Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 30 marca 2025 15:13
  • Data zakończenia: 30 marca 2025 15:38

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie polecenie w systemie Windows powinno być użyte do obserwacji listy bieżących połączeń karty sieciowej w komputerze?

A. Ipconfig
B. Ping
C. Telnet
D. Netstat
Polecenie 'Netstat' (z ang. network statistics) jest narzędziem w systemie Windows, które pozwala na monitorowanie aktywnych połączeń sieciowych oraz portów używanych przez różne aplikacje. Dzięki 'Netstat' użytkownicy mogą uzyskać szczegółowe informacje na temat aktualnych połączeń, w tym adresów IP, portów oraz stanów połączeń (np. 'ESTABLISHED', 'LISTENING'). To narzędzie jest szczególnie przydatne w analizie ruchu sieciowego oraz w identyfikacji potencjalnych problemów z połączeniem, a także w zabezpieczaniu systemu przed nieautoryzowanym dostępem. Praktycznie, administratorzy sieci mogą używać 'Netstat' do monitorowania, które aplikacje komunikują się z siecią i jakie porty są otwarte, co jest kluczowe w zarządzaniu bezpieczeństwem. W kontekście standardów branżowych, regularne monitorowanie połączeń z wykorzystaniem 'Netstat' może być częścią polityki bezpieczeństwa oraz audytów sieciowych. Warto również zaznaczyć, że 'Netstat' ma różne parametry, które pozwalają na dostosowanie wyjścia do potrzeb użytkownika, na przykład 'netstat -a' wyświetli wszystkie połączenia i porty nasłuchujące, co jest niezwykle informatywne.

Pytanie 2

W której fizycznej topologii awaria jednego komputera powoduje przerwanie pracy całej sieci?

A. Magistrali
B. Pierścienia
C. Siatki
D. Drzewa
Fizyczna topologia pierścienia charakteryzuje się tym, że urządzenia sieciowe są połączone w zamknięty obwód, co oznacza, że dane przesyłane są w jednym kierunku z jednego węzła do drugiego. Kluczowym aspektem tej topologii jest to, że każde urządzenie jest bezpośrednio połączone z dwoma innymi, tworząc zamknięty krąg. W przypadku uszkodzenia jednego z węzłów, sygnał nie ma możliwości dotarcia do pozostałych urządzeń, co prowadzi do zatrzymania całej sieci. W praktyce, aby zminimalizować ryzyko awarii, w systemach opartych na topologii pierścienia często stosuje się mechanizmy redundancji, takie jak podwójny pierścień lub inne technologie, które pozwalają na zrealizowanie alternatywnych tras przesyłania danych. Przykładowo, w sieciach token ring stosuje się token do zarządzania dostępem do medium, co dodatkowo zwiększa niezawodność tej topologii. Topologia pierścienia może być korzystna w zastosowaniach, gdzie stabilność i przewidywalność komunikacji są kluczowe, np. w sieciach lokalnych dla dużych organizacji.

Pytanie 3

W topologii gwiazdy każde urządzenie działające w sieci jest

A. spojone ze sobą przewodami, tworząc zamknięty pierścień.
B. połączone z jedną magistralą.
C. podłączone do węzła sieci.
D. skonfigurowane z dwoma sąsiadującymi komputerami
Topologia gwiazdy to jeden z najpopularniejszych układów sieciowych, w którym wszystkie urządzenia (komputery, drukarki, itp.) są podłączone do centralnego węzła, którym najczęściej jest switch lub hub. Dzięki temu, w przypadku awarii jednego z urządzeń, pozostałe nadal mogą funkcjonować. Taka architektura ułatwia również zarządzanie siecią, ponieważ wszelkie operacje, takie jak dodawanie nowych urządzeń czy diagnozowanie problemów, można przeprowadzać w centralnym punkcie. Przykładem zastosowania topologii gwiazdy jest typowa sieć lokalna (LAN) w biurach, gdzie wiele komputerów łączy się z jednym centralnym przełącznikiem, co zapewnia wysoką wydajność oraz minimalizuje ryzyko kolizji danych. Topologia ta jest również zgodna z najlepszymi praktykami branżowymi, które zalecają użycie centralnych urządzeń do zarządzania ruchem w sieci, co zwiększa jej efektywność i bezpieczeństwo.

Pytanie 4

W sieciach komputerowych miarą prędkości przesyłu danych jest

A. dpi
B. ips
C. bps
D. byte
Odpowiedź 'bps' (bits per second) jest poprawna, ponieważ jest to jednostka używana do pomiaru szybkości transmisji danych w sieciach komputerowych. W kontekście sieci komputerowych, szybkość ta odnosi się do liczby bitów, które są przesyłane w ciągu jednej sekundy. Jest to kluczowy parametr, który pozwala ocenić wydajność sieci, a także porównywać różne technologie transmisji, takie jak Ethernet, Wi-Fi czy łączność mobilna. Na przykład, szybkie połączenia optyczne mogą osiągać prędkości rzędu kilku gigabitów na sekundę (Gbps), co jest istotne w zastosowaniach wymagających dużej przepustowości, jak strumieniowanie wideo w wysokiej rozdzielczości czy przesyłanie dużych plików. Warto także zaznaczyć, że standardy sieciowe, takie jak IEEE 802.3 dla Ethernetu, definiują minimalne i maksymalne wartości dla bps, co pozwala na standaryzację i zapewnienie interoperacyjności między urządzeniami.

Pytanie 5

Na ilustracji, strzałka wskazuje na złącze interfejsu

Ilustracja do pytania
A. COM
B. FDD
C. LPT
D. IDE
Gniazdo LPT to taki port równoległy, który kiedyś był mega popularny do podłączania drukarek i innych urządzeń. Jego wygląd jest dość charakterystyczny, bo jest szeroki i ma sporo pinów, co umożliwia przesyłanie danych równocześnie w kilku bitach. Dlatego nazywamy go równoległym. W przeszłości używano go nie tylko do drukarek, ale też do programowania różnych urządzeń elektronicznych i komunikacji z urządzeniami pomiarowymi. Dziś porty LPT są już rzadziej spotykane, zwłaszcza że USB wzięło ich miejsce, oferując szybszy transfer i większą wszechstronność. Nadal jednak można je znaleźć w niektórych specjalistycznych zastosowaniach, zwłaszcza w przemyśle czy laboratoriach. Warto rozumieć, jak to wszystko działa, bo jest to przydatne dla osób zajmujących się starszymi urządzeniami czy systemami, gdzie LPT wciąż odgrywa jakąś rolę. Dobrym pomysłem jest też znać standardy IEEE 1284, które dotyczą portów równoległych, bo mogą pomóc w pracy z tą technologią.

Pytanie 6

Aby zminimalizować wpływ zakłóceń elektromagnetycznych na przesyłany sygnał w projektowanej sieci komputerowej, co należy zastosować?

