Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 czerwca 2025 20:46
  • Data zakończenia: 1 czerwca 2025 21:18

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. stosunku sygnału do szumu
B. współczynnika błędów modulacji
C. bitowej stopy błędów
D. przesunięcia fazowego
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 2

Na którym zakresie pomiarowym należy wykonywać precyzyjny pomiar napięcia po stronie wtórnej transformatora, którego parametry podano w tabeli?

Napięcie pierwotne230 V
Napięcie wtórne12 V
Prąd uzwojenia wtórnego2 A
Moc25 VA

A. 200 V DC
B. 20 V DC
C. 20 V AC
D. 200 V AC
Odpowiedź 20 V AC jest prawidłowa, ponieważ odpowiada charakterystyce napięcia wtórnego transformatora, które wynosi 12 V. W kontekście pomiarów elektrycznych, ważne jest, aby stosować przyrządy pomiarowe w odpowiednim zakresie, co zapewnia dokładność oraz bezpieczeństwo pomiarów. Dla napięcia zmiennego (AC) o wartości 12 V, najbliższy standardowy zakres pomiarowy, który nie przekracza wartości nominalnej, to 20 V AC. Praktyczne zastosowanie tego pomiaru odnosi się do wielu sytuacji w inżynierii elektrycznej, w których musimy monitorować napięcia w obwodach zasilających urządzenia elektroniczne. Stosowanie odpowiedniej skali pomiarowej nie tylko minimalizuje ryzyko uszkodzenia sprzętu, ale także pozwala na uzyskanie precyzyjnych wyników, które są kluczowe dla diagnostyki oraz serwisu urządzeń. Zgodnie z normami IEC oraz krajowymi przepisami, pomiar napięć powinien odbywać się w bezpiecznych i przewidywalnych warunkach. W związku z tym, dobór odpowiedniego zakresu pomiarowego jest fundamentalnym krokiem w zapewnieniu wysokiej jakości pracy z urządzeniami elektrycznymi.

Pytanie 3

Jaką funkcję pełni PTY w radiu?

A. Wybieranie i przeszukiwanie typu programu
B. Odbiór wiadomości tekstowych
C. Automatyczną "regulację głośności"
D. Odbiór informacji drogowych
Funkcja PTY, czyli Program Type, jest kluczowym elementem standardu RDS (Radio Data System), który pozwala na identyfikację i klasyfikację programów radiowych. Główna rola PTY polega na umożliwieniu słuchaczom łatwego wyszukiwania stacji radiowych na podstawie ich rodzaju programowego, co znacząco ułatwia odbiór audycji odpowiadających ich zainteresowaniom. Na przykład, użytkownik może ustawić odbiornik tak, aby automatycznie wyszukiwał stacje nadające muzykę pop lub wiadomości. Dzięki temu, w sytuacji, gdy słuchacz chce zmienić stację, nie musi przeszukiwać wszystkich dostępnych sygnałów ręcznie. PTY jest stosowane w praktyce przez wiele stacji radiowych, które nadają programy o różnych typach. Wspiera to również standardy jakości dźwięku i dostępu do informacji, które są obowiązujące w branży radiowej, a także zwiększa komfort użytkowania odbiorników. Użytkownicy powinni zwrócić uwagę na dostępność tej funkcji w swoich odbiornikach radiowych, ponieważ może to być istotny atut przy wyborze sprzętu.

