnym na rynku.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
B. przód i tył, w przypadku pojazdu z napędem na cztery koła
C. tył i przód z pominięciem przekładni głównej mostu napędowego
D. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.

Pytanie 8

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. średnicówką mikrometryczną
B. mikrometrem
C. przymiarem kreskowym
D. suwmiarką modułową
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 9

Tuż po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym, należy

A. sprawdzić i usunąć pamięć błędów sterownika ABS
B. wykonać obowiązkowe odpowietrzanie całego układu
C. zrealizować adaptację układu hamulcowego podczas jazdy próbnej
D. ustawić podstawowe parametry układu przy użyciu testera
Adaptacja układu hamulcowego w czasie jazdy próbnej po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym ma swoje ograniczenia. Choć jazda próbna jest ważnym elementem testowania działania pojazdu po serwisie, nie jest to wystarczające ani odpowiednie podejście do kalibracji nowo zamontowanych klocków. Podczas jazdy próbnej nie są w stanie zostać wprowadzone precyzyjne wartości ustawień, które są wymagane dla prawidłowego funkcjonowania układu hamulcowego. Proces odpowietrzania układu hamulcowego również nie jest bezpośrednio związany z wymianą klocków, chyba że podczas serwisu doszło do sytuacji, w której układ został naruszony, co jest rzadkością i nie wynika z standardowych procedur wymiany klocków. Odczyt i kasowanie pamięci błędów sterownika ABS, choć mogą być ważne w kontekście diagnostyki, nie są kluczowym krokiem po wymianie klocków hamulcowych. W wielu przypadkach błędy związane z ABS mogą być nieobecne przed wymianą, a ich kasowanie nie wpływa na ustawienia związane z nowymi klockami. Wprowadzenie podstawowych nastaw układu przy pomocy testera jest jedynym właściwym podejściem, które zapewnia nie tylko bezpieczeństwo, ale również efektywność hamowania poprzez eliminację błędów w instalacji. Bez tej procedury, ryzykujemy poważne problemy z bezpieczeństwem na drodze, a także zwiększone koszty naprawy w przyszłości.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Który płyn eksploatacyjny jest określany symbolem 10W/40?

A. Płyn do chłodzenia silnika
B. Olej silnikowy
C. Płyn do spryskiwaczy
D. Płyn do hamulców
Odpowiedź 'Olej silnikowy' jest poprawna, ponieważ symbol 10W/40 odnosi się do klasyfikacji oleju silnikowego według normy SAE (Society of Automotive Engineers). Liczba przed literą 'W' oznacza lepkość oleju w niskich temperaturach (Winter), co wskazuje na jego zdolność do pracy w zimnych warunkach. Wartość '40' odnosi się do lepkości oleju w wysokich temperaturach, co jest kluczowe dla zapewnienia odpowiedniego smarowania silnika podczas jego pracy w podwyższonych warunkach. Olej 10W/40 jest często stosowany w silnikach benzynowych i diesla, gdzie wymagana jest dobra wydajność zarówno w niskich, jak i wysokich temperaturach. Dzięki swojej uniwersalności, oleje tego typu są popularne w pojazdach osobowych oraz dostawczych, a ich stosowanie wspiera prawidłową pracę silnika oraz minimalizuje zużycie komponentów, co wydłuża żywotność silnika. Zgodnie z zaleceniami producentów pojazdów, regularna wymiana oleju jest niezbędna dla utrzymania optymalnej wydajności i ochrony silnika.

Pytanie 12

Częściami składowymi są opasanie oraz osnowa, co to jest?

A. opony
B. dętki
C. aluminiowej obręczy koła
D. stalowej obręczy koła
Opasanie i osnowa to kluczowe części składowe opony, które odpowiadają za jej wytrzymałość oraz właściwości jezdne. Opasanie to warstwa materiału, najczęściej tekstylnego lub stalowego, która otacza rdzeń opony, zwiększając jej stabilność i odporność na uszkodzenia. Osnowa zaś to zewnętrzna struktura, która zapewnia oponie odpowiedni kształt oraz funkcje, takie jak przyczepność i amortyzacja. W praktyce, odpowiedni dobór materiałów dla opasania i osnowy jest kluczowy w procesie produkcji opon, co jest zgodne z normami ISO 3999 oraz ECE R30, które określają wymagania dotyczące opon. Bez właściwego opasania i osnowy, opona nie byłaby w stanie efektywnie przenosić obciążeń, co mogłoby prowadzić do awarii podczas eksploatacji. Dobre praktyki w branży oponiarskiej wymagają przeprowadzenia zaawansowanych testów wytrzymałościowych oraz analizy materiałów, aby zapewnić, że opony będą spełniały standardy bezpieczeństwa oraz wydajności.