A. światłowód
B. gruby przewód koncentryczny
C. cienki przewód koncentryczny
D. ekranowaną skrętkę
Światłowody są najlepszym rozwiązaniem dla przesyłania sygnałów w sieciach komputerowych, gdyż zapewniają minimalny wpływ zakłóceń elektromagnetycznych. Działają na zasadzie przesyłania impulsów świetlnych przez włókna optyczne, co unika problemów związanych z elektromagnetycznym zakłóceniem, które mogą występować w tradycyjnych kablach miedzianych. W porównaniu do ekranowanej skrętki czy przewodów koncentrycznych, światłowody oferują znacznie większą szerokość pasma oraz dłuższe dystanse przesyłania bez utraty jakości sygnału. Przykładem zastosowania światłowodów są sieci lokalne (LAN) w dużych biurowcach oraz połączenia między budynkami, gdzie kluczowe są szybkość transferu danych i odporność na zakłócenia. Dodatkowo, zgodnie z normami ISO/IEC 11801, instalacje światłowodowe są uważane za standard w nowoczesnych infrastrukturach telekomunikacyjnych, co czyni je przyszłościowym wyborem dla rozwoju sieci komputerowych.

Pytanie 7

Zjawisko przekazywania tokena (ang. token) występuje w sieci o fizycznej strukturze

A. pierścienia
B. siatki
C. gwiazdy
D. magistrali
Przekazywanie żetonu w sieci o strukturze fizycznej pierścienia jest kluczowym mechanizmem działania tej topologii. W topologii pierścienia każdy węzeł (urządzenie) jest połączony z dwoma innymi, tworząc zamknięty cykl. W takim układzie dane są przesyłane w formie żetonu, który krąży w sieci. Gdy węzeł otrzymuje żeton, może go wykorzystać do przesłania swoich danych, a następnie przekazuje go dalej. Przykładami zastosowania tej topologii są starsze sieci Token Ring, które były powszechnie używane w biurach. Taki system ogranicza kolizje, ponieważ tylko jeden węzeł ma prawo do nadawania w danym momencie, co zwiększa efektywność transmisji. W praktyce, aby tak zbudowana sieć działała sprawnie, kluczowe jest przestrzeganie zasad dotyczących synchronizacji czasowej oraz zarządzania pasmem, co jest zgodne z najlepszymi praktykami w projektowaniu sieci komputerowych. Również standardy takie jak ISO/IEC 8802-3 określają zasady działania w takiej strukturze, co potwierdza jej zastosowanie w profesjonalnych środowiskach.

Pytanie 8

Jaki typ plików powinien być stworzony w systemie operacyjnym, aby zautomatyzować najczęściej wykonywane zadania, takie jak kopiowanie, utworzenie pliku lub folderu?

A. Plik wsadowy
B. Plik inicjujący
C. Plik konfiguracyjny
D. Plik systemowy
Pliki wsadowe, czyli takie skrypty, to super narzędzie do ogarniania różnych rzeczy w systemie. Dzięki nim można ustawić sekwencje poleceń, które będą działały same, co bardzo przyspiesza robotę i zmniejsza ryzyko, że coś spaprasz. Na przykład, można użyć ich do automatycznego robienia kopii zapasowych plików. Skrypt potrafi w jednym kroku przenieść dane z jednego folderu do drugiego, co naprawdę oszczędza czas i eliminuje nudne ręczne zarządzanie danymi. W branży sporo osób korzysta z plików wsadowych w Windows (np. .bat) czy w Unix/Linux (skrypty shell), bo to naprawdę efektywne do zarządzania różnymi zadaniami. A jakby co, to te skrypty można łatwo przerabiać i dostosowywać, więc świetnie sprawdzają się w różnych warunkach.

Pytanie 9

Według normy PN-EN 50174 maksymalna długość trasy kabla poziomego kategorii 6 pomiędzy punktem abonenckim a punktem rozdzielczym w panelu krosowym wynosi

A. 110 m
B. 90 m
C. 150 m
D. 100 m
Odpowiedź 90 m jest zgodna z normą PN-EN 50174, która określa zasady instalacji kabli strukturalnych, w tym maksymalne długości kabli poziomych. W przypadku kabla kategorii 6, maksymalna długość przebiegu od punktu abonenckiego do punktu dystrybucyjnego wynosi właśnie 90 metrów. Przykładowo, w budynkach biurowych, gdzie implementowane są systemy komputerowe, ważne jest przestrzeganie tych norm, aby zapewnić optymalną jakość sygnału oraz minimalizować straty danych. Zbyt długie przebiegi kabli mogą prowadzić do degradacji sygnału, co wpływa na prędkość i jakość transmisji. Dobrą praktyką jest również regularne monitorowanie długości i jakości instalacji kablowej, aby uniknąć problemów związanych z wydajnością sieci. Dodatkowo, warto zwrócić uwagę na konieczność stosowania odpowiednich terminacji oraz złączy, aby zapewnić zgodność z wymaganiami normatywnymi i osiągnąć najlepsze rezultaty w zakresie wydajności sieci.

Pytanie 10

Jakiego systemu operacyjnego powinien nabyć użytkownik, aby zmodernizowany komputer miał możliwość uruchamiania gier obsługujących DirectX12?

A. Windows 10
B. Windows 8.1
C. Windows XP
D. Windows 8
Windows 10 jest systemem operacyjnym, który w pełni wspiera DirectX 12, co czyni go idealnym wyborem dla graczy poszukujących najnowszych technologii w grach komputerowych. DirectX 12 wprowadza szereg zaawansowanych funkcji, takich jak lepsza obsługa wielordzeniowych procesorów, co pozwala na bardziej efektywne wykorzystanie zasobów sprzętowych. Dzięki temu, gry mogą działać w wyższej jakości z bardziej szczegółową grafiką oraz płynniejszymi animacjami. W praktyce, korzystanie z Windows 10 umożliwia graczom dostęp do najnowszych tytułów, które wymagają tego standardu, a także do poprawionych wersji starszych gier, które stały się bardziej optymalne po aktualizacjach. Warto również zaznaczyć, że Windows 10 regularnie otrzymuje aktualizacje, co zapewnia wsparcie dla nowych urządzeń i technologii, a także poprawia bezpieczeństwo oraz stabilność. Dla każdego nowoczesnego gracza, wybór Windows 10 jest więc podstawą zapewniającą długoterminowe wsparcie i rozwój w obszarze gier komputerowych.

Pytanie 11

Za co odpowiada protokół DNS?

A. określenie adresu MAC na podstawie adresu IP
B. przekazywanie zaszyfrowanej wiadomości e-mail do serwera pocztowego
C. konwertowanie nazw mnemonicznych na adresy IP
D. ustalanie wektora ścieżki między różnymi autonomicznymi sieciami
Protokół DNS (Domain Name System) jest kluczowym elementem infrastruktury internetu, odpowiadającym za tłumaczenie nazw mnemonicznych, takich jak www.example.com, na adresy IP, które są używane do identyfikacji urządzeń w sieci. Proces ten umożliwia użytkownikom korzystanie z przyjaznych dla oka nazw, zamiast pamiętania skomplikowanych ciągów cyfr. Gdy użytkownik wpisuje adres URL w przeglądarkę, system operacyjny najpierw sprawdza lokalną pamięć podręczną DNS, a jeśli nie znajdzie odpowiedniej informacji, wysyła zapytanie do serwera DNS. Serwer ten przeszukuje swoją bazę danych i zwraca odpowiedni adres IP. Na przykład, gdy wpiszesz www.google.com, DNS tłumaczy tę nazwę na adres IP 172.217.0.46, co umożliwia przeglądarki połączenie się z serwerem Google. Zastosowanie protokołu DNS jest nie tylko praktyczne, ale również zabezpieczone poprzez implementacje takie jak DNSSEC (Domain Name System Security Extensions), które chronią przed atakami typu spoofing. Zrozumienie działania DNS jest fundamentalne dla każdego specjalisty IT, ponieważ pozwala na efektywne zarządzanie sieciami oraz zapewnienie ich bezpieczeństwa.

