Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 2 czerwca 2025 23:35
  • Data zakończenia: 2 czerwca 2025 23:44

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego rodzaju zgrzewarki używa się do łączenia rur z PP-R w systemach ciepłej wody użytkowej?

A. Trzpieniowej
B. Doczołowej
C. Polifuzyjnej
D. Elektrooporowej
Zgrzewarka polifuzyjna jest kluczowym narzędziem do łączenia rur z PP-R w instalacjach ciepłej wody użytkowej. Proces zgrzewania polifuzyjnego polega na podgrzewaniu końcówek rur oraz złączek, co umożliwia ich połączenie w sposób trwały i odporny na wysokie temperatury. Metoda ta zapewnia nie tylko wysoką jakość połączeń, ale również ich szczelność, co jest szczególnie istotne w kontekście instalacji wodociągowych. Przykładowo, w budownictwie mieszkalnym zgrzewanie polifuzyjne jest często stosowane do instalacji systemów grzewczych oraz ciepłej wody użytkowej, gdzie wymagane są połączenia odporne na ciśnienie i temperaturę. Ponadto, zgodnie z normami PN-EN 1555 oraz PN-EN ISO 15874, zgrzewanie polifuzyjne jest uznawane za metodę preferowaną do łączenia rur wykonanych z polipropylenu. Dzięki odpowiedniemu doborowi temperatury i czasu zgrzewania, można uzyskać połączenia, które są nie tylko mocne, ale także odporne na korozję, co przekłada się na długotrwałą eksploatację systemów wodociągowych.

Pytanie 2

Aby sprawdzić, czy w instalacji solarnej przepływa glikol o odpowiednim natężeniu, instaluje się

A. manometr
B. termometr
C. rotametr
D. odpowietrznik
Rotametr to urządzenie, które odgrywa kluczową rolę w monitorowaniu natężenia przepływu cieczy, w tym glikolu w systemach solarnych. Jego zasada działania opiera się na pomiarze objętości płynu przepływającego przez rurkę, co pozwala na precyzyjne określenie wydajności instalacji. Użycie rotametru jest zgodne z najlepszymi praktykami w branży, ponieważ umożliwia operatorom dostosowywanie parametrów systemu w celu optymalizacji wydajności cieplnej. Przykładem praktycznego zastosowania rotametru może być instalacja solarna, w której monitorowanie natężenia przepływu glikolu pozwala na utrzymanie odpowiednich warunków pracy systemu, co jest niezbędne do maksymalizacji efektywności energetycznej. W przypadkach, gdy natężenie przepływu jest zbyt niskie, może to prowadzić do przegrzania kolektorów słonecznych, co z kolei może powodować uszkodzenia systemu. Dlatego rotametr jest nie tylko narzędziem pomiarowym, ale również elementem bezpieczeństwa w takich systemach.

Pytanie 3

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/DC
B. DC/DC
C. AC/AC
D. DC/AC
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 4

Przy transporcie kolektora słonecznego na dach, co należy zrobić?

A. użyć bloczków wyciągowych
B. zastosować pas transportowy przymocowany do przyłączy kolektora
C. usunąć osłony zabezpieczające
D. skorzystać z drabiny i w dwie osoby wciągnąć kolektor
Użycie bloczków wyciągowych podczas transportu kolektora słonecznego na dach to podejście, które zapewnia zarówno bezpieczeństwo, jak i efektywność operacyjną. Bloczek wyciągowy pozwala na zastosowanie mechanizmu dźwigni, co znacznie ułatwia podnoszenie ciężkich przedmiotów. W kontekście kolektorów słonecznych, które mogą ważyć od kilkudziesięciu do ponad stu kilogramów, kluczowe jest zminimalizowanie ryzyka urazu zarówno dla osób transportujących, jak i dla samego urządzenia. Przykładem zastosowania bloczków wyciągowych może być praca na budowie, gdzie mechanizmy te są standardem w podnoszeniu i transportowaniu materiałów budowlanych. Dobrą praktyką jest również zapewnienie, że bloczki są zgodne z normami bezpieczeństwa oraz że wszystkie osoby zaangażowane w proces transportu mają odpowiednie przeszkolenie z zakresu obsługi takich urządzeń. Dodatkowo, warto zwrócić uwagę na odpowiednie zabezpieczenie przewodów i przyłączy kolektora, aby uniknąć uszkodzeń podczas transportu.

Pytanie 5

W jakiej technologii łączy się kolektor słoneczny z wymiennikiem ciepła?

A. Lutowanie miękkie
B. Lutowanie twarde
C. Zgrzewanie
D. Klejenie
Lutowanie twarde jest techniką, która jest powszechnie stosowana do łączenia elementów w systemach grzewczych, w tym kolektorów słonecznych z wymiennikami ciepła. Proces lutowania twardego polega na użyciu stopu metalu o wysokiej temperaturze topnienia, co zapewnia mocne i trwałe połączenie. Dzięki temu, że lutowanie twarde tworzy spoiny odporne na wysoką temperaturę oraz ciśnienie, jest idealne do zastosowań w układach, w których występują ekstremalne warunki operacyjne, takie jak w instalacjach solarnych. Przykładem może być połączenie miedzi w instalacjach solarnych, gdzie zastosowanie lutowania twardego jest zgodne z normą PN-EN 12792:2007, która określa wymagania dla systemów solarnych. Dodatkowo, lutowanie twarde pozwala na osiągnięcie wysokiej wydajności wymiany ciepła, co zwiększa efektywność całego systemu. W praktyce, lutowanie twarde może być stosowane do łączenia elementów o różnych grubościach, co czyni tę metodę bardzo wszechstronną w inżynierii cieplnej.