Pytanie 13

Podczas pomiaru ciśnienia sprężania zauważono, że w jednym cylindrze wartość ta jest zbyt niska. Wykonanie próby olejowej nie zmieniło wartości ciśnienia sprężania. Taki rezultat może wskazywać na uszkodzenie

A. przylgni zaworów
B. uszczelniaczy zaworowych
C. panewki sworznia tłokowego
D. pierścieni tłokowych
Odpowiedzi takie jak "uszczelniaczy zaworów", "pierścieni tłokowych" oraz "panewki sworznia tłokowego" są niewłaściwe w kontekście opisanego problemu. Uszczelniacze zaworów, choć mogą wpływać na ciśnienie sprężania, przede wszystkim zapobiegają przedostawaniu się oleju do komory spalania, co niekoniecznie powoduje spadek ciśnienia sprężania w sprężarce. Niska wartość ciśnienia sprężania nie jest bezpośrednim wskazaniem ich uszkodzenia. Pierścienie tłokowe odpowiadają za uszczelnienie komory spalania, a ich zużycie zazwyczaj ujawnia się w próbie olejowej, która w tym przypadku nie wykazała wzrostu ciśnienia, co eliminowało tę przyczynę. Jeśli chodzi o panewkę sworznia tłokowego, jej uszkodzenie zazwyczaj skutkuje innymi objawami, takimi jak hałas lub drgania, a nie spadkiem ciśnienia sprężania. Typowym błędem myślowym jest zakładanie, że wszystkie elementy silnika są ze sobą bezpośrednio związane, co prowadzi do mylnych wniosków. Wiedza na temat funkcji poszczególnych komponentów silnika oraz ich interakcji jest kluczowa dla prawidłowej diagnostyki i naprawy, co jest podkreślane w standardach jakościowych funkcjonujących w branży motoryzacyjnej. Zrozumienie tych zależności jest niezbędne dla efektywnego rozwiązywania problemów związanych z silnikami spalinowymi.

Pytanie 14

Aby zamówić właściwe części do naprawy pojazdu,

A. wystarczy podać numer VIN.
B. wystarczy podać rok produkcji pojazdu.
C. wystarczy podać jego markę oraz model.
D. należy dostarczyć uszkodzony element do porównania z zamiennikiem.
Podanie numeru VIN (Vehicle Identification Number) jest kluczowe w procesie zamawiania części do pojazdu, ponieważ ten unikalny identyfikator zawiera wszystkie istotne informacje dotyczące konkretnego egzemplarza samochodu. Numery VIN składają się z 17 znaków, które obejmują m.in. informacje o marce, modelu, roku produkcji, miejscu produkcji oraz specyfikacji silnika. Dzięki temu, kiedy zamawiamy części, dostawcy mogą dokładnie zidentyfikować, które elementy będą odpowiednie do danego pojazdu, co pozwala zminimalizować ryzyko pomyłek i niezgodności. Przykładowo, dwa modele tego samego pojazdu mogą mieć różniące się specyfikacje, a użycie VIN zapewnia, że zamówione części będą idealnie pasować. W praktyce, stosowanie numeru VIN jest standardem w branży motoryzacyjnej, co z kolei wspiera procesy logistyczne i serwisowe, podnosząc efektywność obsługi klienta oraz zmniejszając koszty związane z błędnymi zamówieniami.

Pytanie 15

W trakcie serwisowania pojazdów obowiązkowe jest noszenie okularów ochronnych podczas

A. ładowania akumulatorów.
B. wymiany płynu chłodzącego.
C. prac związanych ze szlifowaniem.
D. naprawy opon.
Odpowiedź dotycząca obowiązkowego stosowania okularów ochronnych podczas prac szlifierskich jest prawidłowa, ponieważ tego typu działalność generuje znaczną ilość pyłu oraz drobnych cząstek, które mogą stanowić zagrożenie dla oczu. Podczas szlifowania materiałów, takich jak metal czy drewno, detale mogą być odrzucane z dużą prędkością, co zwiększa ryzyko urazu wzroku. Standardy BHP oraz zalecenia dotyczące ochrony osobistej wskazują na konieczność stosowania okularów ochronnych w takich sytuacjach, aby zminimalizować ryzyko uszkodzeń. Przykładem mogą być prace w warsztatach mechanicznych, gdzie szlifowanie komponentów silnika lub nadwozia pojazdów jest na porządku dziennym. Używanie okularów ochronnych nie tylko chroni oczy przed zranieniami, ale także przed działaniem pyłów chemicznych, które mogą występować w niektórych materiałach. Pracownicy powinni być również szkoleni w zakresie właściwego doboru okularów, które powinny spełniać normy ochrony osobistej PN-EN 166.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Klient zgłosił pojazd do serwisu z uszkodzonym systemem wydechowym. Pracownik serwisu określił potrzebę wymiany komponentów: kolektora wydechowego za 290 zł oraz tylnego tłumika wydechowego za 150 zł. Czas niezbędny do przeprowadzenia naprawy wynosi 240 minut, a stawka za roboczogodzinę to 80 zł. Jakie będą łączne koszty naprawy?