Pytanie 12

Podczas realizacji projektu sieci komputerowej, pierwszym krokiem powinno być

A. przygotowanie dokumentacji powykonawczej
B. opracowanie kosztorysu
C. wybranie urządzeń sieciowych
D. przeprowadzenie analizy biznesowej
Przeprowadzenie analizy biznesowej jest kluczowym krokiem w procesie tworzenia projektu sieci komputerowej. To etap, w którym identyfikowane są wymagania organizacji, cele, oraz problematyka, którą sieć ma rozwiązać. W ramach analizy biznesowej należy zrozumieć, jakie usługi i aplikacje będą wykorzystywane w sieci, jakie są oczekiwania użytkowników oraz jakie są budżet i zasoby dostępne na realizację projektu. Przykładem może być firma, która planuje wprowadzenie rozwiązań zdalnego dostępu dla pracowników. W tym przypadku analiza biznesowa pomoże określić, jakie protokoły bezpieczeństwa będą potrzebne oraz jak dużą przepustowość i niezawodność musi zapewnić sieć. Dobre praktyki w branży, takie jak metodyka ITIL czy TOGAF, podkreślają znaczenie przemyślanej analizy na początku projektowania, co prowadzi do bardziej efektywnego i dostosowanego do potrzeb rozwiązania.

Pytanie 13

Na zdjęciu widać kartę

Ilustracja do pytania
A. telewizyjną z interfejsem ISA
B. sieciową z interfejsem ISA
C. dźwiękową z interfejsem PCI
D. telewizyjną z interfejsem PCI
Karty ISA i PCI są stosowane do łączenia urządzeń peryferyjnych z płytą główną komputera, ale różnią się przepustowością danych i nowoczesnością. Złącze ISA (Industry Standard Architecture) było używane w starszych komputerach i charakteryzuje się niższą przepustowością w porównaniu do PCI. Współczesne komputery rzadko są wyposażane w sloty ISA, ponieważ zostały zastąpione przez bardziej wydajne i szybsze złącza PCI i PCI Express. Karty sieciowe, dźwiękowe i telewizyjne mogą być podłączane za pomocą różnych interfejsów, ale wybór odpowiedniego złącza zależy od specyfikacji technicznej oraz wymagań wydajnościowych konkretnych aplikacji. Karta sieciowa ze złączem ISA jest dzisiaj już przestarzała, a jej użycie ograniczyłoby wydajność nowoczesnych sieci komputerowych. Podobnie, karta dźwiękowa korzystająca ze złącza PCI jest bardziej uniwersalna, ale nie pełni funkcji telewizyjnej. Karta telewizyjna ze złączem ISA, choć teoretycznie możliwa, nie zapewniłaby odpowiedniej jakości transmisji obrazu w porównaniu do PCI. Zrozumienie różnic między tymi standardami połączeń oraz odpowiednie dobranie sprzętu do konkretnych potrzeb jest kluczowe w planowaniu rozbudowy komputera. Wybierając karty peryferyjne, warto kierować się nowoczesnymi standardami, które oferują lepszą wydajność i kompatybilność z nowymi systemami operacyjnymi, co jest zgodne z zaleceniami branżowymi dotyczącymi optymalnego wykorzystania zasobów sprzętowych.

Pytanie 14

W dokumentacji technicznej procesora Intel Xeon Processor E3-1220, producent przedstawia następujące dane: # rdzeni: 4 # wątków: 4 Częstotliwość zegara: 3.1 GHz Maksymalna częstotliwość Turbo: 3.4 GHz Intel Smart Cache: 8 MB DMI: 5 GT/s Zestaw instrukcji: 64 bit Rozszerzenia zestawu instrukcji: SSE4.1/4.2, AVX Opcje wbudowane: Nie Litografia: 32 nm Maksymalne TDP: 80 W. Co to oznacza dla Menedżera zadań systemu Windows, jeśli chodzi o historię użycia?

# of Cores:4
# of Threads:4
Clock Speed:3.1 GHz
Max Turbo Frequency:3.4 GHz
Intel® Smart Cache:8 MB
DMI:5 GT/s
Instruction Set:64-bit
Instruction Set Extensions:SSE4.1/4.2, AVX
Embedded Options Available:No
Lithography:32 nm
Max TDP:80 W

A. 2 rdzenie
B. 16 rdzeni
C. 4 rdzenie
D. 8 rdzeni
Prawidłowa odpowiedź to 4 procesory ponieważ procesor Intel Xeon E3-1220 składa się z 4 fizycznych rdzeni co oznacza że w Menedżerze zadań systemu Windows zobaczymy historię użycia dla 4 procesorów. Każdy rdzeń obsługuje pojedynczy wątek co oznacza że technologia Intel Hyper-Threading nie jest tutaj zastosowana co w przypadku jej użycia mogłoby prowadzić do podwojenia liczby wątków. W zadaniach wymagających dużej mocy obliczeniowej takich jak hostowanie serwerów czy przetwarzanie danych duża liczba rdzeni jest korzystna ale liczba wątków jest ograniczona do liczby rdzeni ze względu na brak wspomnianej technologii. Procesory z większą ilością rdzeni i wątków są bardziej efektywne w rozdzielaniu pracy na części co jest kluczowe w środowiskach wymagających dużej wydajności obliczeniowej. Dla porównania procesory z technologią Hyper-Threading mogą zwiększyć liczbę wątków co z kolei może być korzystne w aplikacjach intensywnie obciążających procesor. W kontekście standardów branżowych optymalizacja liczby rdzeni do zadań jest kluczowa dla efektywnego wykorzystania zasobów sprzętowych.

Pytanie 15

Aby przeprowadzić instalację systemu operacyjnego z rodziny Windows na stacjach roboczych, konieczne jest dodanie na serwerze usług

A. pulpitu zdalnego
B. plików
C. wdrażania systemu Windows
D. terminalowych
Aby przeprowadzić instalację sieciową systemów operacyjnych Windows na stacjach roboczych, kluczowym elementem jest posiadanie na serwerze usługi wdrażania systemu Windows. Usługa ta umożliwia zdalne instalowanie systemów operacyjnych na wielu komputerach jednocześnie, co znacznie upraszcza proces zarządzania i aktualizacji oprogramowania w dużych środowiskach IT. Przykładem zastosowania może być środowisko korporacyjne, w którym administratorzy IT mogą przygotować obraz systemu operacyjnego oraz aplikacji, a następnie wdrożyć go na stacjach roboczych pracowników w godzinach nocnych, minimalizując zakłócenia w pracy. Zgodnie z dobrymi praktykami branżowymi, stosowanie rozwiązań do wdrażania systemów operacyjnych pozwala na centralizację zarządzania oraz automatyzację procesów, co zwiększa efektywność operacyjną. Usługi te wykorzystują protokoły takie jak PXE (Preboot Execution Environment) oraz WDS (Windows Deployment Services), które są standardami w branży, umożliwiającymi szybkie i bezpieczne wdrożenie systemów operacyjnych w różnych konfiguracjach sprzętowych.