Pytanie 4

TCP to protokół transmisyjny umożliwiający transfer pakietów danych

A. telewizyjnego
B. internetowego
C. radiowego
D. optycznego
Wybór protokołów optycznego, telewizyjnego lub radiowego jako alternatywnych odpowiedzi na pytanie o TCP świadczy o pewnym nieporozumieniu odnośnie do roli i funkcji różnych protokołów komunikacyjnych. Protokół optyczny, który nawiązuje do technologii przesyłania danych za pomocą światłowodów, nie jest bezpośrednio związany z TCP, który jest protokołem transportowym. W kontekście sieci komputerowych, protokoły optyczne mogą być wykorzystywane do fizycznego przesyłania sygnałów, jednak nie odpowiadają za zarządzanie transmisją danych, co jest kluczowym zadaniem TCP. Podobnie, protokoły telewizyjne koncentrują się na przesyłaniu sygnałów audio-wideo, co również nie jest w obszarze odpowiedzialności TCP. Z kolei protokoły radiowe, wykorzystywane głównie w komunikacji bezprzewodowej, różnią się znacznie od internetowych protokołów transportowych, takich jak TCP. Kluczowym aspektem TCP jest jego zdolność do zapewnienia integralności danych oraz ich uporządkowanej dostawy przez sieć, co jest nieosiągalne dla wyżej wymienionych technologii, które mają inne cele. Zrozumienie różnicy między tymi protokołami jest niezbędne dla prawidłowego projektowania systemów komunikacyjnych oraz rozwiązywania problemów związanych z przesyłaniem informacji w różnych kontekstach.

Pytanie 5

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. wariometry
B. woltomierze
C. waromierze
D. watomierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 6

W instrukcji uruchomienia urządzenia znalazło się polecenie: "....dostroić obwód rezonansowy trymerem do częstotliwości....". Jakie jest inne określenie na trymer?

A. kondensatora dostrojczego
B. filtru z regulowaną indukcyjnością
C. potencjometru
D. cewki regulowanej
Cewka regulowana jest urządzeniem, które zmienia swoją indukcyjność, ale nie jest tym samym co trymer. Cewki regulowane wykorzystywane są w obwodach, gdzie zmiana indukcyjności jest kluczowa, jednak nie pełnią one funkcji dostrajania pojemności obwodu, co jest istotne w kontekście dostrajania częstotliwości. Potencjometr to element, który służy do regulacji napięcia, a nie częstotliwości. Jest szeroko stosowany w aplikacjach audio do regulacji głośności, ale nie ma zastosowania w dostrajaniu obwodów rezonansowych. Filtry z regulowaną indukcyjnością również zmieniają charakterystykę obwodu, jednak podobnie jak cewki, nie pełnią funkcji kondensatorów dostrojczych. W praktyce, często myli się te pojęcia przez brak zrozumienia ich funkcji w obwodach elektronicznych. Kluczowym błędem jest nieodróżnianie pojemności od indukcyjności, gdzie kondensator dostrojczy działa na zasadzie zmiany pojemności, a nie indukcyjności. Zrozumienie tych różnic jest niezbędne dla skutecznego projektowania i diagnozowania układów elektronicznych.

Pytanie 7

Aby podłączyć dysk twardy do płyty głównej komputera, jaki interfejs należy zastosować?

A. LPT
B. D-SUB 15
C. RS 232
D. SATA
Odpowiedź SATA jest prawidłowa, ponieważ jest to jeden z najpopularniejszych interfejsów stosowanych do podłączania dysków twardych i napędów SSD do płyt głównych komputerów. Standard SATA (Serial ATA) został wprowadzony, aby zastąpić starszy interfejs PATA (Parallel ATA) i oferuje znacznie wyższą prędkość transferu danych, co jest kluczowe w kontekście wydajności nowoczesnych systemów komputerowych. SATA obsługuje prędkości transferu do 6 Gb/s w wersji III, co pozwala na szybki dostęp do danych i efektywne wykonywanie operacji na plikach. Zastosowanie SATA umożliwia również łatwiejsze podłączanie i wymianę dysków, co jest istotne w kontekście modernizacji sprzętu. Warto również zauważyć, że złącza SATA mają charakterystyczny kształt i orientację, co ułatwia ich prawidłowe podłączenie. Przykładowo, podłączając dysk SSD do płyty głównej, użytkownik powinien zwrócić uwagę na odpowiednie złącze SATA, aby uniknąć problemów z wydajnością oraz kompatybilnością.