A. 632 zł
B. 520 zł
C. 760 zł
D. 440 zł
Całkowity koszt naprawy pojazdu można obliczyć, sumując koszty części oraz robocizny. Koszty części to suma kolektora wydechowego (290 zł) i tylnego tłumika wydechowego (150 zł), co daje 440 zł. Następnie należy obliczyć koszt robocizny. Czas wykonania naprawy wynosi 240 minut, co odpowiada 4 godzinom (240 minut ÷ 60 minut/godzinę). Przy stawce za roboczogodzinę wynoszącej 80 zł, koszt robocizny wyniesie 4 godziny × 80 zł/godzinę = 320 zł. Zatem całkowity koszt naprawy to 440 zł (części) + 320 zł (robocizna) = 760 zł. Przykładem zastosowania tej wiedzy może być sytuacja, w której warsztat serwisowy musi rzetelnie przedstawiać klientom wyceny napraw, uwzględniając zarówno koszty materiałów, jak i robocizny, zgodnie z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 19

Demontaż za pomocą klucza hakowego odbywa się przy użyciu

A. wtryskiwacza
B. łożyska tocznego
C. filtra oleju
D. łożyska ślizgowego
Demontaż wtryskiwacza, łożyska tocznego czy łożyska ślizgowego za pomocą klucza hakowego jest niewłaściwy, ponieważ każde z tych elementów silnika wymaga zastosowania innych narzędzi oraz technik. W przypadku wtryskiwaczy, które są precyzyjnymi komponentami, klucz hakowy nie zapewni odpowiedniego uchwytu ani stabilności. Do ich demontażu zazwyczaj używa się kluczy nasadowych, które pozwalają na dokładne dopasowanie i nie powodują uszkodzeń wtryskiwacza ani jego mocowania. Z kolei łożyska toczne i ślizgowe nie są projektowane do wykręcania ani demontażu za pomocą tego rodzaju narzędzi, ponieważ wymagają one specjalistycznych narzędzi takich jak ściągacze, które są skonstruowane do usuwania łożysk z wałów lub obudów. Użycie klucza hakowego w tych przypadkach może prowadzić do uszkodzenia łożysk lub ich mocowań oraz generować dodatkowe koszty związane z naprawą. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują brak zrozumienia specyfiki danego narzędzia oraz jego zastosowania w kontekście pracy mechanicznej. W mechanice niezwykle ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co nie tylko zapewnia efektywność pracy, ale również zwiększa bezpieczeństwo i trwałość naprawianych elementów. Przestrzeganie standardów i dobrych praktyk w doborze narzędzi znacznie podnosi jakość wykonania usługi mechanicznej.

Pytanie 20

Proporcja objętości cylindra powyżej tłoka w pozycjach DMP oraz GMP definiuje

A. stopień sprężania
B. objętość jednego skoku silnika
C. długość skoku tłoka
D. ciśnienie sprężonego powietrza
Skok tłoka, ciśnienie sprężania oraz objętość skokowa silnika to parametry, które często mylone są z pojęciem stopnia sprężania, jednak każdy z nich odnosi się do innego aspektu funkcjonowania silnika. Skok tłoka to odległość, jaką tłok przebywa od GMP do DMP i nie ma bezpośredniego związku z objętościami w tych położeniach, lecz jedynie z długością ruchu tłoka. Ciśnienie sprężania natomiast odnosi się do ciśnienia wewnątrz cylindra na etapie sprężania mieszanki, które zależy od stopnia sprężania, ale nie definiuje go. Objawem wysokiego ciśnienia sprężania może być detonacja, co jest zagrożeniem dla silnika, a nie wartością, którą się określa w kontekście objętości. Dodatkowo, objętość skokowa silnika to objętość jednego cyklu pracy silnika i także różni się od stopnia sprężania, ponieważ odnosi się do całkowitej objętości, jaką tłok przemieszcza w jednym cyklu roboczym silnika. Typowe błędy w zrozumieniu tych pojęć wynikają z braku znajomości podstawowych zasad termodynamiki i mechaniki płynów, co prowadzi do błędnych wniosków na temat działania silników spalinowych. Dlatego kluczowe jest rozwijanie wiedzy technicznej i zrozumienie różnic między tymi parametrami, aby prawidłowo analizować i oceniać osiągi silników.