Pytanie 16

Który z poniższych adresów należy do klasy B?

A. 224.0.0.1
B. 10.0.0.1
C. 191.168.0.1
D. 192.168.0.1
Adres 191.168.0.1 należy do klasy B, która obejmuje zakres adresów od 128.0.0.0 do 191.255.255.255. Klasa B jest przeznaczona do średniej wielkości sieci, które mogą potrzebować od 256 do 65,534 adresów IP. Przykładowo, organizacje średniej wielkości, takie jak uniwersytety czy duże firmy, często korzystają z adresacji klasy B do zarządzania swoimi zasobami sieciowymi. Adresy klasy B można łatwo podzielić na podsieci przy użyciu maski podsieci, co pozwala na efektywne zarządzanie ruchem i zasobami w sieci. Standardy takie jak CIDR (Classless Inter-Domain Routing) umożliwiają bardziej elastyczne podejście do alokacji adresów IP, co zwiększa wydajność wykorzystania dostępnych adresów. Warto również pamiętać, że adresy klasy B są rozpoznawane przez ich pierwsze bity - w tym przypadku 10 bity, co potwierdza, że 191.168.0.1 to adres klasy B, a jego zastosowanie w nowoczesnych sieciach IT jest zgodne z aktualnymi praktykami branżowymi.

Pytanie 17

Jak nazywa się protokół, który pozwala na ściąganie wiadomości e-mail z serwera?

A. FTP
B. POP3
C. DNS
D. SMTP
Protokół POP3 (Post Office Protocol version 3) jest standardem komunikacyjnym, który umożliwia pobieranie wiadomości e-mail z serwera pocztowego na lokalny komputer użytkownika. Używając POP3, użytkownicy mogą pobierać swoje wiadomości, które następnie są przechowywane lokalnie, co sprawia, że dostęp do nich jest możliwy także bez połączenia z internetem. Protokół ten działa w trybie 'pobierania', co oznacza, że po ściągnięciu wiadomości z serwera, są one zazwyczaj usuwane z serwera, co zmniejsza jego obciążenie. Praktyczna aplikacja POP3 jest szczególnie przydatna w przypadku użytkowników, którzy korzystają z jednego urządzenia do przeglądania poczty i nie potrzebują synchronizacji wiadomości między różnymi urządzeniami. W kontekście branżowych standardów, POP3 jest często używany w połączeniu z protokołami zabezpieczeń, takimi jak SSL/TLS, aby zapewnić bezpieczeństwo przesyłanych danych. Zrozumienie działania POP3 i jego zastosowania jest kluczowe dla każdej osoby zajmującej się administracją systemów pocztowych lub dla użytkowników, którzy pragną efektywnie zarządzać swoją korespondencją.

Pytanie 18

Jakie urządzenie wskazujące działa na podstawie zmian pojemności elektrycznej?

A. joystick
B. wskaźnik
C. touchpad
D. trackpoint
Touchpad to taki fajny wynalazek, który działa na zasadzie wykrywania zmian w pojemności elektrycznej. Kiedy dotykasz jego powierzchni, to w zasadzie dzięki temu pomiarowi można precyzyjnie określić, gdzie go dotykasz. To świetne rozwiązanie, zwłaszcza w laptopach i tabletach, gdzie miejsca na tradycyjne urządzenia wskazujące jest mało. Możesz zobaczyć touchpady w różnych sprzętach, gdzie służą np. do sterowania grafiką czy po prostu do przeglądania systemu. W branży komputerowej touchpady stały się standardem, bo są wygodne i proste w użyciu. Co więcej, nowoczesne touchpady często obsługują gesty, co zwiększa ich funkcjonalność. Z mojego doświadczenia, warto znać te różnice, bo pomaga to w lepszym korzystaniu z urządzeń.

Pytanie 19

Na rysunku widoczny jest symbol graficzny

Ilustracja do pytania
A. przełącznika
B. rutera
C. punktu dostępowego
D. mostu
Symbol graficzny przedstawiony na rysunku jest typowym oznaczeniem dla przełącznika sieciowego znanego również jako switch. Przełączniki są kluczowymi elementami infrastruktury sieciowej umożliwiającymi efektywne przesyłanie danych pomiędzy różnymi urządzeniami w sieci lokalnej LAN. Działają na warstwie 2 modelu OSI co oznacza że zarządzają przesyłaniem ramek danych na podstawie adresów MAC. W przeciwieństwie do koncentratorów które przesyłają ruch do wszystkich portów przełączniki kierują dane tylko do docelowego portu co znacznie zwiększa wydajność i bezpieczeństwo sieci. Nowoczesne przełączniki oferują funkcje takie jak VLAN-y Quality of Service czy agregacja łączy co pozwala na lepsze zarządzanie ruchem sieciowym i dostosowanie infrastruktury do potrzeb użytkowników. W praktyce przełączniki pozwalają na budowę skalowalnych i elastycznych sieci gdzie przepustowość i niezawodność są kluczowe. Ich zastosowanie jest powszechne nie tylko w środowiskach biurowych ale również w centrach danych gdzie są podstawą dla zaawansowanych architektur sieciowych.

Pytanie 20

W norma PN-EN 50174 brak jest wskazówek odnoszących się do

A. realizacji instalacji wewnątrz obiektów
B. zapewnienia jakości instalacji kablowych
C. realizacji instalacji na zewnątrz obiektów
D. uziemień instalacji urządzeń przetwarzania danych
Norma PN-EN 50174, która dotyczy instalacji systemów okablowania strukturalnego, nie wnosi wytycznych dotyczących zapewnienia jakości instalacji okablowania. Użytkownicy mogą być mylnie przekonani, że jakość instalacji można ocenić na podstawie samej normy, jednak w rzeczywistości normy te nie obejmują kryteriów jakości, które są kluczowe dla prawidłowego funkcjonowania systemów. Jakość instalacji powinna być zapewniona poprzez stosowanie odpowiednich procedur testowych oraz standardów jakości, takich jak ISO 9001, które koncentrują się na systemach zarządzania jakością. W odniesieniu do wykonania instalacji wewnątrz budynków, norma PN-EN 50174 oferuje wskazówki, lecz nie jest jedynym dokumentem, na którym można się opierać. Z kolei instalacje na zewnątrz budynków również wymagają szczegółowych wytycznych, które nie są zawarte wyłącznie w tej normie. Każda instalacja musi spełniać określone normy dotyczące odporności na warunki atmosferyczne oraz ochrony przed uszkodzeniami mechanicznymi, co należy łączyć z innymi przepisami czy normami branżowymi. Stąd wynika, że ignorowanie aspektów jakości oraz specyfikacji dla instalacji zewnętrznych prowadzi do błędnych wniosków, przyczyniających się do nieprawidłowej eksploatacji systemów okablowania.