Pytanie 6

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 6m
B. 3 m
C. 4m
D. 5m
Ustalanie maksymalnej wysokości hałd na poziomie 3 m, 5 m lub 6 m może prowadzić do szeregu problemów związanych z bezpieczeństwem oraz oddziaływaniem na środowisko. Przykładowo, 3 m może wydawać się odpowiednią wysokością, ale w praktyce może to ograniczać efektywność składowania oraz zwiększać ilość wymaganej przestrzeni. Wysokości przekraczające 4 m, takie jak 5 m czy 6 m, stwarzają ryzyko osuwania się materiału oraz mogą prowadzić do poważnych incydentów w przypadku silnych opadów deszczu, co może skutkować niekontrolowanym wypływem substancji bioaktywnych. Wysokie hałdy są trudniejsze do monitorowania i kontrolowania, co zwiększa ryzyko rozwoju szkodników oraz emisji nieprzyjemnych zapachów. Ponadto, przekroczenie norm wysokości może naruszać lokalne przepisy dotyczące ochrony środowiska, co wiąże się z sankcjami i kosztami. Z perspektywy zarządzania ryzykiem, składowanie materiałów bioaktywnych w sposób niezgodny z najlepszymi praktykami branżowymi może prowadzić do znacznych problemów zdrowotnych, zarówno dla pracowników, jak i mieszkańców okolicznych terenów. Niewłaściwe podejście do składowania może także negatywnie wpłynąć na wizerunek firmy oraz jej relacje z organami regulacyjnymi.

Pytanie 7

Jaki materiał posiada najwyższy współczynnik rozszerzalności liniowej?

A. Polipropylen
B. Mosiądz
C. Miedź
D. Stal
Polipropylen to materiał termoplastyczny, który cechuje się najwyższym współczynnikiem rozszerzalności liniowej spośród wymienionych opcji. Współczynnik rozszerzalności liniowej dla polipropylenu wynosi około 100-150 x 10^-6/K, co oznacza, że pod wpływem zmian temperatury, jego długość zmienia się znacznie bardziej niż w przypadku metali, takich jak stal czy miedź. Taka właściwość polipropylenu sprawia, że jest on często wykorzystywany w aplikacjach, gdzie występują znaczące zmiany temperatur. Na przykład, w przemyśle motoryzacyjnym polipropylen jest używany do produkcji elementów wnętrz samochodów, które muszą być odporne na wysokie temperatury oraz zmiany wielkości. W konstrukcjach budowlanych polipropylen jest wykorzystywany w systemach rur, gdzie jego elastyczność i zdolność do rozszerzania się bez pękania są kluczowe. Zgodnie z normami PN-EN, materiały termoplastyczne muszą spełniać określone parametry, aby zapewnić bezpieczeństwo i trwałość w zastosowaniach przemysłowych. Polipropylen jest więc doskonałym przykładem materiału, który łączy w sobie właściwości mechaniczne i termiczne, co czyni go popularnym wyborem w wielu branżach.

Pytanie 8

Naturalną wentylacją nie jest

A. aeracja
B. przewietrzanie
C. wentylacja przeciwpożarowa
D. wentylacja grawitacyjna
Wentylacja przeciwpożarowa jest systemem, który ma na celu ochronę budynków przed skutkami pożarów, poprzez skuteczne usuwanie dymu i toksycznych gazów. Choć może wykorzystywać naturalne zjawiska, takie jak różnice ciśnień, jest to system zaprojektowany z myślą o bezpieczeństwie i wymaga zaawansowanej technologii oraz mechanizmów sterujących. W przeciwieństwie do wentylacji naturalnej, która opiera się na pasywnych mechanizmach, wentylacja przeciwpożarowa często wymaga aktywnego działania, aby zapewnić odpowiednią jakość powietrza i bezpieczeństwo w przypadku pożaru. Przykładem zastosowania wentylacji przeciwpożarowej są systemy w wysokich budynkach, gdzie kluczowe jest szybkie usunięcie dymu z korytarzy i klatek schodowych, co jest niezbędne dla ewakuacji osób z budynku oraz dla akcji ratunkowej. Obowiązujące normy budowlane oraz przepisy przeciwpożarowe, takie jak PN-EN 12101, szczegółowo regulują zasady projektowania i instalacji takich systemów, co czyni je koniecznym elementem każdego nowego projektu budowlanego.

Pytanie 9

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C

A. 12,00 zł
B. 60,00 zł
C. 45,00 zł
D. 30,00 zł
Poprawna odpowiedź to 30,00 zł, co wynika z prawidłowego zastosowania wzoru na obliczenie miesięcznych kosztów pokrycia strat energii. Aby obliczyć miesięczne koszty, należy wziąć pod uwagę dobowe straty energii, które w przypadku zbiornika SB-200 wynoszą 2 kWh. Następnie, mnożymy tę wartość przez liczbę dni w miesiącu, co daje 60 kWh (2 kWh x 30 dni). Koszt energii elektrycznej wynosi 0,50 zł za kWh, co prowadzi do obliczenia 60 kWh x 0,50 zł = 30 zł. Zrozumienie tego procesu jest kluczowe, ponieważ pozwala na realistyczne oszacowanie kosztów eksploatacyjnych systemów grzewczych i zbiorników. Wiedza ta jest istotna w kontekście optymalizacji kosztów operacyjnych oraz efektywności energetycznej. W praktyce, aby zminimalizować straty energii, można stosować różne metody izolacji zbiorników oraz monitorowania temperatury, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 10

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g

A. 10 A
B. 20 A
C. 30 A
D. 15 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 11

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w komorze paleniskowej
B. w czopuchu kotła
C. w podajniku ślimakowym
D. na obudowie podajnika
Montaż czujnika termostatycznego w podajniku ślimakowym może wydawać się sensownym rozwiązaniem, jednak wiąże się z kilkoma istotnymi zagrożeniami. Przede wszystkim, podajnik może być miejscem o zmiennym cieple, gdzie temperatura materiału opałowego nie jest jednolita. W praktyce, czujnik umieszczony w takim miejscu może nie dostarczać precyzyjnych danych o temperaturze, co w efekcie prowadzi do niewłaściwego działania systemu zabezpieczeń. Ponadto, umiejscowienie czujnika w czopuchu kotła, gdzie odpływają gazy spalinowe, jest błędne, ponieważ temperatury w tym obszarze mogą być znacznie wyższe, co może prowadzić do fałszywych alarmów lub uszkodzenia czujnika. Montaż czujnika w komorze paleniskowej również jest nieodpowiedni, ponieważ ekstremalne warunki panujące w tym miejscu mogą zdemolować czujnik, co z kolei grozi poważnymi skutkami dla bezpieczeństwa systemu. Typowym błędem w myśleniu jest założenie, że czujnik termostatyczny można umieścić w dowolnym miejscu, byle tylko był blisko źródła ciepła. Tego typu podejście ignoruje zasady działania i odpowiednie normy, które jasno wskazują, że lokalizacja czujnika powinna sprzyjać stabilności i dokładności pomiarów, co jest kluczowe dla efektywnego i bezpiecznego działania systemów grzewczych.