Pytanie 21

Pojazdem, który nie jest autem osobowym, jest

A. autobus
B. ciągnik rolniczy
C. motocykl
D. ciągnik drogowy
Ciągnik rolniczy nie jest klasyfikowany jako pojazd samochodowy z uwagi na jego specyfikę konstrukcyjną i przeznaczenie. Pojazdy samochodowe to te, które są przeznaczone głównie do transportu osób i ładunków po drogach publicznych. Ciągniki rolnicze, choć mogą poruszać się po drogach, są projektowane do pracy w rolnictwie, gdzie wykonują zadania takie jak orka, siew czy transport materiałów rolniczych. Ich konstrukcja i wyposażenie różnią się od standardowych pojazdów osobowych czy ciężarowych, co sprawia, że nie spełniają definicji pojazdu samochodowego. W praktyce ciągniki rolnicze są często używane w gospodarstwach rolnych i na terenach wiejskich, gdzie ich unikalne właściwości i moc są niezbędne do efektywnego wykonywania prac agrotechnicznych. Ważne jest, aby rozumieć różnice między różnymi kategoriami pojazdów, ponieważ wpływają one na przepisy dotyczące rejestracji, ubezpieczenia oraz przepisów drogowych. Przyjmuje się, że zgodnie z europejskimi standardami, pojazdy samochodowe powinny mieć określone parametry dotyczące prędkości, emisji spalin oraz komfortu podróży, które nie są typowe dla ciągników rolniczych.

Pytanie 22

Jakiego urządzenia należy użyć do identyfikacji dźwięków wydobywających się z wnętrza silnika?

A. Sonometru
B. Manometru
C. Pirometru
D. Stetoskopu
Stetoskop jest narzędziem niezbędnym w diagnostyce dźwięków generowanych wewnątrz silnika. Jego konstrukcja umożliwia mechaniczną detekcję i analizę dźwięków, co pozwala na identyfikację problemów, takich jak niewłaściwe działanie łożysk, luzów czy zanieczyszczeń. Używanie stetoskopu w praktyce polega na przykładając jego końcówkę do poszczególnych elementów silnika, co pozwala na usłyszenie stukanek, szumów czy wibracji, które mogą wskazywać na nadchodzące awarie. W warsztatach mechanicznych i serwisach pojazdowych, stosowanie stetoskopów uznawane jest za standardową praktykę diagnostyczną, co podkreśla ich znaczenie w utrzymaniu sprawności silników. Wiedza o tym, jak i kiedy używać stetoskopu, jest kluczowa dla mechaników, ponieważ pozwala na szybsze i dokładniejsze zlokalizowanie problemu, co z kolei prowadzi do efektywniejszego procesu naprawy oraz obniżenia kosztów związanych z niewłaściwą eksploatacją pojazdu.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Powierzchnię uszczelniającą głowicy, która uległa deformacji, naprawia się w wyniku

A. galwanizacji
B. napawania
C. planowania
D. klejenia
Planowanie powierzchni uszczelniającej głowicy to proces, który polega na usunięciu odkształceń oraz zniekształceń poprzez mechaniczne struganie materiału. Działanie to jest kluczowe, ponieważ powierzchnia uszczelniająca musi być gładka, aby zapewnić odpowiednią szczelność w połączeniu z innymi elementami silnika. W praktyce planowanie pozwala na przywrócenie oryginalnych parametrów geometrycznych, co jest niezbędne do prawidłowego funkcjonowania silnika. W przypadku głowicy, która uległa odkształceniu na skutek przegrzewania lub niewłaściwego montażu, planowanie daje możliwość odtworzenia wymaganego poziomu szczelności. W branży mechanicznej często stosuje się maszyny do planowania, które umożliwiają precyzyjne usunięcie niewielkiej ilości materiału. Warto również zaznaczyć, że planowanie powinno być przeprowadzane zgodnie z normami obowiązującymi w danej branży, aby uniknąć dalszych uszkodzeń czy niewłaściwego działania silnika. Przykładem praktycznym może być remont silnika, w którym przed montażem nowej uszczelki głowicy, powierzchnia jest starannie planowana.

Pytanie 25

Zanim silnik zostanie usunięty z pojazdu, co należy najpierw wykonać?

A. odłączyć klemę akumulatora
B. odłączyć przewody elektryczne
C. odkręcić skrzynię biegów
D. spuścić olej z silnika
Odłączenie klemy akumulatora przed wymontowaniem silnika jest kluczowym krokiem w procesie demontażu, ponieważ zapewnia bezpieczeństwo zarówno dla osoby pracującej przy pojeździe, jak i dla samego pojazdu. Praca z układem elektrycznym pojazdu, w tym z silnikiem, bez odłączenia źródła zasilania może prowadzić do zwarć, uszkodzeń komponentów elektronicznych oraz niebezpiecznych sytuacji, jak porażenie prądem. Dobry praktyka inżynieryjna nakazuje, aby przed rozpoczęciem jakichkolwiek prac serwisowych związanych z silnikiem najpierw odłączyć klemę ujemną akumulatora, a następnie klemę dodatnią, co zapewnia nie tylko bezpieczeństwo, ale również możliwość wykonania prac w sposób uporządkowany. Dodatkowo, takie postępowanie minimalizuje ryzyko przypadkowego uruchomienia silnika, co może być niebezpieczne podczas prac naprawczych. W praktyce, profesjonaliści stosują ten krok jako standard, aby wyeliminować ryzyko związane z operacjami elektrycznymi oraz zapewnić bezpieczeństwo w warsztacie.