Pytanie 21

Kto jest odpowiedzialny za alokację czasu procesora dla konkretnych zadań?

A. Cache procesora
B. System operacyjny
C. Pamięć RAM
D. Chipset
System operacyjny jest kluczowym oprogramowaniem, które zarządza zasobami sprzętowymi komputera, w tym przydzielaniem czasu procesora do różnych zadań. Jego głównym zadaniem jest zapewnienie efektywnej i sprawnej komunikacji między sprzętem a aplikacjami, co obejmuje zarządzanie procesami, pamięcią i urządzeniami wejściowymi oraz wyjściowymi. Zarządzanie czasem procesora, nazywane również planowaniem procesów, odbywa się poprzez różne algorytmy, takie jak planowanie priorytetowe czy równoważenie obciążenia. Na przykład, w systemach operacyjnych Windows i Linux stosowane są różne strategie planowania, które dostosowują się do wymagań aplikacji, co pozwala na optymalne wykorzystanie dostępnych zasobów. Oprócz tego, systemy operacyjne implementują mechanizmy, które pozwalają na przełączanie kontekstu pomiędzy różnymi procesami, dzięki czemu użytkownik może jednocześnie uruchamiać wiele aplikacji. Dobrą praktyką w zarządzaniu procesami jest minimalizowanie czasu, w którym CPU jest nieaktywny, co poprawia wydajność systemu.

Pytanie 22

/dev/sda: Czas odczytu z pamięci podręcznej: 18100 MB w 2.00 sekundy = 9056.95 MB/sek. Przedstawiony wynik wykonania polecenia systemu Linux jest używany do diagnostyki

A. pamięci operacyjnej
B. dysku twardego
C. karty sieciowej
D. układu graficznego
Odpowiedź dotycząca diagnostyki dysku twardego jest prawidłowa, ponieważ wynik polecenia '/dev/sda: Timing cached reads' odnosi się do wydajności operacji odczytu na poziomie systemu plików. Wartość 18100 MB w 2 sekundy, co odpowiada 9056.95 MB/s, jest wskaźnikiem szybkości, z jaką system operacyjny może odczytać dane z pamięci podręcznej dysku twardego. Tego typu informacje są istotne dla administratorów systemów, którzy chcą monitorować i optymalizować wydajność pamięci masowej. W kontekście praktycznym, można wykorzystać tę diagnozę do identyfikacji problemów z wolnym dostępem do danych, co może wpływać na ogólną wydajność serwerów czy komputerów. Warto również zauważyć, że regularne monitorowanie tych parametrów oraz ich analiza w kontekście obciążenia systemu są zgodne z dobrą praktyką w zarządzaniu infrastrukturą IT.

Pytanie 23

Aby określić długość prefiksu w adresie IPv4, należy ustalić

A. liczbę bitów o wartości 0 w pierwszych dwóch oktetach adresu IPv4
B. liczbę bitów o wartości 1 w części hosta adresu IPv4
C. liczbę początkowych bitów o wartości 1 w masce adresu IPv4
D. liczbę bitów o wartości 0 w trzech pierwszych oktetach adresu IPv4
Poprawna odpowiedź opiera się na zasadach klasyfikacji adresów IPv4 oraz maski podsieci. Długość prefiksu adresu sieci w IPv4 określa się poprzez liczenie liczby początkowych bitów mających wartość 1 w masce adresu. Maska podsieci dzieli adres IP na dwie części: część sieciową i część hosta. Przykładowo, dla adresu IP 192.168.1.1 z maską 255.255.255.0, maska w postaci binarnej to 11111111.11111111.11111111.00000000. W tym przypadku liczba początkowych bitów 1 wynosi 24, co oznacza, że długość prefiksu wynosi /24. Te informacje są kluczowe dla routingu oraz segmentacji sieci, ponieważ dobrze skonfigurowane maski wpływają na efektywność komunikacji w sieci. W praktyce, gdy administratorzy sieci definiują podsieci, muszą precyzyjnie określić zakresy adresowe, co jest realizowane właśnie poprzez maski i ich prefiksy. Ponadto, zgodnie z zaleceniami IETF, prawidłowe przypisanie adresów IP i masek jest istotne dla zapewnienia optymalnej wydajności oraz bezpieczeństwa w sieciach komputerowych.

Pytanie 24

Podaj adres rozgłoszeniowy sieci, do której przynależy host o adresie 88.89.90.91/6?

A. 91.255.255.255
B. 91.89.255.255
C. 88.89.255.255
D. 88.255.255.255
Obliczenie adresu rozgłoszeniowego dla hosta z adresem 88.89.90.91/6 to niezła sztuka, ale spokojnie, damy radę! Zaczynamy od maski /6, co znaczy, że mamy 6 bitów, które identyfikują sieć, a pozostałe 26 to adresy hostów. Adres IP, 88.89.90.91 w postaci binarnej wygląda tak: 01011000.01011001.01011010.01011000.00000000. Przy tej masce, wszystkie adresy zaczynają się od 01011000. I co z tego mamy? Że adresy w sieci mieszczą się w przedziale od 88.0.0.0 do 91.255.255.255. A adres rozgłoszeniowy? To ostatni adres w tej sieci, czyli 91.255.255.255. Wiedza o rozgłoszeniowych adresach jest ważna, bo pomaga w zarządzaniu sieciami i ułatwia przesyłanie danych do wszystkich hostów. Przydaje się to m.in. przy konfigurowaniu routerów czy diagnozowaniu problemów z komunikacją.

Pytanie 25

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. przesyłania wiadomości e-mail
B. wysyłania wiadomości na forum dyskusyjne
C. transmisji głosu w sieci
D. przeprowadzania rozmów za pomocą interfejsu tekstowego
Internet Relay Chat (IRC) to protokół, który umożliwia użytkownikom prowadzenie rozmów w czasie rzeczywistym za pomocą tekstowych wiadomości. W odróżnieniu od innych form komunikacji, takich jak e-mail czy transmisja głosu, IRC opiera się na architekturze klient-serwer, gdzie użytkownicy łączą się z serwerem IRC, a następnie mogą uczestniczyć w kanałach tematyką, które ich interesują. Praktycznym zastosowaniem IRC jest organizowanie dyskusji na tematy techniczne, grupowych projektów programistycznych czy też wspólnych gier. Warto również zauważyć, że IRC wspiera wiele standardów, takich jak RFC 1459, które definiują jego podstawowe zasady działania. Dobre praktyki w korzystaniu z IRC obejmują przestrzeganie regulaminów kanałów, dbałość o kulturę dyskusji oraz efektywne zarządzanie dostępem do informacji, co przyczynia się do pozytywnej atmosfery w społecznościach online. IRC, mimo spadku popularności na rzecz nowoczesnych komunikatorów, wciąż jest wykorzystywany w niektórych środowiskach technicznych i gamingowych.