Pytanie 12

W jaki sposób definiuje się współczynnik COP?

A. moc chłodniczą, którą pompa ciepła osiąga w najbardziej trudnych warunkach
B. stosunek ilości ciepła generowanego przez pompę ciepła do ilości zużytej energii elektrycznej
C. ciepło parowania w danej temperaturze oraz przy odpowiednim ciśnieniu
D. wydajność chłodniczą, wyrażoną w procentach lub jako wartość bezwymiarowa
Współczynnik COP (Coefficient of Performance) to kluczowy wskaźnik efektywności pompy ciepła, który określa, jak skutecznie urządzenie przekształca energię elektryczną w ciepło. Odpowiedź wskazująca na stosunek ilości ciepła wytwarzanego przez pompę ciepła do ilości pobranej energii elektrycznej jest poprawna, ponieważ dokładnie odzwierciedla zasadę funkcjonowania tego urządzenia. W praktyce, wysokie wartości COP są pożądane, ponieważ oznaczają większą efektywność energetyczną, co prowadzi do mniejszych kosztów eksploatacji oraz mniejszego wpływu na środowisko. Przykładowo, pompa ciepła o współczynniku COP równym 4 potrafi wygenerować 4 jednostki ciepła przy zużyciu 1 jednostki energii elektrycznej. Takie wskaźniki są istotne w kontekście norm i regulacji związanych z efektywnością energetyczną, takich jak dyrektywy Unii Europejskiej dotyczące energooszczędności, które promują stosowanie rozwiązań o wysokiej efektywności. Zrozumienie COP pozwala na optymalizację użytkowania pomp ciepła oraz lepsze planowanie systemów ogrzewania i chłodzenia w budynkach.

Pytanie 13

Całkowity koszt materiałów do zainstalowania systemu pompy ciepła wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Wiedząc, że koszt robocizny wynosi 20 % wartości materiałów, oblicz całkowitą wartość inwestycji?

A. 74 400 zł
B. 83 300 zł
C. 86 800 zł
D. 70 900 zł
Aby obliczyć całkowitą wartość inwestycji w instalację pompy ciepła, należy zsumować koszty materiałów, sprzętu oraz robocizny. Koszt materiałów wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Robocizna została ustalona na 20% wartości materiałów, co daje 12 400 zł (20% z 62 000 zł). Zatem całkowity koszt inwestycji obliczamy jako: 62 000 zł (materiały) + 8 900 zł (sprzęt) + 12 400 zł (robocizna) = 83 300 zł. Wyliczenia te są zgodne z praktykami stosowanymi w branży budowlanej, gdzie szczegółowe rozliczenia kosztów są kluczowe dla zarządzania projektami. Praktyczne zastosowanie tej wiedzy polega na umiejętnym planowaniu budżetu inwestycyjnego oraz przewidywaniu kosztów całkowitych przed rozpoczęciem prac, co jest niezbędne dla uniknięcia nieprzewidzianych wydatków i utrzymania rentowności projektu.

Pytanie 14

W trakcie przerwy urlopowej przewiduje się brak odbioru ciepła z kolektorów słonecznych. Aby uniknąć przegrzania systemu solarnego, konieczne jest aktywowanie w sterowniku opcji chłodzenia, która polega na

A. działaniu pomp obiegowych w nocy
B. zatrzymaniu pomp obiegowych
C. opróżnieniu instalacji na czas przerwy urlopowej
D. zmianie czynnika w instalacji na czas przerwy urlopowej
No więc, praca pomp obiegowych w nocy to naprawdę świetny sposób na to, żeby nie dopuścić do przegrzania instalacji solarnej. Kiedy jesteśmy na urlopie i nie korzystamy z energii, temperatura w układzie może poszybować w górę, co w ogóle nie jest dobre dla kolektorów ani innych elementów instalacji. Włączając pompy nocą, zapewniamy cyrkulację cieczy i w ten sposób odprowadzamy nadmiar ciepła do zbiornika, co pomaga utrzymać stabilną temperaturę. Uważam, że to naprawdę ważne, żeby tak robić, bo to zgodne z zasadami efektywnego zarządzania energią. Wiele nowoczesnych systemów ma automatyczne sterowanie, które może to ogarnąć w odpowiednim czasie, co znacząco wpływa na trwałość i wydajność instalacji. Na przykład w miejscach z dużym nasłonecznieniem, to naprawdę może uratować system przed przegrzaniem i zmniejszyć ryzyko awarii.

Pytanie 15

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. raz w miesiącu
B. raz w roku
C. codziennie
D. co 6 miesięcy
Pojęcie regularności w pomiarze rezystancji ogniw akumulatorowych jest kluczowe dla utrzymania ich w dobrym stanie. Często spotykane jest przekonanie, że pomiar należy przeprowadzać raz w miesiącu, jednak takie podejście jest niepraktyczne i nieefektywne. Częstsze pomiary mogą prowadzić do niepotrzebnego zużycia sprzętu pomiarowego oraz mogą wprowadzać w błąd z powodu naturalnych fluktuacji wynikających z warunków pracy akumulatorów. Z kolei pomiar raz w roku nie jest wystarczający, aby zauważyć ewentualne problemy z akumulatorami w odpowiednim czasie. W przypadku akumulatorów, które są użytkowane w intensywnych warunkach, takich jak systemy zasilania UPS, długie przerwy między pomiarami mogą prowadzić do poważnych usterek, które mogłyby być wykryte znacznie wcześniej. Odpowiedź sugerująca codzienne pomiary jest niepraktyczna i może prowadzić do nadmiernego obciążenia systemów monitorujących oraz błędów pomiarowych, przez co rezultaty mogą być mylące. Kluczowe jest znalezienie równowagi między częstotliwością pomiarów a ich rzeczywistą użytecznością, co w praktyce oznacza przyjęcie sześciomiesięcznego cyklu, który pozwala na dokładną ocenę stanu akumulatorów, minimalizując jednocześnie koszty i czas potrzebny na pomiary.