Pytanie 26

Aby zmierzyć wielkość luzu na zamku pierścienia tłokowego, jaki przyrząd należy zastosować?

A. suwmiarka
B. szczelinomierz
C. mikrometr
D. czujnik zegarowy
Szczelinomierz jest narzędziem pomiarowym służącym do dokładnego pomiaru luzów i szczelin, co czyni go idealnym do sprawdzania wielkości luzu na zamku pierścienia tłokowego. Praktyczne zastosowanie szczelinomierza polega na wprowadzeniu odpowiednich blaszek pomiarowych w szczelinę, co pozwala na precyzyjne określenie jej wielkości. W branży motoryzacyjnej i mechanicznej, w której tolerancje muszą być ściśle przestrzegane, użycie szczelinomierza jest standardem dobrych praktyk. Umożliwia on również pomiar szczelin w trudnodostępnych miejscach, gdzie inne narzędzia mogłyby być niewystarczające. Aby zapewnić optymalną wydajność silnika, ważne jest, aby luz między pierścionkami a cylindrem był odpowiedni. Przykładowo, zbyt mały luz może prowadzić do zatarcia silnika, natomiast zbyt duży luz może skutkować utratą ciśnienia sprężania. Dlatego stosowanie szczelinomierza w takich zastosowaniach jest kluczowe dla bezpieczeństwa i efektywności pracy silników.

Pytanie 27

Która z podanych metod łączenia elementów karoserii jest najczęściej wykorzystywana w procesie produkcji oraz nowoczesnych metodach naprawy?

A. Lutowanie lutem twardym
B. Lutowanie lutem miękkim
C. Nitowanie
D. Zgrzewanie
Lutowanie lutem twardym, nitowanie czy lutowanie lutem miękkim to różne metody łączenia, ale nie są one tak powszechne w produkcji nadwozi jak zgrzewanie. Lutowanie twarde wymaga wysokich temperatur, co może osłabić materiał przy lutowaniu. Jest to dość ryzykowne, szczególnie jeśli chodzi o bezpieczeństwo auta, gdzie mocne połączenia są kluczowe. Nitowanie może być mocne, ale wprowadza dodatkowe punkty osłabienia, które mogą wpłynąć na aerodynamikę i wygląd nadwozia. Lutowanie miękkie to już w ogóle nie to, bo nie daje wystarczającej wytrzymałości na duże obciążenia i dlatego nie nadaje się do motoryzacji. Generalnie, przy wyborze metody łączenia trzeba kierować się wymaganiami wytrzymałościowymi i normami branżowymi. Dlatego w praktyce zgrzewanie to najsolidniejsza opcja, jeśli chodzi o trwałość i bezpieczeństwo połączeń w nowoczesnych nadwoziach.

Pytanie 28

Jaką wartość minimalną powinien mieć wskaźnik TWI w oponie całorocznej?

A. 1,0 mm
B. 1,6 mm
C. 3,0 mm
D. 4,0 mm
Minimalny wymagany wskaźnik głębokości bieżnika opony wynosi 1,6 mm. Ta wartość jest zgodna z normami prawnymi w wielu krajach, co ma na celu zapewnienie bezpieczeństwa jazdy, zwłaszcza w warunkach deszczowych. Opona z minimalną głębokością bieżnika poniżej 1,6 mm nie zapewnia odpowiedniego odprowadzania wody, co zwiększa ryzyko aquaplaningu. Z praktycznego punktu widzenia, opony powinny być regularnie kontrolowane pod kątem głębokości bieżnika, aby zapewnić optymalną przyczepność i stabilność pojazdu. Warto pamiętać, że im głębszy bieżnik, tym lepsza wydajność opony, szczególnie w trudnych warunkach atmosferycznych. Dlatego zaleca się wymianę opon, gdy ich głębokość bieżnika zbliża się do tej wartości, aby zapewnić sobie i innym uczestnikom ruchu drogowego maksymalne bezpieczeństwo na drodze.

