Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 13 maja 2025 12:52
  • Data zakończenia: 13 maja 2025 13:11

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik AC skutkuje

A. wzrostem reaktancji uzwojeń
B. spadkiem reaktancji uzwojeń
C. zwiększeniem prędkości obrotowej
D. zmniejszeniem prędkości obrotowej
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik prądu przemiennego prowadzi do wzrostu prędkości obrotowej silnika. Jest to związane z zasadą działania silników asynchronicznych, gdzie prędkość obrotowa silnika jest bezpośrednio proporcjonalna do częstotliwości zasilania. Przykładowo, w silniku trójfazowym pracującym w trybie asynchronicznym, prędkość nominalna (n) jest obliczana według wzoru n = (120 * f) / p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. W praktyce, regulacja częstotliwości za pomocą falownika pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymogów procesu technologicznego, co jest kluczowe w aplikacjach takich jak napędy wentylatorów, pomp, czy transportu taśmowego. Dobre praktyki w inżynierii automatyki sugerują, że należy starannie dobierać parametry falownika i silnika, aby zapewnić ich efektywność i niezawodność w dłuższym okresie użytkowania.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. pięciodrogowy trójpołożeniowy (5/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. trójdrogowy trójpołożeniowy (3/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jak można zmierzyć prędkość przepływu gazu?

A. za pomocą zwężki Venturiego
B. z wykorzystaniem impulsatora fotoelektrycznego
C. używając czujnika termoelektrycznego
D. przy pomocy pirometru radiacyjnego
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 16

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Uwikłanych
B. Pośrednich
C. Złożonych
D. Bezpośrednich
Pomiar długości nagwintowanego odcinka śruby nie może być klasyfikowany jako złożony, uwikłany ani pośredni. Pojęcia te odnoszą się do różnych metod pomiarowych, które obejmują bardziej skomplikowane procesy lub obliczenia. Złożone pomiary wymagają zastosowania kilku różnych narzędzi lub metod do uzyskania końcowego wyniku, co w przypadku bezpośredniego pomiaru długości nie ma miejsca. Uwikłane pomiary odnoszą się do sytuacji, gdzie wyniki są zależne od wielu czynników, co nie ma zastosowania w prostym pomiarze długości. Natomiast pomiary pośrednie polegają na obliczaniu jednego wymiaru na podstawie innych wymiarów, co również nie dotyczy pomiaru bezpośredniego, gdzie mierzona wartość uzyskiwana jest natychmiast. Osiągając niewłaściwą odpowiedź, można wpaść w pułapkę myślową, zakładając, że każdy pomiar, który wymaga użycia narzędzi, musi być złożony lub pośredni. W rzeczywistości prostota pomiaru bezpośredniego w kontekście narzędzi i metod jest kluczowa dla zapewnienia efektywności i dokładności w procesach inżynieryjnych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w gogle ochronne
B. w hełm ochronny
C. w odzież ochronną
D. w rękawice antywibracyjne
Kask, fartuch ochronny i okulary to ważne elementy, ale w przypadku pracy z drgającym sprzętem, takim jak młot pneumatyczny, to wcale nie wystarcza. Kask chroni głowę, co jest fajne, gdy coś może na Ciebie spaść. Fartuch z kolei dba o to, żeby nie uszkodzić ciała, ale nie ma nic wspólnego z drganiami. Okulary dbają o wzrok, ale dłonie i ramiona zostają bez ochrony, a to one są najbardziej narażone. Dlatego poleganie tylko na tych rzeczach w sytuacjach związanych z drganiami byłoby moim zdaniem błędne. Zazwyczaj myślimy, że każde ochronne wyposażenie działa na wszystko, ale to nieprawda. Ważne jest, żeby rozumieć, jakie zagrożenia są w danej pracy i dobrać odpowiedni sprzęt. Trzeba pamiętać o zasadach BHP i normach branżowych, które podkreślają, że ochrona powinna być dopasowana do konkretnej pracy.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. element termoelektryczny
B. element bimetaliczny
C. pirometr
D. termistor
Wybierając termistor, można wprowadzić się w błąd przez mylną interpretację działania tego elementu. Termistor działa na zasadzie zmiany oporu elektrycznego w zależności od temperatury, jednak nie generuje napięcia na podstawie różnicy potencjałów dwóch różnych metali. Jego zastosowanie obejmuje głównie czujniki temperatury w układach elektronicznych, ale nie ma związku z efektem Seebecka. Z kolei pirometr, który również może być mylnie wskazany jako odpowiedź, jest narzędziem wykorzystywanym do bezdotykowego pomiaru temperatury, lecz opiera się na pomiarze promieniowania cieplnego, a nie na różnicy potencjałów między metalami. Element bimetaliczny, pomimo że wykorzystywany do pomiaru temperatury, działa na zasadzie różnicy rozszerzalności cieplnej dwóch metali, co prowadzi do zginania się elementu, ale także nie wykorzystuje efektu Seebecka. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego doboru czujników w aplikacjach przemysłowych, gdzie precyzja i specyfika pomiarów mają kluczowe znaczenie dla efektywności procesów produkcyjnych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra uniwersalnego
B. Multimetra analogowego
C. Amperomierza cęgowego
D. Amperomierza tablicowego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec uniwersalnych
C. Kluczy oczkowych
D. Szczypiec płaskich
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Czynniki takie jak nacisk, długość gięcia, wysięg, przestrzeń między kolumnami, skok, prędkość dojścia, prędkość operacyjna, prędkość powrotu, pojemność zbiornika oleju oraz moc silnika to cechy charakterystyczne dla?