Pytanie 16

Fotoogniwa przekształcają energię słoneczną w energię

A. mechaniczną
B. cieplną
C. chemiczną
D. elektryczną
Fotoogniwa, znane jako ogniwa fotowoltaiczne, przekształcają energię słoneczną na energię elektryczną w procesie zwanym efektem fotowoltaicznym. Kiedy fotony ze światła słonecznego uderzają w półprzewodnikowe materiały w ogniwie, generują ruch elektronów, co prowadzi do wytworzenia prądu elektrycznego. Takie rozwiązania są coraz częściej wykorzystywane w instalacjach domowych i przemysłowych do produkcji energii odnawialnej. Przykładami zastosowania fotoogniw są panele słoneczne montowane na dachach budynków, które mogą zasilać urządzenia elektryczne, a także duże farmy fotowoltaiczne, które przyczyniają się do redukcji emisji CO2 w atmosferze. W praktyce, technologia ta jest zgodna z obecnymi standardami efektywności energetycznej i zrównoważonego rozwoju, wspierając globalne działania na rzecz ograniczenia zależności od paliw kopalnych. Wciąż rozwijają się nowe technologie, takie jak ogniwa perowskitowe, które obiecują jeszcze wyższą efektywność i niższe koszty produkcji.

Pytanie 17

Jaką wartość należy wpisać w pozycji przedmiarowej dla dolnego przewodu źródła ciepła, który na mapie w skali 1:1000 ma długość 2 cm?

A. 0,2 m
B. 200 m
C. 2 m
D. 20 m
Odpowiedź 20 m jest prawidłowa, ponieważ w skali 1:1000 każdy 1 cm na mapie odpowiada 10 m w rzeczywistości. Zatem, mając długość 2 cm na mapie, należy pomnożyć tę wartość przez 10, co daje 20 m. Tego typu przeliczenia są kluczowe w projektowaniu instalacji grzewczych i wodno-kanalizacyjnych, gdzie precyzyjne odwzorowanie długości jest niezbędne dla obliczeń technicznych oraz do zapewnienia efektywności systemów. W praktyce, użytkownicy muszą zwracać uwagę na skalę rysunków technicznych, aby poprawnie interpretować rozmiary i wymiary instalacji. Ponadto, zgodnie z normami branżowymi, takie przeliczenia są standardową praktyką w zakresie przygotowywania dokumentacji projektowej, co wpływa na jakość i dokładność realizacji inwestycji budowlanych.

Pytanie 18

Do prac związanych z konserwacją układu solarnego nie wlicza się

A. wymiany czynnika grzewczego w obiegu solarnym.
B. zweryfikowania i ewentualnego uzupełnienia czynnika w obiegu solarnym.
C. czyszczenia zbiornika.
D. sprawdzenia stanu izolacji rur w obiegu solarnym.
Czynności konserwacji obiegu solarnego obejmują różnorodne działania, mające na celu zapewnienie ciągłości i efektywności działania całego systemu. Kontrola stanu izolacji rur obiegu solarnego jest kluczowa, ponieważ dobrze izolowane rury minimalizują straty ciepła, co bezpośrednio wpływa na efektywność energetyczną systemu. Niezbędne jest regularne sprawdzanie izolacji, aby uniknąć niepotrzebnych strat energii, które mogą prowadzić do wyższych kosztów eksploatacji. Sprawdzenie i ewentualne uzupełnienie czynnika w obiegu solarnym to również istotny element konserwacji. Czynnik roboczy w obiegu solarnym musi być utrzymywany na odpowiednim poziomie, aby zapewnić efektywne przekazywanie ciepła z kolektorów do zasobnika. Niedobór czynnika może prowadzić do obniżenia wydajności, a w skrajnych przypadkach do uszkodzenia układu. Wymiana czynnika grzewczego, choć mniej typowa, może być również konieczna w przypadku degradacji lub zanieczyszczenia czynnika, co wpływa na właściwe funkcjonowanie systemu. Błędem jest myślenie, że te działania są zbędne lub nie mają wpływu na efektywność całego systemu solarnego. Ignorowanie ich może prowadzić do kosztownych awarii oraz zmniejszenia efektywności energetycznej instalacji.

Pytanie 19

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
B. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
C. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
D. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
Poprawna odpowiedź zawiera kluczowe komponenty systemu fotowoltaicznego, który jest niezbędny do efektywnej konwersji promieniowania słonecznego na energię elektryczną. Panele fotowoltaiczne są sercem systemu, ponieważ to w nich zachodzi proces fotowoltaiczny, w wyniku którego energia słoneczna jest przekształcana w prąd stały. Inwerter sieciowy, z kolei, jest odpowiedzialny za konwersję prądu stałego na prąd zmienny, który jest kompatybilny z siecią energetyczną. Konstrukcja montażowa na dach zapewnia stabilność i odpowiednie ustawienie paneli, co maksymalizuje ich wydajność. Konektory służą do bezpiecznego połączenia wszystkich elementów systemu, zapewniając jednocześnie odpowiednią ochronę przed warunkami atmosferycznymi. Ważne jest, aby każdy z tych elementów był zgodny z obowiązującymi standardami branżowymi, co wpływa na trwałość i efektywność całego systemu. Na przykład stosowanie wysokiej jakości materiałów do montażu i komponentów zwiększa niezawodność i żywotność instalacji. Dobrze zaprojektowany system fotowoltaiczny nie tylko przyczynia się do oszczędności energii, ale również zmniejsza emisję CO2, wspierając działania na rzecz zrównoważonego rozwoju.