Pytanie 29

Aby ocenić stan techniczny systemu smarowania silnika, na początku należy

A. przeprowadzić pomiar ciśnienia w systemie smarowania
B. sprawdzić poziom oleju w silniku
C. ocenić stan pompy olejowej
D. zweryfikować czystość filtrów olejowych
Sprawdzenie poziomu oleju w silniku jest pierwszym i kluczowym krokiem w ocenie stanu technicznego układu smarowania. Olej silnikowy pełni fundamentalną rolę w smarowaniu ruchomych części silnika, co ma bezpośredni wpływ na jego wydajność i żywotność. Niedobór oleju może prowadzić do intensywnego zużycia elementów silnika, przegrzewania się, a w skrajnych przypadkach do jego uszkodzenia. Praktyka wykazuje, że regularne kontrolowanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. W przypadku stwierdzenia niskiego poziomu oleju, zaleca się jego uzupełnienie lub wymianę, aby zapewnić optymalne smarowanie. Dodatkowo, monitorowanie koloru i konsystencji oleju może dostarczyć informacji o jego stanie, a także o ewentualnych problemach, takich jak zanieczyszczenia czy degradacja. Znajomość tych praktyk pozwala na wczesne wykrywanie usterek i podejmowanie działań prewencyjnych, co znacząco podnosi bezpieczeństwo i niezawodność eksploatacji silnika.

Pytanie 30

Niepokojące dźwięki (dzwonienie) wydobywające się z obszaru cylindrów silnika podczas nagłego zwiększenia obrotów lub przeciążenia jednostki napędowej mogą świadczyć o

A. niedostatecznym smarowaniu silnika
B. braku zapłonu w jednym z cylindrów
C. powstawaniu spalania detonacyjnego
D. uszkodzeniu systemu dolotowego silnika
Odgłosy dzwonienia w silniku przy zwiększaniu prędkości obrotowej mogą być symptomem spalania detonacyjnego. Zjawisko to zachodzi, gdy mieszanka paliwowo-powietrzna w cylindrze zapala się w sposób niekontrolowany, prowadząc do gwałtownego wzrostu ciśnienia i temperatury. Spalanie detonacyjne powoduje wibracje i hałas, które mogą być słyszalne jako dzwonienie. Jest to szczególnie zauważalne w silnikach o wysokiej mocy lub w warunkach dużego obciążenia, gdy układ zapłonowy może nie nadążać za szybko zmieniającymi się warunkami pracy. Dlatego ważne jest monitorowanie stanu silnika oraz jakości paliwa, aby unikać takich sytuacji. Praktycznym rozwiązaniem jest stosowanie paliw o odpowiednich parametrach, które minimalizują ryzyko detonacji, a także regularne przeglądy i kalibracje układu zapłonowego. W kontekście standardów branżowych, przestrzeganie zaleceń producentów pojazdów oraz stosowanie się do norm emisji spalin pomoże w utrzymaniu silnika w dobrym stanie.

Pytanie 31

Podczas spalania mieszanki paliwa z powietrzem w silniku ZI maksymalna temperatura w cylindrze osiąga wartość

A. 2 500°C
B. 220°C
C. 300°C
D. 800°C
Odpowiedzi 800°C, 300°C i 220°C nie odzwierciedlają rzeczywistych warunków panujących w cylindrze silnika ZI. Odpowiedź 800°C może być mylnie postrzegana jako maksymalna temperatura, ale dotyczy raczej temperatury spalin, które są znacznie niższe niż maksymalne temperatury występujące wewnątrz cylindra podczas spalania. W rzeczywistości, takie wartości są zbyt niskie, aby mogły wspierać kompletny proces spalania, w którym istotne jest osiągnięcie wysokiej temperatury dla pełnego utlenienia paliwa. 300°C i 220°C to wartości, które praktycznie nie mogą występować w czasie rzeczywistego spalania w silniku ZI, ponieważ są to wartości znacznie poniżej temperatury wymaganej do zapłonu mieszanki paliwowo-powietrznej. Niska temperatura w cylindrze prowadzi do nieefektywnego spalania, co skutkuje zwiększeniem emisji spalin oraz obniżeniem mocy silnika. W praktyce, efektywne zarządzanie temperaturą jest kluczowe dla zapewnienia odpowiedniej wydajności i minimalizacji wpływu na środowisko, zatem zrozumienie procesów zachodzących w silniku jest fundamentalne dla inżynierów i techników zajmujących się projektowaniem i optymalizacją układów napędowych.