Pytanie 26

W kontekście adresacji IPv6, użycie podwójnego dwukropka służy do

A. wielokrotnego zastąpienia dowolnych bloków zer oddzielonych blokiem jedynek
B. wielokrotnego zastąpienia dowolnych bloków jedynek
C. jednorazowego zastąpienia jednego lub więcej kolejnych bloków składających się wyłącznie z zer
D. jednorazowego zastąpienia jednego bloku jedynek
Podwójny dwukropek (::) w adresacji IPv6 jest specjalnym skrótem, który pozwala na uproszczenie i skrócenie notacji adresów zawierających sekwencje zer. Jego zastosowanie ogranicza się do jednorazowego zastępowania jednego lub więcej bloków złożonych wyłącznie z zer, co ma na celu zwiększenie czytelności adresów. Na przykład, adres IPv6 2001:0db8:0000:0000:0000:0000:0000:0001 może być zapisany jako 2001:db8::1, gdzie "::" zastępuje pięć bloków zer. Zgodnie z dokumentem RFC 5952, który opisuje najlepsze praktyki dotyczące reprezentacji adresów IPv6, stosowanie podwójnego dwukropka ma na celu uproszczenie zapisu, jednak powinno być stosowane ostrożnie, aby uniknąć niejasności. Zrozumienie tej zasady jest kluczowe dla inżynierów sieciowych, którzy pracują z IPv6, ponieważ umożliwia im efektywne zarządzanie i konfigurację adresów w skomplikowanych środowiskach sieciowych."

Pytanie 27

Aby zweryfikować połączenia kabla U/UTP Cat. 5e w systemie okablowania strukturalnego, jakiego urządzenia należy użyć?

A. analizatora protokołów sieciowych
B. reflektometru optycznego OTDR
C. woltomierza
D. testera okablowania
Tester okablowania to narzędzie służące do weryfikacji poprawności połączeń w kablach U/UTP, w tym w standardzie Cat. 5e. Umożliwia on sprawdzenie ciągłości przewodów, identyfikację uszkodzeń oraz ocenę jakości sygnału. Przykładowo, tester wykrywa błędy takie jak zgięcia, przerwy lub zwarcia, co jest kluczowe dla prawidłowego funkcjonowania sieci. W praktyce, tester okablowania jest często używany do instalacji oraz konserwacji sieci strukturalnych, co pozwala na szybkie diagnozowanie problemów i minimalizowanie przestojów. Zgodnie z normami EIA/TIA, regularne testowanie okablowania jest zalecane, aby zapewnić wysoką jakość i niezawodność instalacji. Zatem, stosowanie testera okablowania w kontekście kabla U/UTP Cat. 5e wpisuje się w najlepsze praktyki branżowe i jest niezbędne do utrzymania sprawności infrastruktury sieciowej.

Pytanie 28

W dokumentacji płyty głównej znajduje się informacja "Wsparcie dla S/PDIF Out". Co to oznacza w kontekście tej płyty głównej?

A. cyfrowe złącze sygnału wideo
B. analogowe złącze sygnału wejścia wideo
C. cyfrowe złącze sygnału audio
D. analogowe złącze sygnału wyjścia wideo
S/PDIF (Sony/Philips Digital Interface) to standard cyfrowego przesyłania sygnału audio, który umożliwia przesyłanie dźwięku o wysokiej jakości między urządzeniami audio. Wsparcie dla S/PDIF Out na płycie głównej oznacza, że można podłączyć zewnętrzne urządzenia audio, takie jak amplitunery czy zestawy głośnikowe, które obsługują ten standard. Dzięki temu użytkownicy mogą korzystać z wyższej jakości dźwięku, eliminując zakłócenia związane z przesyłem analogowym. Przykłady zastosowania obejmują podłączenie komputera do systemu kina domowego lub profesjonalnego sprzętu audio, co pozwala na pełne wykorzystanie potencjału dźwięku przestrzennego oraz wysokiej rozdzielczości audio. Warto również zauważyć, że wykorzystanie S/PDIF sprzyja zachowaniu integralności sygnału, co jest kluczowe w profesjonalnych zastosowaniach audio, gdzie jakość dźwięku jest priorytetem. W kontekście dobrych praktyk, używanie cyfrowych połączeń, takich jak S/PDIF, jest zalecane w celu zminimalizowania strat jakości na etapie przesyłania dźwięku.

Pytanie 29

Jaka usługa musi być aktywna na serwerze, aby stacja robocza mogła automatycznie otrzymywać adres IP?

A. DHCP
B. DNS
C. PROXY
D. WINS
Usługa DHCP (Dynamic Host Configuration Protocol) jest kluczowym elementem w zarządzaniu adresami IP w sieciach komputerowych. Jej głównym zadaniem jest automatyczne przydzielanie adresów IP oraz innych niezbędnych informacji konfiguracyjnych stacjom roboczym w sieci. Dzięki DHCP, urządzenia mogą uzyskiwać adresy IP bez konieczności ręcznego konfigurowania każdego z nich, co znacząco upraszcza zarządzanie dużymi sieciami. Proces ten odbywa się poprzez cztery podstawowe kroki: Discover, Offer, Request i Acknowledge. W praktyce, gdy stacja robocza łączy się z siecią, wysyła zapytanie DHCP Discover, a serwer DHCP odpowiada ofertą, która zawiera dostępny adres IP. Po akceptacji oferty przez stację roboczą, serwer przypisuje adres IP na określony czas. Przykładem zastosowania DHCP może być biuro z wieloma komputerami, gdzie administratorzy mogą łatwo zarządzać przydzielaniem adresów IP, co zminimalizuje ryzyko konfliktów adresów i uprości konfigurację.

Pytanie 30

Pierwszym krokiem koniecznym do ochrony rutera przed nieautoryzowanym dostępem do jego panelu konfiguracyjnego jest

A. zmiana nazwy loginu oraz hasła domyślnego konta administratora
B. zmiana standardowej nazwy sieci (SSID) na unikalną
C. aktywacja filtrowania adresów MAC
D. włączenie szyfrowania z zastosowaniem klucza WEP
Najważniejsze, co musisz zrobić, to zmienić domyślne hasło i login do swojego rutera. Większość urządzeń przychodzi z ustawieniami, które są znane wszystkim, więc hakerzy mogą łatwo się włamać. Dlatego dobrze jest wymyślić mocne hasło, które ma mieszankę liter, cyfr i znaków specjalnych. Moim zdaniem, warto też od czasu do czasu to hasło zmieniać, a najlepiej mieć różne hasła do różnych urządzeń. Menedżer haseł może być naprawdę pomocny w tworzeniu i przechowywaniu tych trudnych haseł. Poza tym, jeśli nie potrzebujesz zdalnego zarządzania, to lepiej to wyłączyć. Sprawdzanie logów dostępu również jest dobrym pomysłem, bo możesz wtedy zauważyć, czy ktoś próbuje się włamać. Te wszystkie kroki to podstawa bezpieczeństwa w sieci i naprawdę pomagają w ochronie przed atakami.

