Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 maja 2025 13:38
  • Data zakończenia: 28 maja 2025 13:55

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą trudnopalną
B. roboczą standardową
C. termoaktywną
D. bawełnianą w formie kombinezonu
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. zaworach kulowych
B. łożyskach kulkowych
C. hamulcach tarczowych
D. łożyskach ślizgowych
Wybór hamulców klockowych, zaworów kulowych czy łożysk kulkowych jako odpowiedzi błędnej opiera się na ich zasadach działania, które nie są zgodne z koncepcją smarowania hydrostatycznego. Hamulce klockowe działają na zasadzie tarcia między klockiem a tarczą hamulcową, co nie wymaga smarowania w sposób, jaki ma miejsce w łożyskach ślizgowych. W przypadku hamulców, kluczową rolę odgrywa generowanie siły tarcia, a nie separacja części roboczych. Zawory kulowe wykorzystują kulkę do regulowania przepływu cieczy lub gazu, co również nie ma związku z tworzeniem klina smarnego, a ich działanie opiera się na mechanicznym zamykaniu lub otwieraniu przepływu. Łożyska kulkowe z kolei wykorzystują kulki do rozdzielenia powierzchni, co pozwala na ruch obrotowy, ale opierają się na mechanicznym tarciu oraz smarowaniu, które różni się od hydrostatycznego. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia zasad działania tych mechanizmów. W praktyce smarowanie hydrostatyczne ma zastosowanie wyłącznie w specyficznych aplikacjach, gdzie kluczowe jest unikanie bezpośredniego kontaktu metal-metal oraz redukcja tarcia, co jest typowe dla łożysk ślizgowych. Zrozumienie tych różnic jest istotne dla prawidłowego doboru elementów w systemach mechanicznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. brakiem zasilania dla wszystkich odbiorników
B. spadkiem napięcia zasilającego do 0,5 UN
C. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
D. przepaleniem bezpieczników w obwodzie
Odpowiedź jest prawidłowa, ponieważ przerwanie przewodu PEN w sieci TN-C prowadzi do sytuacji, w której obudowy urządzeń podłączonych do gniazd z bolcem ochronnym mogą stać się naładowane. Przewód PEN pełni rolę zarówno przewodu neutralnego, jak i ochronnego, dlatego jego przerwanie wprowadza ryzyko wystąpienia napięcia na obudowach urządzeń. W przypadku braku przewodu ochronnego, prąd zwarciowy nie ma drogi do ziemi, co może skutkować niebezpiecznym wzrostem napięcia na obudowach urządzeń. W praktyce, takie zjawisko może wystąpić w instalacjach, gdzie nie zastosowano odpowiednich środków ochrony, takich jak wyłączniki różnicowoprądowe. Zgodnie z normą PN-IEC 60364, w przypadku sieci TN-C konieczne jest zachowanie szczególnej ostrożności i regularne wykonywanie pomiarów, aby zapewnić bezpieczeństwo użytkowników. Wszelkie nieprawidłowości w funkcjonowaniu sieci powinny być bezzwłocznie usuwane, aby zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 8

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. drukarka laserowa
B. silnik indukcyjny klatkowy
C. chłodziarko-zamrażarka z cyfrowym sterowaniem
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. daloczułkiem.
B. pirometrem.
C. multimetrem.
D. fotometrem.
Wybór dalmierza, fotometru czy multimetru jako narzędzi do pomiaru temperatury obudowy urządzenia jest nieprawidłowy, ponieważ każde z tych urządzeń ma swoje specyficzne zastosowania, które nie obejmują bezpośredniego pomiaru temperatury. Dalmierz jest narzędziem wykorzystywanym do pomiaru odległości, które działa na zasadzie pomiaru czasu, w jakim fala elektromagnetyczna przebywa dystans między nadajnikiem a obiektem. Nie posiada on jednak zdolności do wyczuwania temperatury, co czyni go nieodpowiednim do tego typu pomiarów. Fotometr, z drugiej strony, jest urządzeniem służącym do pomiaru natężenia światła, co również nie ma związku z pomiarem temperatury. Użycie fotometru w tym kontekście prowadzi do fundamentalnych błędów myślowych dotyczących jego funkcji i przeznaczenia. Multimetr, chociaż jest wszechstronnym narzędziem pomiarowym, również nie może być użyty do bezpośredniego pomiaru temperatury obiektu z odległości. Jego główne funkcje obejmują pomiar napięcia, prądu i oporu, a nie temperatury. W przypadku pomiarów temperatury, multimetr może być użyty tylko w połączeniu z odpowiednimi czujnikami, jednak wymaga to kontaktu z obiektem lub jego bliskiego umiejscowienia, co nie jest zgodne z zasadą pomiaru stosowaną w pirometrii. Zrozumienie właściwego zastosowania tych narzędzi jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników pomiarów.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
B. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
C. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
D. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
Podejście do łączenia elementów na podstawie podwyższenia ich temperatury przed połączeniem wiąże się z pewnymi ryzykami. Wysoka temperatura może prowadzić do odkształceń materiałów, co negatywnie wpływa na ich właściwości mechaniczne. Napotykany problem z zastosowaniem siły do połączenia w temperaturze otoczenia, bez wcześniejszego przygotowania elementów, może skutkować nieprawidłowym dopasowaniem, co z kolei prowadzi do luzów, a w konsekwencji do awarii w pracy maszyny. Rozszerzenie elementów pod wpływem podwyższonej temperatury ma swoje ograniczenia i nie zawsze zapewnia potrzebną precyzję. Ponadto, obniżenie temperatury zamiast podwyższania powoduje, że elementy pasują do siebie ściślej, co przekłada się na lepszą jakość połączenia. Wiele standardów branżowych, takich jak ISO 286 dotyczące tolerancji wymiarowych, wskazuje na kluczowe znaczenie precyzyjnego dopasowania elementów, co jest realizowane poprzez metodę skurczową. Dlatego błędne jest zakładanie, że siła i temperatura mogą być jedynymi czynnikami decydującymi o jakości połączeń skurczowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 25 V
B. 10 V
C. 15 V
D. 5 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Ciśnienie o wartości 1 N/m2 to