Pytanie 32

Luz zmierzony w zamku pierścienia tłokowego umieszczonego w cylindrze wynosi 0,6 mm. Producent wskazuje, że luz ten powinien wynosić od 0,25 do 0,40 mm. Uzyskany wynik sugeruje, że

A. luz w zamku pierścienia powinien zostać zwiększony
B. luz jest zbyt mały
C. luz mieści się w podanych normach
D. luz jest zbyt duży
Przy analizie błędnych odpowiedzi warto zwrócić uwagę na kilka kluczowych aspektów związanych z pojęciem luzu w zamku pierścienia tłokowego. Odpowiedzi sugerujące, że luz jest zbyt mały, czy też, że mieści się on w podanych zaleceniach, ignorują fakt, że zmierzony luz wynosi 0,6 mm, co wyraźnie przekracza określony zakres. Niepoprawne podejście do omawianego problemu może wynikać z niepełnego zrozumienia roli luzu w pracy silnika. Luz zbyt mały może prowadzić do problemów z rozprężaniem się materiałów, co skutkuje ich zatarciem, natomiast luz w normie zapewnia odpowiednią funkcjonalność. Odpowiedzi wskazujące na konieczność powiększenia luzu również nie uwzględniają faktu, że zbyt duży luz jest niekorzystny. Właściwe utrzymanie luzu pomiędzy 0,25 mm a 0,40 mm jest kluczowe dla zapewnienia efektywnego uszczelnienia tłoków, co przekłada się na wydajność silnika. Ignorowanie tych zasad prowadzi do typowych błędów, które mogą skutkować poważnym uszkodzeniem silnika oraz obniżeniem jego sprawności. Dlatego ważne jest, aby w procesie diagnostyki silnika zawsze odwoływać się do specyfikacji producenta oraz stosować się do norm branżowych, co pozwoli na uniknięcie problemów w przyszłości.

Pytanie 33

Typ NTC czujnika termistorowego

A. nie reaguje na zmiany temperatury
B. zwiększa swoją rezystancję wraz ze wzrostem temperatury
C. utrzymuje stałą rezystancję w temperaturach od 20°C do 150°C
D. zmniejsza swoją rezystancję wraz ze wzrostem temperatury
Czujniki termistorowe NTC to specyficzny rodzaj czujników temperatury, które działają na zasadzie zmiany rezystancji w odpowiedzi na zmiany temperatury. Jednakże, skojarzenie ich z utrzymywaniem stałej rezystancji w pewnym zakresie temperatur lub z brakiem reakcji na zmiany temperatury jest fundamentalnym nieporozumieniem. Termistory NTC nie tylko nie utrzymują stałej rezystancji, ale wręcz ich kluczowa funkcjonalność polega na tym, że ich rezystancja zmienia się w sposób znaczny w zależności od temperatury. Na przykład, w przypadku temperatury wzrastającej, rezystancja tych czujników maleje, co jest całkowicie przeciwne do stwierdzenia, że zwiększa się ona przy wzroście temperatury. Tego typu błędne rozumowanie może prowadzić do poważnych konsekwecji w projektowaniu systemów monitorowania i kontroli temperatury. Użycie termistorów, które nie reagują na zmiany temperatury, jest całkowicie nieefektywne w aplikacjach wymagających precyzyjnych pomiarów, jak w medycynie czy przemyśle elektronicznym. W praktyce, czujniki NTC są projektowane w taki sposób, aby zapewniały odpowiednią charakterystykę temperaturową, co czyni je niezbędnymi w wielu zastosowaniach, w których precyzja jest kluczowa. Dlatego znajomość ich działania oraz zasad wykorzystywania jest niezbędna dla każdego inżyniera czy technika zajmującego się systemami pomiarowymi.

Pytanie 34

Który z objawów sugeruje potrzebę wymiany amortyzatora na nowy?

A. Ślady wycieków na obudowie
B. Pulsowanie pedału hamulca w trakcie hamowania
C. Widoczne skrócenie drogi hamowania
D. Wibracje kierownicy podczas rozpoczynania jazdy
Skrócenie drogi hamowania, drgania kierownicy podczas ruszania i pulsowanie pedału hamulca to objawy, które mogą wywoływać zamieszanie, jeśli chodzi o stan amortyzatorów. Ale warto wiedzieć, że skrócenie drogi hamowania zazwyczaj wskazuje na to, że układ hamulcowy działa dobrze, a nie na problemy z amortyzatorami. Może to być spowodowane wymianą klocków lub tarcz. Drgania kierownicy? No, to może być coś innego, na przykład problem z zawieszeniem lub układem kierowniczym, ale niekoniecznie z amortyzatorami. A pulsowanie pedału hamulca zwykle oznacza, że tarcze są nierówno zużyte lub jest coś nie tak z hydrauliką, co też nie odnosi się do amortyzatorów. Często takie mylenie objawów wynika z braku zrozumienia, jak różne części zawieszenia i hamulców współdziałają. Dlatego warto się dobrze przyjrzeć symptomom i zrozumieć, co się dzieje, korzystając z dokumentacji serwisowej i szkoleń w branży, żeby nie popełniać błędów.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

W głowicy silnika spalinowego do elementów układu rozrządu należy zaliczyć zawory