Pytanie 8

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. Główny Układ Mikroprocesorowy
B. Główny Urząd Miar
C. technologię realizacji układów scalonych
D. metodę wykonania układów cyfrowych
Wybór błędnych odpowiedzi na to pytanie wskazuje na nieporozumienia dotyczące terminologii używanej w dziedzinie metrologii. Na przykład, odpowiedź dotycząca technologii wykonywania układów scalonych sugeruje, że GUM zajmuje się inżynierią mikroelektroniki, co jest zupełnie innym obszarem. Układy scalone to elementy, które mogą być wykorzystywane w różnych urządzeniach pomiarowych, ale sam GUM nie zajmuje się ich produkcją ani projektowaniem. Z kolei technika realizacji układów cyfrowych odnosi się do praktycznych aspektów konstruowania systemów elektronicznych, co również nie jest w kompetencji Głównego Urzędu Miar. W metrologii kluczowe jest zrozumienie, że pomiary muszą być zgodne z przyjętymi normami, a niekoniecznie ze sposobem, w jaki technologia jest wykorzystywana do ich realizacji. Mylne jest również utożsamienie GUM z terminem Główny Układ Mikroprocesorowy – nie istnieje taki urząd lub termin w kontekście metrologii. Te błędne odpowiedzi pochodzą z niejasności w rozumieniu roli GUM jako instytucji, która nie tylko zapewnia jakość pomiarów, ale także chroni interesy społeczeństwa poprzez regulacje i standardy oraz zapewnia zgodność z normami krajowymi i międzynarodowymi.

Pytanie 9

PAL B/G, PAL, SECAM, NTSC - jakie skróty dotyczą?

A. nazwa szyn systemowych mikrokontrolera 8051
B. metod kodowania kolorów w sygnale telewizyjnym
C. metod kodowania sygnału AUDIO
D. nazwa obszarów w półprzewodnikach
Podejście do właściwego zrozumienia skrótów PAL, NTSC, SECAM i PAL B/G powinno być ściśle związane z ich fundamentalnym znaczeniem w kontekście kodowania sygnału wideo. Odpowiedzi dotyczące nazw szyn systemowych mikrokontrolera 8051 lub obszarów w półprzewodnikach wskazują na nieporozumienie dotyczące zastosowania tych terminów. Mikrokontrolery 8051 są związane z systemami embedded i nie mają bezpośredniego związku z telewizją analogową czy cyfrową, podczas gdy obszary w półprzewodnikach odnoszą się do struktury materiałów półprzewodnikowych, takich jak tranzystory czy diody, a nie do standardów telewizyjnych. Również odpowiedzi dotyczące sposobów kodowania sygnału audio są mylące, ponieważ audio i wideo są różnymi rodzajami sygnałów, które są przesyłane i przetwarzane w odmienny sposób. W rzeczywistości, standardy telewizyjne, takie jak PAL, NTSC i SECAM, koncentrują się na kolorze oraz synchronizacji obrazu, co jest kluczowe dla zapewnienia wysokiej jakości wizji podczas odbioru telewizyjnego. Ignorowanie tych różnic prowadzi do błędnych wniosków i nieporozumień, które mogą skutkować w problemach technicznych, jak również w niezdolności do prawidłowego odbioru sygnału telewizyjnego. Dlatego zrozumienie kontekstu i zastosowania tych terminów jest kluczowe w dziedzinie technologii audiowizualnych.