A. 1 bar
B. 1 Pa
C. 1 mmHg
D. 1 at
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. rozchodzenie się mgły olejowej w instalacji
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. spływ kondensatu wodnego do najniższego punktu instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 29

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zgrzewania
B. Spawania
C. Zaginania
D. Klejenia
Spawanie, zgrzewanie i klejenie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co czyni je nieodpowiednimi odpowiedziami na zadane pytanie. Spawanie polega na stosowaniu wysokiej temperatury w celu stopienia krawędzi dwóch elementów, co stoi w sprzeczności z celem pytania, ponieważ łączy je na trwałe. Zgrzewanie natomiast wykorzystuje ciepło i ciśnienie do połączenia materiałów, co jest typowe dla cienkowarstwowych tworzyw sztucznych, takich jak polietylen czy polipropylen. Te metody są szczególnie cenione w przemyśle, ponieważ pozwalają na uzyskanie mocnych i odpornych na czynniki zewnętrzne połączeń. Klejenie, z użyciem odpowiednich adhezyjnych substancji chemicznych, również umożliwia trwałe łączenie elementów z tworzyw sztucznych, a współczesne technologie oferują szeroki wachlarz klejów, które zapewniają różne właściwości, takie jak elastyczność czy odporność na wysokie temperatury. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z mylenia procesów formowania z procesami łączenia. Ważne jest zrozumienie, że każdy z tych procesów ma swoje specyficzne zastosowania i nie każdy z nich jest odpowiedni do trwałego łączenia elementów wykonanych z tworzyw sztucznych.

Pytanie 30

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HR
B. HH
C. HM
D. HL
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. watomierzem w układzie Arona
B. woltomierzem i amperomierzem
C. mostkiem Thompsona
D. mostkiem Wheatstone'a
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC można zrealizować poprzez zastosowanie woltomierza oraz amperomierza. Woltomierz umożliwia zmierzenie napięcia w obwodzie, natomiast amperomierz mierzy natężenie prądu. Moc (P) można obliczyć korzystając z równania P = U * I, gdzie U to napięcie, a I to natężenie prądu. Przykładowo, jeśli woltomierz wskazuje 24 V, a amperomierz 2 A, moc wynosi 48 W. Takie podejście jest zgodne z najlepszymi praktykami pomiarowymi, gdzie dokładność pomiarów jest kluczowa. Używanie woltomierza i amperomierza jest standardową metodą w wielu zastosowaniach, w tym w inżynierii elektrycznej i automatyce przemysłowej, co zapewnia wiarygodne i precyzyjne wyniki. Warto również pamiętać o prawidłowej kalibracji urządzeń pomiarowych, co wpływa na jakość wyników.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. osuszyć z nadmiaru wody
B. odprowadzić bezpośrednio do ścieków
C. przefiltrować przy użyciu węgla aktywnego
D. oczyścić z resztek oleju
Odpowiedź 'oczyścić z cząstek oleju' jest poprawna, ponieważ kondensat pochodzący z filtrów do zgrubnego oczyszczania powietrza często zawiera cząstki oleju, które mogą być szkodliwe dla środowiska oraz niezgodne z przepisami dotyczącymi odprowadzania ścieków. Oczyszczanie kondensatu z takich zanieczyszczeń jest kluczowe, aby zapewnić jego bezpieczne i zgodne z normami technicznymi usunięcie. W praktyce, w wielu zakładach przemysłowych stosuje się specjalistyczne separatory oleju, które skutecznie wydzielają olej z wody. Dzięki takiemu procesowi, kondensat można następnie poddać dalszym procesom oczyszczania lub bezpiecznie odprowadzić do systemu kanalizacyjnego, zgodnie z lokalnymi regulacjami prawnymi. Niezastosowanie się do tych zasad może prowadzić do zanieczyszczenia wód gruntowych oraz naruszenia norm środowiskowych, co wiąże się z poważnymi konsekwencjami prawnymi i finansowymi.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. stan napięcia.
B. temperaturę.
C. nawilżenie.
D. bicie osiowe.
Sprawdzanie stanu napięcia paska zębatego jest kluczowym etapem w jego konserwacji, ponieważ niewłaściwe napięcie może prowadzić do przedwczesnego zużycia lub uszkodzeń zarówno paska, jak i kół pasowych. Odpowiednie napięcie zapewnia właściwe przenoszenie napędu, co jest niezbędne dla efektywnego działania całego systemu. Przykładem dobrych praktyk jest stosowanie narzędzi do pomiaru napięcia, które mogą pomóc w ocenie, czy pasek jest odpowiednio napięty, zgodnie z zaleceniami producenta. Niedostateczne napięcie może skutkować ślizganiem się paska, natomiast zbyt duże napięcie może prowadzić do uszkodzenia łożysk lub nadmiernego zużycia paska. W przemyśle stosuje się także standardy, takie jak normy ISO, które definiują procesy konserwacji i inspekcji elementów napędowych, w tym pasków zębatych, aby zapewnić ich niezawodność i długotrwałe użytkowanie. Regularne inspekcje i dostosowywanie napięcia to kluczowe działania, które mogą znacząco wpłynąć na wydajność maszyny oraz zredukować ryzyko awarii.