Pytanie 31

W systemie Linux plik posiada uprawnienia ustawione na 541. Właściciel ma możliwość pliku

A. modyfikacji.
B. odczytu, zapisu oraz wykonania.
C. jedynie wykonania.
D. odczytu i wykonania.
Odpowiedź, że właściciel może odczytać i wykonać plik, jest właściwa. Uprawnienia pliku w systemie Linux są reprezentowane w postaci liczby trójcy, gdzie każda cyfra odpowiada uprawnieniom dla właściciela, grupy i innych użytkowników. W tym przypadku liczba 541 oznacza, że właściciel ma uprawnienia do odczytu (4) i wykonania (1), ale nie ma uprawnień do zapisu (0). Uprawnienia do odczytu umożliwiają właścicielowi przeglądanie zawartości pliku, a uprawnienia do wykonania pozwalają na uruchomienie pliku, jeśli jest to skrypt lub program. W praktyce, dostęp do plików wymaga zrozumienia, jakie operacje można na nich przeprowadzać: odczyt to kluczowy aspekt, gdyż wiele aplikacji wymaga dostępu do danych, a wykonanie jest istotne w kontekście skryptów automatyzacyjnych. Przykładowo, skrypt bash może być uruchamiany przez właściciela, ale nie będzie mógł go edytować, co jest zgodne z założeniami bezpieczeństwa systemów wieloużytkowych. Dobrą praktyką jest zawsze sprawdzenie uprawnień przed próbą dostępu do pliku, co można osiągnąć za pomocą polecenia 'ls -l'.

Pytanie 32

Aby zrealizować transfer danych pomiędzy siecią w pracowni a siecią ogólnoszkolną, która ma inną adresację IP, należy zastosować

A. koncentrator
B. ruter
C. przełącznik
D. punkt dostępowy
Ruter jest urządzeniem, które pełni kluczową rolę w wymianie danych pomiędzy różnymi sieciami, szczególnie gdy te sieci mają różne adresacje IP. Ruter analizuje pakiety danych i podejmuje decyzje na podstawie informacji zawartych w nagłówkach tych pakietów. W przypadku, gdy sieci mają różne adresy IP, ruter przeprowadza proces routingu, który umożliwia przesyłanie danych z jednej sieci do drugiej. Przykładem praktycznego zastosowania rutera może być sytuacja w szkolnej infrastrukturze, gdzie ruter łączy sieć lokalną z siecią ogólnoszkolną, co pozwala uczniom na dostęp do zasobów edukacyjnych w internecie. Dodatkowo, ruter często pełni funkcję zapory sieciowej (firewall), co zwiększa bezpieczeństwo przesyłanych danych. W branży IT obowiązują standardy, takie jak RFC 791 (IP) oraz RFC 1812 (IPv4 routing), które określają zasady działania ruterów oraz ich integracji z innymi elementami sieci. Dobre praktyki obejmują również zarządzanie trasami za pomocą protokołów takich jak OSPF czy BGP, co pozwala na efektywne zarządzanie dużymi sieciami. Zrozumienie funkcji rutera jest kluczowe dla każdego, kto zajmuje się administracją sieci.

Pytanie 33

Aby umożliwić połączenie między urządzeniem mobilnym a komputerem za pomocą interfejsu Bluetooth, co należy zrobić?

A. wykonać parowanie urządzeń
B. połączyć urządzenia kablem krosowym
C. utworzyć sieć WAN dla urządzeń
D. skonfigurować urządzenie mobilne przez przeglądarkę
Parowanie urządzeń to naprawdę ważny krok, który pozwala na wygodne łączenie telefonu i komputera przez Bluetooth. Jak to działa? No, w skrócie chodzi o to, że oba urządzenia wymieniają między sobą informacje, dzięki czemu mogą się nawzajem uwierzytelnić i stworzyć bezpieczne połączenie. Zazwyczaj musisz włączyć Bluetooth na obu sprzętach i zacząć parowanie. Przykładowo, jeśli chcesz przenieść zdjęcia z telefonu na komputer, to właśnie to parowanie jest niezbędne. Jak już urządzenia się połączą, transfer plików staje się łatwy i nie potrzebujesz do tego kabli. Cały ten proces opiera się na standardach ustalonych przez Bluetooth Special Interest Group (SIG), które dbają o to, żeby było zarówno bezpiecznie, jak i sprawnie. Warto pamiętać o regularnych aktualizacjach oprogramowania i być świadomym zagrożeń, żeby chronić swoje urządzenia przed nieautoryzowanym dostępem.

Pytanie 34

Na schemacie blokowym funkcjonalny blok RAMDAC ilustruje

Ilustracja do pytania
A. przetwornik analogowo-cyfrowy z pamięcią RAM
B. pamięć RAM karty graficznej
C. pamięć ROM karty graficznej
D. przetwornik cyfrowo-analogowy z pamięcią RAM
RAMDAC jest kluczowym komponentem w kartach graficznych, który przekształca dane wideo z postaci cyfrowej na analogową. Jego główną funkcją jest obsługa konwersji sygnałów potrzebnych do wyświetlania obrazu na monitorach CRT. RAMDAC zawiera pamięć RAM, która przechowuje paletę kolorów i przetwornik cyfrowo-analogowy do generowania sygnałów wideo. Przykładem praktycznego zastosowania RAMDAC jest możliwość precyzyjnego odwzorowania kolorów dzięki zastosowaniu tablic look-up, co pozwala na dostosowanie wyjściowego sygnału do różnych standardów wyświetlania. Współczesne technologie, takie jak HDMI czy DisplayPort, zminimalizowały rolę RAMDAC, jednak jego koncepcje pozostają istotne w zrozumieniu podstaw grafiki komputerowej. Zrozumienie działania RAMDAC jest fundamentem dla inżynierów zajmujących się projektowaniem układów graficznych, a wykorzystanie standardów, jak VESA, gwarantuje kompatybilność z szeroką gamą urządzeń wyświetlających. Wiedza o RAMDAC umożliwia projektowanie systemów z zachowaniem pełnej kontroli nad jakością sygnału wideo, co jest kluczowe w zastosowaniach profesjonalnych, gdzie jakość obrazu ma zasadnicze znaczenie.

Pytanie 35

Płyta główna z gniazdem G2 będzie kompatybilna z procesorem

A. AMD Opteron
B. AMD Trinity
C. Intel Pentium 4 EE
D. Intel Core i7
Gniazdo G2, znane również jako LGA 1156, zostało zaprojektowane z myślą o wspieraniu procesorów Intel, a szczególnie serii Core i7. Procesory te charakteryzują się architekturą Nehalem lub Westmere, co zapewnia ich wysoką wydajność oraz wsparcie dla technologii Hyper-Threading i Turbo Boost. Płyta główna z gniazdem G2 może obsługiwać procesory o wysokiej wydajności, co czyni ją idealnym wyborem dla użytkowników wymagających mocy obliczeniowej, na przykład do gier, obróbki wideo czy aplikacji inżynieryjnych. Dzięki tej architekturze, system może jednocześnie obsługiwać wiele wątków, co przyspiesza wykonywanie skomplikowanych zadań. W praktyce, wybierając płytę główną z gniazdem G2 i procesor Intel Core i7, użytkownik może liczyć na stabilność i doskonałą wydajność, co jest zgodne z najlepszymi praktykami w budowie komputerów osobistych.

Pytanie 36

Sieć, w której funkcjonuje komputer o adresie IP 192.168.100.50/28, została podzielona na 4 podsieci. Jakie są poprawne adresy tych podsieci?