Pytanie 20

Który z poniższych czynników może powodować głośną pracę pompy obiegowej podczas startu słonecznej instalacji grzewczej?

A. Duża ilość powietrza w systemie
B. Nieprawidłowo dobrana średnica rur instalacyjnych
C. Niska temperatura cieczy solarnej
D. Niewłaściwy rodzaj cieczy solarnej
Poprawna odpowiedź wynika z faktu, że duża ilość powietrza w instalacji solarnej może prowadzić do powstawania pęcherzy powietrznych, które przemieszcza się przez pompę obiegową, potęgując hałas podczas jej pracy. Powietrze w systemie obiegowym może również ograniczać przepływ płynu solarnego, co wpływa na wydajność całego układu grzewczego. Standardy branżowe, takie jak normy ISO dotyczące instalacji grzewczych, podkreślają znaczenie odpowiedniego odpowietrzania systemu, co jest kluczowe dla jego prawidłowego funkcjonowania. W praktyce, aby uniknąć problemów z hałasami generowanymi przez pompę, zaleca się regularne sprawdzanie systemu na obecność powietrza oraz stosowanie odpowiednich zaworów odpowietrzających. Dbałość o poprawne odpowietrzanie instalacji nie tylko zwiększa komfort użytkowania, ale również wydłuża żywotność pompy i całego systemu grzewczego.

Pytanie 21

Jakie urządzenie wykorzystuje się do mierzenia przepływu płynu solarnego w systemie?

A. rotametr
B. manometr
C. refraktometr
D. areometr
Rotametr to urządzenie pomiarowe, które służy do określania przepływu płynów w instalacjach, w tym również w systemach solarnych. Jego działanie opiera się na zasadzie zmiany poziomu cieczy w stożkowym rurze, co pozwala na wizualne odczytanie przepływu. Rotametry charakteryzują się wysoką dokładnością oraz prostotą obsługi, co czyni je idealnym narzędziem w branży energetyki odnawialnej. Przykładowe zastosowanie rotametrów znajduje miejsce w monitorowaniu przepływu cieczy w układach chłodzenia, gdzie precyzyjne pomiary są kluczowe dla wydajności systemu. Dodatkowo, w kontekście instalacji solarnych, rotametry mogą być używane do kontroli przepływu cieczy solarnej, co bezpośrednio wpływa na efektywność wymiany ciepła i ogólną wydajność systemu. Warto zauważyć, że zgodnie z aktualnymi standardami branżowymi, rotametry powinny być regularnie kalibrowane, aby zapewnić ich dokładność i niezawodność w długoterminowym użytkowaniu.

Pytanie 22

Płynem, który ma wysoką temperaturę wrzenia w rurce cieplnej (heat-pipe) w systemie kolektora rurowego próżniowego nie jest

A. woda
B. R410
C. propan
D. butan
Wybór nieodpowiednich płynów roboczych w systemach takich jak kolektory rurowe próżniowe, może prowadzić do poważnych problemów z efektywnością energetyczną. Odpowiedzi takie jak butan, R410 czy propan wydają się być bardziej odpowiednie ze względu na swoje właściwości termodynamiczne, ale ich zastosowanie wymaga zrozumienia ich specyfiki. Butan i propan to węglowodory, które w porównaniu do wody mają znacznie niższy punkt wrzenia, co czyni je bardziej efektywnymi w systemach, które muszą funkcjonować w niskich temperaturach. R410, jako czynnik chłodniczy, ma także swoje miejsce w aplikacjach chłodniczych, jednak nie jest typowym płynem roboczym dla heat-pipe, gdyż jego właściwości mogą nie odpowiadać wymaganiom systemu próżniowego. Woda, mimo że jest powszechnie używana w wielu systemach grzewczych, w kontekście rur cieplnych w próżni staje się nieodpowiednia z powodu swoich właściwości wrzenia oraz możliwości wystąpienia korozji, co może wpływać na trwałość całego systemu. Użycie materiałów, które mogą szybko zmieniać fazy, jak gaz - ciecz - para, jest kluczowe dla zapewnienia efektywności. Dlatego też, przy projektowaniu systemów opartych na rurach cieplnych, istotne jest, aby wybierać czynniki robocze, które są zgodne z warunkami operacyjnymi, aby uniknąć strat energetycznych i zwiększyć żywotność systemu.

Pytanie 23

Aby biogaz produkowany w biogazowni był odpowiedni do spalania, należy go wcześniej właściwie przystosować. Głównie usuwa się z niego szkodliwy

A. wodoru
B. dwutlenek węgla
C. tlenek węgla
D. siarkowodoru
Siarkowodór jest kluczowym zanieczyszczeniem, które musi być usunięte z biogazu przed jego spalaniem. Jego obecność w biogazie stanowi poważne zagrożenie dla efektywności i bezpieczeństwa procesów energetycznych. Siarkowodór jest związkiem o silnych właściwościach korozjogennych, co oznacza, że może powodować poważne uszkodzenia elementów metalowych, takich jak silniki, rury oraz komory spalania. W praktyce, oczyszczanie biogazu ze siarkowodoru odbywa się za pomocą różnych metod, takich jak absorpcja chemiczna, adsorpcja na węglu aktywnym, czy też wykorzystanie bioreaktorów, w których mikroorganizmy przetwarzają H2S na mniej szkodliwe substancje. Stosowanie odpowiednich technologii oczyszczania jest niezbędne, aby zapewnić długotrwałą i bezawaryjną pracę instalacji biogazowych. Dobre praktyki w branży podkreślają znaczenie regularnego monitorowania jakości biogazu oraz dostosowywania procesów oczyszczania w zależności od zmieniających się warunków operacyjnych. Efektywne usunięcie siarkowodoru nie tylko wydłuża żywotność urządzeń, ale również zwiększa efektywność energetyczną całego systemu.