A. frezarki uniwersalnej
B. prasy krawędziowej
C. szlifierki narzędziowej
D. przecinarki plazmowej
Prawidłowa odpowiedź to prasa krawędziowa, która jest maszyną służącą do formowania blachy poprzez jej zginanie. Parametry, takie jak nacisk, długość gięcia czy odległość między kolumnami, są kluczowe dla efektywności i precyzji procesów gięcia blachy. Nacisk określa maksymalną siłę, jaką prasa może zastosować do zgięcia materiału, a długość gięcia wpływa na wielkość elementów, które mogą być formowane. Wysięg to odległość robocza narzędzi w prasie, co ma znaczenie przy obróbce dłuższych detali. Prędkości dojścia, robocza i powrotu są istotne dla optymalizacji cyklu pracy maszyny, co przekłada się na wydajność produkcji. Dodatkowo pojemność zbiornika oleju oraz moc silnika wpływają na wydajność i stabilność pracy prasy. W kontekście standardów branżowych, prasy krawędziowe muszą spełniać normy dotyczące bezpieczeństwa oraz jakości produkcji, takie jak normy ISO. W przemyśle metalowym prasy krawędziowe są często wykorzystywane do produkcji elementów konstrukcyjnych, obudów czy komponentów maszyn. Przykładem mogą być zastosowania w branży motoryzacyjnej, gdzie precyzyjne zgięcie blach jest kluczowe dla jakości finalnego produktu.

Pytanie 30

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 5 jednostek napędowych
B. 4 jednostki napędowe
C. 6 jednostek napędowych
D. 3 jednostki napędowe
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 31

Do połączeń spoczynkowych trwałych nie wlicza się

A. kołkowania
B. klejenia
C. spawania
D. nitowania
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 32

W pomiarze deformacji konstrukcji nośnych najczęściej wykorzystuje się czujniki, które działają na zasadzie