A. 192.168.100.48/30; 192.168.100.52/30; 192.168.100.56/30; 192.168.100.60/30
B. 192.168.100.48/29; 192.168.100.54/29; 192.168.100.56/29; 192.168.100.58/29
C. 192.168.100.48/27; 192.168.100.52/27; 192.168.100.56/27; 192.168.100.58/27
D. 192.168.100.50/28; 192.168.100.52/28; 192.168.100.56/28; 192.168.100.60/28
Odpowiedź 192.168.100.48/30; 192.168.100.52/30; 192.168.100.56/30; 192.168.100.60/30 jest poprawna, ponieważ prawidłowo dzieli sieć o adresie IP 192.168.100.48/28 na cztery podsieci. Zasadniczo, adres 192.168.100.50/28 oznacza 16 adresów IP w zakresie od 192.168.100.48 do 192.168.100.63. Użycie maski /30 w każdej z nowo utworzonych podsieci oznacza, że każda z nich ma tylko 4 adresy (2 dla hostów, 1 dla adresu sieciowego i 1 dla adresu rozgłoszeniowego). W ten sposób zyskujemy cztery podsieci: 192.168.100.48/30, 192.168.100.52/30, 192.168.100.56/30 i 192.168.100.60/30. Taka struktura jest zgodna z praktykami przydzielania adresów IPv4, które zapewniają efektywne wykorzystanie dostępnych zasobów adresowych, co jest kluczowe w projektowaniu sieci. W praktyce, ta metoda podziału podsieci jest szczególnie przydatna w małych sieciach, gdzie nie ma potrzeby posiadania większej liczby adresów IP niż to konieczne.

Pytanie 37

Która z usług na serwerze Windows umożliwi użytkownikom końcowym sieci zaprezentowanej na ilustracji dostęp do Internetu?

Ilustracja do pytania
A. Usługa LDS
B. Usługa drukowania
C. Usługa rutingu
D. Usługa udostępniania
Usługa rutingu jest kluczowym elementem umożliwiającym urządzeniom w sieci lokalnej dostęp do Internetu poprzez przekierowywanie pakietów sieciowych pomiędzy różnymi segmentami sieci. Na serwerach Windows funkcja rutingu jest realizowana poprzez rolę Routing and Remote Access Services (RRAS). Umożliwia ona nie tylko tradycyjny routing, ale także implementację funkcji takich jak NAT (Network Address Translation), co jest niezbędne w przypadku, gdy sieć lokalna korzysta z adresów IP prywatnych. Dzięki NAT, adresy IP prywatne mogą być translokowane na publiczne, co umożliwia komunikację z Internetem. W praktyce, aby skonfigurować serwer do pełnienia roli routera, należy zainstalować usługę RRAS i odpowiednio skonfigurować tablice routingu oraz reguły NAT. Dobrym przykładem zastosowania jest mała firma, gdzie serwer z zainstalowanym RRAS pozwala wszystkim komputerom w sieci lokalnej na dostęp do Internetu, jednocześnie zabezpieczając sieć poprzez kontrolowanie przepływu pakietów i filtrowanie ruchu, zgodnie z najlepszymi praktykami bezpieczeństwa sieciowego.

Pytanie 38

Zainstalowanie gniazda typu keyston w serwerowej szafie jest możliwe w

A. patchpanelu załadowanym
B. patchpanelu niezaładowanym
C. adapterze typu mosaic
D. patchpanelu FO
Wybór patchpanelu załadowanego nie jest właściwy, ponieważ gniazda keyston są projektowane właśnie do instalacji w panelach, które nie zawierają jeszcze zainstalowanych komponentów. W patchpanelu załadowanym, wszystkie miejsca są już zajęte przez moduły, co uniemożliwia dodanie nowych gniazd. Oprócz tego, nieprawidłowe jest myślenie, że gniazda keyston mogą być montowane w patchpanelach FO, które są przeznaczone wyłącznie do światłowodowych połączeń. Zastosowanie gniazd keyston w takich panelach prowadziłoby do niewłaściwego użycia zasobów i mogłoby powodować problemy z kompatybilnością. Adapter typu mosaic również nie jest odpowiednim miejscem do instalacji gniazd keyston, ponieważ jest to rozwiązanie bardziej dedykowane dla określonych interfejsów, a nie dla elastyczności w zarządzaniu połączeniami. Typowe błędy myślowe, które prowadzą do tych nieprawidłowych odpowiedzi, to brak zrozumienia funkcji i przeznaczenia różnych rodzajów patchpaneli oraz pomylenie zastosowań gniazd w kontekście różnych typów połączeń sieciowych.

Pytanie 39

Po włączeniu komputera wyświetlił się komunikat "Non-system disk or disk error. Replace and strike any key when ready". Może to być spowodowane

A. dyskietką umieszczoną w napędzie
B. brakiem pliku NTLDR
C. skasowaniem BIOS-u komputera
D. uszkodzonym kontrolerem DMA
Prawidłowa odpowiedź dotycząca komunikatu "Non-system disk or disk error. Replace and strike any key when ready" związana jest z obecnością dyskietki w napędzie. Komunikat ten oznacza, że komputer nie może znaleźć systemu operacyjnego na domyślnym dysku rozruchowym. W przypadku, gdy w napędzie znajduje się dyskietka, komputer zaczyna próbować uruchamiać system z tej nośnika. Jeśli dyskietka nie zawiera pliku systemowego (np. NTLDR w przypadku systemu Windows), pojawi się wspomniany komunikat. Aby uniknąć takich sytuacji, warto regularnie sprawdzać, czy w napędzie nie ma niepotrzebnych nośników przed uruchomieniem komputera. Dobrą praktyką jest również skonfigurowanie BIOS-u w taki sposób, aby jako pierwsze źródło rozruchu wybierał dysk twardy, na którym zainstalowany jest system operacyjny, co zapobiega przypadkowemu uruchomieniu z nieodpowiedniego nośnika.

Pytanie 40

Aby usunąć konto użytkownika student w systemie operacyjnym Ubuntu, można skorzystać z komendy

A. net user student /del
B. userdel student
C. user net student /del
D. del user student
Polecenie 'userdel student' jest prawidłowe i służy do usuwania konta użytkownika w systemie operacyjnym Ubuntu oraz w innych dystrybucjach systemu Linux. Jest to standardowe polecenie w narzędziu zarządzania użytkownikami i pozwala na usunięcie zarówno samego konta, jak i powiązanych z nim plików, jeżeli użyty jest odpowiedni parametr. Na przykład, dodając opcję '-r', można również usunąć katalog domowy użytkownika, co jest szczególnie przydatne w sytuacjach, gdy chcemy całkowicie wyczyścić system z danych danego użytkownika. Warto zaznaczyć, że do wykonania tego polecenia niezbędne są uprawnienia administratora, co zazwyczaj oznacza konieczność użycia polecenia 'sudo'. W kontekście najlepszych praktyk, przed usunięciem konta użytkownika, warto upewnić się, że są wykonane kopie zapasowe ważnych danych, aby uniknąć ich nieodwracalnej utraty.