Pytanie 24

Utrzymanie równomiernego ciśnienia w gazowym zbiorniku można osiągnąć poprzez składowanie biogazu z wykorzystaniem

A. zbiornika niskociśnieniowego
B. zbiornika komory fermentacyjnej
C. zbiornika ciśnieniowego
D. dzwonu gazowego
Pojemnik komory gnilnej, zbiornik ciśnieniowy i zbiornik niskociśnieniowy to rozwiązania, które mają swoje specyficzne zastosowania, ale nie są optymalne do utrzymania stałego ciśnienia w kontekście magazynowania biogazu. Pojemnik komory gnilnej to element, w którym zachodzi proces fermentacji beztlenowej, jednak nie jest on zaprojektowany do regulacji ciśnienia w sposób ciągły. Jego głównym celem jest zapewnienie odpowiednich warunków do przetwarzania materiału organicznego, ale nie kontrolowania gazu wytwarzanego w tym procesie. Zbiornik ciśnieniowy, z drugiej strony, wymaga skomplikowanych systemów zabezpieczeń i regulacji, aby uniknąć niebezpieczeństw związanych z nadmiernym ciśnieniem. Utrzymanie biogazu pod ciśnieniem wiąże się z ryzykiem eksplozji, co czyni to podejście nieodpowiednim dla stabilnego magazynowania. Zbiornik niskociśnieniowy również nie jest w stanie efektywnie zarządzać ciśnieniem, co prowadzi do problemów z wypuszczaniem gazu i może skutkować stratami materiałowymi. Kluczowym błędem jest myślenie, że te zbiorniki mogą pełnić taką samą funkcję jak dzwon gazowy, co ignoruje ich podstawowe różnice i ograniczenia w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 25

Jakie narzędzie należy wykorzystać do łączenia rur miedzianych w systemie biogazowym, w obiekcie, gdzie nie można stosować technologii termicznych?

A. zgrzewarki elektrooporowej
B. palnika gazowego
C. zaciskarki osiowej
D. zaciskarki promieniowej
Zastosowanie zaciskarki promieniowej do łączenia rur miedzianych w instalacjach biogazowych jest zgodne z wymaganiami dotyczącymi unikania technologii termicznych. Zaciskarki promieniowe działają na zasadzie mechaniczną, co eliminuje potrzebę stosowania wysokotemperaturowych procesów, takich jak zgrzewanie czy lutowanie. Ta technologia zapewnia nie tylko wysoką jakość połączenia, ale także bezpieczeństwo, co ma kluczowe znaczenie w kontekście instalacji biogazowych, gdzie wytrzymałość na ciśnienie i szczelność są priorytetowe. Przykładowo, w systemach biogazowych, gdzie mogą występować zmienne ciśnienia i agresywne chemicznie składniki, połączenia uzyskane za pomocą zaciskarki promieniowej są znacznie bardziej niezawodne. Dodatkowo, wykorzystanie tego typu narzędzia minimalizuje ryzyko uszkodzenia materiału rurociągu, co może się zdarzyć w przypadku stosowania palników gazowych, które mogą wprowadzać dodatkowe naprężenia termiczne. W praktyce, zastosowanie zaciskarki promieniowej w instalacjach biogazowych jest zgodne z normami branżowymi, takimi jak PN-EN 1057 dotycząca rur miedzianych, co zapewnia ich wysoką jakość i trwałość.

Pytanie 26

Który element chroni zamknięty obieg hydrauliczny paneli słonecznych w przypadku zbyt wysokiego ciśnienia cieczy solarnej?

A. Pompa obiegowa
B. Regulator temperatury
C. Zawór bezpieczeństwa
D. Automatyczny odpowietrznik
Zawór bezpieczeństwa jest kluczowym elementem ochronnym w zamkniętym obiegu hydraulicznym kolektorów słonecznych, który zapobiega nadmiernemu wzrostowi ciśnienia płynu solarnego. Jego podstawowym zadaniem jest automatyczne otwieranie się w przypadku, gdy ciśnienie w systemie przekroczy ustaloną wartość graniczną. Dzięki temu zapobiega się uszkodzeniom instalacji oraz wyciekom płynu solarnego, co mogłoby prowadzić do poważnych awarii. W praktyce, zawory bezpieczeństwa są projektowane zgodnie z normami, które określają ich wydajność i niezawodność. Na przykład, w wielu systemach słonecznych stosuje się zawory bezpieczeństwa z certyfikatami, które potwierdzają ich zgodność z europejskimi normami EN 12828 oraz EN 13445, co zapewnia ich wysoką jakość i bezpieczeństwo użytkowania. Dodatkowo, regularna konserwacja i kontrola funkcjonowania zaworów bezpieczeństwa są niezbędne, aby zapewnić sprawne działanie całego systemu, co jest zgodne z najlepszymi praktykami w branży energetycznej.

Pytanie 27

Kocioł na biomasę powinien być poddany konserwacji w najbardziej odpowiednim czasie, czyli w trakcie

A. realizacji remontu zbiornika CWU
B. zaplanowanego postoju pracy kotłowni
C. przerw w dostawie paliwa do kotła
D. wzrostu efektywności cieplnej kotła
Odpowiedź wskazująca na planowany przestój pracy kotłowni jako najkorzystniejszy okres na przeprowadzenie konserwacji kotła na biomasę jest właściwa, ponieważ w tym czasie urządzenie nie jest eksploatowane, co pozwala na dokładne przeprowadzenie niezbędnych działań serwisowych bez wpływu na jego wydajność i funkcjonalność. Przykładowo, podczas przestoju można przeprowadzić inspekcję elementów krytycznych, takich jak wymienniki ciepła, palniki czy układy podawania paliwa, co jest zgodne z zaleceniami producentów oraz standardami branżowymi, które nakładają obowiązek regularnej konserwacji w celu zapewnienia efektywności energetycznej oraz bezpieczeństwa pracy. Regularne przeglądy i konserwacje mogą również przyczynić się do wydłużenia żywotności kotła oraz zmniejszenia ryzyka awarii, co w dłuższej perspektywie jest korzystne pod względem ekonomicznym. Przykładem może być planowanie prac konserwacyjnych w okresach letnich, kiedy zapotrzebowanie na ciepło jest minimalne, co zapewnia optymalne warunki do przeprowadzenia takich działań.