A. efektu piezoelektrycznego
B. zmiany indukcyjności własnej
C. zmiany rezystancji
D. zmiany pojemności elektrycznej
W przypadku pomiarów odkształceń, metody oparte na zmianie indukcyjności własnej, pojemności elektrycznej oraz efekcie piezoelektrycznym nie są tak powszechnie stosowane jak tensometry. Zmiana indukcyjności własnej może być wykorzystywana w niektórych aplikacjach, jednak nie jest ona standardowym rozwiązaniem w kontekście monitorowania odkształceń konstrukcji nośnych. Wzory analityczne związane z tą metodą często wymagają skomplikowanych obliczeń oraz precyzyjnego dostrojenia, co czyni je mniej praktycznymi w realnych zastosowaniach budowlanych. Zmiana pojemności elektrycznej może być używana w czujnikach pojemnościowych, jednak ich zastosowanie w kontekście monitorowania odkształceń wymaganych w inżynierii budowlanej nie jest tak efektywne. Efekt piezoelektryczny, zaś, mimo że ma swoje miejsce w technologii czujników, głównie w aplikacjach takich jak detekcja drgań, nie jest typowym sposobem na pomiar odkształceń konstrukcyjnych. Te metody mogą prowadzić do błędów pomiarowych, zwłaszcza w dynamicznych warunkach pracy konstrukcji, gdzie tensometry zapewniają znacznie większą dokładność i niezawodność. Zastosowanie bardziej skomplikowanych technologii powinno być zarezerwowane dla specyficznych przypadków, gdzie prostsze metody, takie jak zmiana rezystancji, nie mogą być zastosowane.

Pytanie 33

Jakie narzędzie powinno się zastosować do przygotowania przewodu LgY 0,75 mm2 przed jego montażem w listwie zaciskowej?

A. Zaciskarkę konektorów
B. Zaciskarkę tulejek
C. Klucz płaski
D. Klucz dynamometryczny
Zaciskarka tulejek jest narzędziem przeznaczonym do trwałego łączenia przewodów z różnymi typami konektorów, co jest kluczowe w procesie przygotowania przewodu LgY 0,75 mm² do montażu w listwie zaciskowej. Użycie zaciskarki pozwala na uzyskanie solidnego i niezawodnego połączenia, które jest zgodne z normami bezpieczeństwa oraz standardami branżowymi, takimi jak PN-EN 60352. Przykładem zastosowania zaciskarki tulejek jest łączenie przewodów w instalacjach elektrycznych, gdzie wymagane jest zapewnienie wysokiej jakości połączeń elektrycznych, zwłaszcza w sytuacjach, gdy przewody są narażone na wibracje lub zmiany temperatury. Przeprowadzenie prawidłowego zaciskania pozwala na uzyskanie niskiej rezystancji połączenia, co jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania instalacji. Korzystając z dobrej jakości zaciskarki, można również uniknąć problemów związanych z luźnymi połączeniami, które mogą prowadzić do przegrzewania się przewodów i potencjalnych zagrożeń pożarowych.

Pytanie 34

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
C. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
D. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Wszystkie inne odpowiedzi zawierają koncepcje, które mogą być niebezpieczne lub niewłaściwe w kontekście udzielania pierwszej pomocy w przypadku odmrożeń. Na przykład, stosowanie wody utlenionej do polewania odmrożonego miejsca nie jest zalecane, ponieważ może to prowadzić do podrażnienia tkanek i zwiększenia bólu. Woda utleniona jest skuteczna w oczyszczaniu ran, ale nie nadaje się do stosowania na uszkodzoną skórę, szczególnie w przypadkach oparzeń czy odmrożeń, gdzie skóra jest już osłabiona. Kolejnym błędem jest pomysł smarowania dłoni tłustym kremem. Tłuste substancje mogą zatkać pory skóry i spowodować dodatkowe podrażnienia, a także nie pozwalają na naturalne procesy regeneracyjne. Transportowanie poszkodowanego do domu to również niewłaściwe podejście. W sytuacjach medycznych zawsze należy dążyć do zapewnienia profesjonalnej pomocy w szpitalu, gdzie dostępne są odpowiednie środki i eksperci. Kluczowe jest, aby osoby udzielające pierwszej pomocy nie opierały się na intuicji, ale stosowały się do uznawanych standardów. W sytuacjach zagrożenia zdrowia i życia, jak odmrożenia, każda minuta może być decydująca.

Pytanie 35

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. dwustronnej pracy, bez amortyzacji.
B. jednostronnej pracy.
C. różnicowy.
D. dwustronnej pracy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 36

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 2
B. 1
C. 4
D. 3
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. R
B. T
C. I
D. Q
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.