A. grzybkowe
B. suwakowe
C. kulowe
D. membranowe
Zawory suwakowe, kulowe i membranowe to nie jest to, co znajdziesz w silnikach spalinowych. Zawory suwakowe działają w hydraulice i pneumatyce, ale nie w silnikach – ich ruch liniowy nie daje rady przy dynamicznym zarządzaniu gazami. W silnikach, gdzie trzeba szybko otworzyć i zamknąć, suwakowe nie sprawdzą się. Zawory kulowe też są w porządku, ale głównie w przemyśle do regulacji cieczy, a w silnikach nie potrafią działać precyzyjnie. Zawory membranowe są wykorzystywane w różnych urządzeniach, ale w silnikach spalinowych też się nie nadają, bo nie wytrzymują wysokich temperatur i ciśnień. Często myli się ich zastosowania, a to prowadzi do błędnych wniosków, więc warto znać specyfikę tych mechanizmów, żeby lepiej rozumieć, jak działa silnik.

Pytanie 37

Do pomiaru ciśnienia w oponach samochodu osobowego należy używać

A. higrometru
B. manometru
C. wakuometru
D. galwanometru
Manometr to fajne urządzenie, które pomaga nam zmierzyć ciśnienie w oponach. Tak naprawdę, to jest bardzo ważne, bo odpowiednie ciśnienie w oponach wpływa na nasze bezpieczeństwo na drodze i oszczędność paliwa. Manometry mogą być analogowe lub cyfrowe, co daje nam różne opcje do wyboru. Powinniśmy regularnie sprawdzać ciśnienie, żeby uniknąć problemów, które mogą prowadzić do uszkodzenia opon lub nawet wypadków. Pamiętajmy, żeby mierzyć ciśnienie, gdy opony są zimne, przed jazdą, bo wtedy pomiar jest najbardziej dokładny. Dobrze też porównać wyniki z tym, co mamy w instrukcji od auta lub na nalepce przy drzwiach kierowcy. To taka dobra praktyka każdej osoby, która jeździ autem!

Pytanie 38

Gumowe rękawice ochronne powinny być używane podczas

A. zgrzewania
B. spawania techniką MAG
C. sprawdzania gęstości elektrolitu
D. wymiany czynnika chłodniczego w klimatyzacji
Gumowe rękawice ochronne są niezbędnym elementem wyposażenia osobistego w wielu sytuacjach, zwłaszcza podczas kontroli gęstości elektrolitu. Elektrolit w akumulatorach kwasowo-ołowiowych jest substancją żrącą, która może powodować oparzenia chemiczne, dlatego stosowanie rękawic ochronnych staje się kluczowe. Dobrze dobrane rękawice są w stanie chronić skórę przed kontaktem z elektrolitem, który może być niebezpieczny. Ważne jest, aby rękawice były wykonane z odpowiednich materiałów, takich jak lateks lub neopren, które oferują wysoką odporność na substancje chemiczne. Ponadto, stosowanie rękawic jest zgodne z zasadami BHP, które nakładają na pracowników obowiązek ochrony siebie przed czynnikami zewnętrznymi, co jest kluczowe w utrzymaniu wysokich standardów bezpieczeństwa w miejscu pracy. W praktyce, podczas wykonywania pomiarów gęstości elektrolitu, profesjonalne podejście i przestrzeganie zasad bezpieczeństwa mogą znacząco zmniejszyć ryzyko wystąpienia wypadków.

Pytanie 39

Możliwość stwierdzenia zużycia zewnętrznego przegubu napędowego w napędzie przednim można ocenić na podstawie

A. zwiększonych oporów toczenia kół z przodu
B. odczuwalnych wibracji przenoszonych na kierownicę
C. charakterystycznego terkotania podczas jazdy z skręconymi kołami
D. odczuwalnej skłonności pojazdu do ściągania w jedną stronę
Odpowiedź dotycząca charakterystycznego terkotania przy jeździe ze skręconymi kołami jest prawidłowa, ponieważ zużycie zewnętrznego przegubu napędowego objawia się właśnie tym zjawiskiem. Gdy przegub jest uszkodzony lub zużyty, jego działanie staje się niestabilne, co prowadzi do występowania drgań i dźwięków, które są szczególnie wyraźne podczas skręcania. Terkotanie jest wynikiem niewłaściwego zazębienia elementów przegubu, co z kolei prowadzi do utraty płynności pracy. W praktyce, mechanicy często zalecają przeprowadzanie regularnych przeglądów układu napędowego, aby w porę zidentyfikować i naprawić ewentualne usterki. Ponadto, znajomość objawów zużycia przegubów jest kluczowa dla zapewnienia bezpieczeństwa na drodze oraz dla właściwego funkcjonowania układu kierowniczego i zawieszenia. Zgodnie z dobrymi praktykami branżowymi, szczególną uwagę należy zwracać na dźwięki wydobywające się z pojazdu, ponieważ mogą one być pierwszym sygnałem wskazującym na potrzebę interwencji serwisowej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.