Pytanie 28

Głównym celem instalacji fotowoltaicznej typu on-grid jest produkcja energii elektrycznej

A. do przechowywania w akumulatorach
B. na potrzeby własne oraz do sieci elektrycznej
C. w lokalizacjach, gdzie nie ma dostępu do sieci elektrycznych
D. wyłącznie na potrzeby własne, bez podłączenia do sieci
Instalacja fotowoltaiczna typu on-grid jest zaprojektowana przede wszystkim do wytwarzania energii elektrycznej, która może być wykorzystywana zarówno do zaspokajania własnych potrzeb energetycznych użytkownika, jak i do zasilania sieci elektrycznej. W przypadku tego systemu energię elektryczną wytwarza się na podstawie promieniowania słonecznego, a nadmiar wyprodukowanej energii jest przesyłany do lokalnej sieci energetycznej. Dzięki temu użytkownik może korzystać z energii z paneli słonecznych, a jednocześnie wygenerować dodatkowy zysk poprzez sprzedaż nadwyżki energii. Wiele krajów stosuje systemy net meteringu, które pozwalają na rozliczanie energii, co sprawia, że instalacje on-grid stają się ekonomicznie opłacalne. Dodatkowo, te instalacje są zgodne z aktualnymi standardami branżowymi, co zapewnia ich efektywność oraz bezpieczeństwo. Przykładem może być instalacja domowa, gdzie energia z paneli zasila urządzenia elektryczne, a nadmiar energii jest oddawany do sieci, co przyczynia się do zmniejszenia rachunków za energię i korzystania z odnawialnych źródeł energii.

Pytanie 29

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. petrotermalnej
B. konwencjonalnie nieodnawialnej
C. nieodnawialnej
D. hydrotermalnej
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 30

Jak należy przechowywać kolektory słoneczne?

A. w zamkniętych pomieszczeniach, umieszczone szybą w dół
B. w zamkniętych pomieszczeniach, umieszczone szybą do góry
C. pod wiatą, umieszczone szybą do góry
D. pod wiatą, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 31

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. homopolimeru polietylenu
B. polietylenu o wysokiej gęstości
C. polietylenu o niskiej gęstości
D. polietylenu o średniej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.

Pytanie 32

Kosztorys, który nie zawiera danych o cenach, nazywamy kosztorysem

A. ofertowym.
B. wstępnym.
C. ślepym.
D. powykonawczym.
Kosztorys ślepy to specyficzny rodzaj dokumentu, który nie zawiera szczegółowych informacji o cenach poszczególnych elementów, a jedynie wskazuje na zakres prac oraz ich ilość. Taki kosztorys jest często stosowany na etapie planowania projektów budowlanych, ponieważ pozwala inwestorom i wykonawcom zrozumieć, jakie prace są przewidziane, bez konieczności podawania konkretnych kwot. W praktyce, kosztorys ślepy może być użyty do oceny wykonalności projektu lub do uzyskania wstępnych ofert od potencjalnych wykonawców, które następnie można porównać. W kontekście standardów, taki kosztorys może być zgodny z normami branżowymi, które określają jak powinny być opracowywane dokumenty kosztorysowe, zapewniając przejrzystość i rzetelność informacji, co jest kluczowe w procesach inwestycyjnych.

Pytanie 33

Przy instalacji kolektorów słonecznych na dachu pokrytym dachówkami, do czego przykręca się stelaż?

A. łat
B. murłat
C. krokwi
D. dachówek
Odpowiedź "krokwi" jest poprawna, ponieważ to właśnie krokwi, będące elementami konstrukcyjnymi dachu, stanowią odpowiednie wsparcie dla stelaży kolektorów słonecznych. Krokwi mają dużą nośność i są zaprojektowane do przenoszenia obciążeń, co jest niezwykle istotne przy montażu cięższych systemów solarnych. Kiedy stelaż jest przykręcany do krokwi, zapewnia to stabilność i bezpieczeństwo całej konstrukcji, co jest kluczowe, zwłaszcza w przypadku silnych wiatrów czy opadów śniegu. Zgodnie z normami budowlanymi, należy stosować odpowiednie wkręty i mocowania, które są przystosowane do materiału krokwi, aby uniknąć uszkodzenia drewna. Dobrą praktyką jest również dokonanie oceny stanu technicznego krokwi przed montażem, aby upewnić się, że nie są one osłabione przez czynniki zewnętrzne, takie jak owady czy wilgoć. Poprawny montaż nie tylko zapewnia efektywność systemu, ale także wydłuża jego żywotność.

Pytanie 34

Dla zapewnienia maksymalnej rocznej wydajności instalacji c.w.u. w Polsce, kąt nachylenia kolektorów słonecznych powinien znajdować się w zakresie

A. 10° ÷ 30°
B. 70° ÷ 90°
C. 50° ÷ 70°
D. 30° ÷ 50°
Wybór nachylenia kolektorów słonecznych spoza przedziału 30° ÷ 50° może prowadzić do znacznych strat w efektywności energetycznej systemu. Odpowiedzi takie jak 10° ÷ 30° czy 50° ÷ 70° są nieodpowiednie, ponieważ nie uwzględniają charakterystyki geograficznej Polski oraz zasad efektywnego wykorzystania energii słonecznej. Nachylenie 10° ÷ 30° jest zbyt małe, co skutkuje gorszym zbieraniem promieni słonecznych w sezonie zimowym. W miesiącach, gdy słońce jest nisko na niebie, kolektory nie będą w stanie efektywnie przechwytywać energii, co prowadzi do zmniejszenia wydajności systemu c.w.u. Z kolei nachylenie 50° ÷ 70° oraz 70° ÷ 90° przekracza optymalny zakres, co skutkuje nadmiernym nachyleniem, które może prowadzić do ograniczenia zbioru energii w lecie, gdy słońce jest wyżej. Wybór zbyt dużych kątów nachylenia może również generować dodatkowe koszty związane z konstrukcją i instalacją, a także zwiększać ryzyko uszkodzenia kolektorów przez warunki atmosferyczne. W kontekście budowy instalacji solarnych, kluczowe jest kierowanie się zaleceniami norm oraz standardów, takich jak PN-EN 12975. Zrozumienie tych zasad jest niezbędne dla efektywnego projektowania systemów solarnych, które mają na celu optymalne wykorzystanie energii odnawialnej.

Pytanie 35

Podaj aktualną wartość współczynnika przewodzenia ciepła dla zewnętrznej ściany pomieszczenia, gdzie temperatura wynosi 20°C, zgodnie z rozporządzeniem dotyczącym warunków technicznych, jakim powinny odpowiadać budynki oraz ich lokalizacja?

A. Min. 0,25 W/m2K
B. Min. 0,3 W/m2K
C. Maks. 0,25 W/m2K
D. Maks. 0,5 W/m2K
Odpowiedź "Maks. 0,25 W/m2K" jest prawidłowa, ponieważ według aktualnych przepisów zawartych w rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, maksymalna wartość współczynnika przenikania ciepła (U) dla ścian zewnętrznych wynosi właśnie 0,25 W/m2K. Przestrzeganie tych norm jest kluczowe dla zapewnienia odpowiedniej efektywności energetycznej budynków, co ma znaczenie nie tylko dla komfortu mieszkańców, ale również dla ochrony środowiska. W praktyce oznacza to, że przy projektowaniu budynków warto stosować materiały o dobrych właściwościach izolacyjnych, takie jak styropian czy wełna mineralna, aby nie przekroczyć tego limitu. Właściwy dobór materiałów i technologii budowlanych przyczynia się do zmniejszenia strat ciepła, co z kolei prowadzi do niższych kosztów ogrzewania i mniejszej emisji gazów cieplarnianych. To podejście jest zgodne z zasadami zrównoważonego rozwoju oraz polityką energetyczną Unii Europejskiej, która dąży do zwiększenia efektywności energetycznej budynków.

Pytanie 36

Jakie rodzaje diod chronią przed termicznym uszkodzeniem paneli fotowoltaicznych podłączonych szeregowo?

A. Bocznikujące
B. Impulsowe
C. Tunelowe
D. Blokujące
Diody bocznikujące, znane także jako diody bypass, są kluczowym elementem w systemach fotowoltaicznych, które zapobiegają termicznemu zniszczeniu paneli słonecznych połączonych szeregowo. W przypadku, gdy jeden z paneli jest zacieniony lub uszkodzony, może to prowadzić do efektu hot-spot, gdzie uszkodzony panel generuje ciepło, które może prowadzić do jego degradacji lub całkowitego zniszczenia. Diody bocznikujące działają poprzez 'bypasowanie' prądu wokół uszkodzonego panelu, co pozwala pozostałym panelom na kontynuowanie pracy i generowanie energii. Przykładowo, w typowych instalacjach, diody te są umieszczane równolegle do ogniw w module fotowoltaicznym, co pozwala na efektywne zarządzanie problemami związanymi z różnymi poziomami wydajności ogniw. Zgodnie z najlepszymi praktykami branżowymi, stosowanie diod bocznikujących zwiększa niezawodność systemów PV oraz ich ogólną wydajność, minimalizując ryzyko uszkodzeń termicznych i finansowych strat związanych z koniecznością wymiany uszkodzonych paneli.

Pytanie 37

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. brązowy
B. czarny
C. czerwony
D. niebieski
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 38

Przy jakim ciśnieniu powinien zadziałać zawór bezpieczeństwa w systemie solarnym?

A. 2 barów
B. 4 barów
C. 8 barów
D. 6 barów
Zawór bezpieczeństwa w instalacji solarnej jest kluczowym elementem zapewniającym bezpieczeństwo systemu. Ustalenie odpowiedniego ciśnienia, przy którym zawór powinien zadziałać, jest niezwykle istotne. W przypadku instalacji solarnych, wartość 6 barów jest uznawana za standardową granicę, przy której zawór bezpieczeństwa powinien otworzyć się, aby zapobiec nadmiernemu wzrostowi ciśnienia. Praktyczne zastosowanie tego rozwiązania można zaobserwować w sytuacjach, gdy ciśnienie w układzie, na przykład w wyniku niskiej temperatury lub awarii, zbliża się do tej wartości. W rzeczywistości, zawory te są projektowane zgodnie z normą PN-EN 12828, która odnosi się do projektowania i wykonania systemów grzewczych, w tym instalacji solarnych. Zastosowanie zaworu przy ciśnieniu 6 barów zapobiega ryzyku pęknięcia rur oraz uszkodzenia kolektorów słonecznych, co z kolei przekłada się na długowieczność całego systemu oraz zwiększa bezpieczeństwo użytkowania.

Pytanie 39

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 2
B. 3
C. 7
D. 5
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 40

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. W dokumentacji techniczno-ruchowej
B. Na fakturze za wykonaną pracę
C. W instrukcji serwisowej
D. W karcie gwarancyjnej
Karta gwarancyjna to naprawdę ważny dokument. Powinna zawierać wszystkie istotne informacje o tym, co robił monter w trakcie serwisu w czasie gwarancji. Zgodnie z branżowymi standardami oraz normami ISO, ta dokumentacja służy jako dowód, że serwis został wykonany, co chroni prawa konsumenta. W karcie gwarancyjnej zapisujemy nie tylko daty serwisu, ale też dokładny opis prac, jakie były wykonane, jak i uwagi o stanie technicznym sprzętu oraz sugestie na przyszłość. Na przykład, jeśli monter zauważył jakieś problemy z pompą ciepła, to powinien to dokładnie opisać w karcie, żeby w razie czego ułatwić przyszłe naprawy. No i w branży HVAC naprawdę ważne jest, żeby wszystkie działania serwisowe były dokładnie udokumentowane. Robi to nie tylko dla ochrony praw konsumentów, ale też podnosi odpowiedzialność wykonawcy.