Pytanie 10

Jednokanałowy oscyloskop analogowy pozwala na pomiar

A. współczynnika zniekształceń nieliniowych
B. przesunięcia fazy między dwoma sygnałami sinusoidalnymi
C. bitowej stopy błędów
D. czasów narastania i opadania impulsów
Analogowy oscyloskop jednokanałowy to naprawdę fajne narzędzie do zrozumienia, jak zachowują się sygnały elektryczne w czasie. Jednym z jego głównych zastosowań jest pomiar czasów narastania i opadania impulsów, co jest mega ważne, gdy analizujemy sygnały cyfrowe i analogowe. Te czasy mają duży wpływ na to, jak dobrze przesyłamy informacje i jakie są właściwości całych systemów elektronicznych. Moim zdaniem, ocenianie tych czasów pomaga zobaczyć, jak układy reagują na zmiany w sygnale, co jest szczególnie istotne, kiedy projektujemy systemy cyfrowe. W telekomunikacji na przykład, czas narastania jest kluczowy, bo jeśli jest za długi, to sygnał może się zniekształcić, a to może prowadzić do błędów w transmisji. Dodatkowo, normy jak IEC 61000-4-2 pokazują, jak ważne jest mierzenie tych czasów, gdy testujemy urządzenia na odporność na zakłócenia elektromagnetyczne. Dlatego warto znać i umieć te umiejętności w praktyce inżynierskiej.

Pytanie 11

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
B. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
C. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
D. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
Prawidłowa kolejność czynności przy wymianie kamery monitoringu zaczyna się od odłączenia zasilania od kamery, co jest kluczowe dla zapewnienia bezpieczeństwa podczas pracy z urządzeniem. Następnie należy odłączyć przewód sygnałowy, aby uniknąć uszkodzenia gniazd lub kabli. Kolejnym krokiem jest demontaż uszkodzonej kamery i montaż nowej, co należy wykonać z zachowaniem ostrożności, aby nie uszkodzić uchwytów czy innych elementów konstrukcyjnych. Po zamontowaniu nowej kamery, podłączenie przewodu sygnałowego powinno być wykonane z uwagą na właściwe oznaczenia, aby zapewnić prawidłowy przesył danych. Na końcu podłączamy zasilanie do kamery. Taka procedura nie tylko spełnia zasady BHP, ale także jest zgodna z zaleceniami producentów sprzętu, co przekłada się na długotrwałe i niezawodne działanie systemu monitoringu. W praktyce, przestrzeganie tej kolejności minimalizuje ryzyko uszkodzenia sprzętu oraz zapewnia, że nowa kamera będzie działać od razu po zakończeniu instalacji.

Pytanie 12

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. 6D
B. BC
C. C6
D. 7B
Odpowiedź 6D jest poprawna, ponieważ liczba binarna 01101101 w systemie szesnastkowym odpowiada wartości 6D. Aby zrozumieć, jak dokonano tej konwersji, warto zauważyć, że system binarny jest systemem pozycyjnym z podstawą 2, a system szesnastkowy ma podstawę 16. Liczbę binarną dzielimy na grupy po cztery bity, co daje nam 0110 i 1101. Następnie każdą z tych grup zamieniamy na odpowiadające wartości w systemie szesnastkowym: 0110 to 6, a 1101 to D. Tak więc, 01101101 to 6D w systemie szesnastkowym. W praktyce takie konwersje są niezwykle ważne, szczególnie w programowaniu na poziomie niskim oraz przy pracy z systemami sprzętowymi, gdzie operacje na bitach i bajtach są powszechne. Rozumienie konwersji między systemami liczbowymi jest fundamentalne w inżynierii oprogramowania oraz w projektowaniu systemów cyfrowych, gdzie często zachodzi potrzeba interpretacji wartości binarnych w bardziej zrozumiałych dla ludzi systemach, takich jak hex.

Pytanie 13

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 150 mV
B. 100 mV
C. 1000 mV
D. 300 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 14

Który z komponentów półprzewodnikowych ma czterowarstwową budowę typu n-p-n-p?

A. Tyrystor
B. Tranzystor bipolarny
C. Dioda LED
D. Warikap
Dioda elektroluminescencyjna, czyli LED, to półprzewodnikowe źródło światła, które świeci dzięki rekombinacji elektronów i dziur. Zazwyczaj ma dwuwarstwową strukturę p-n, przez co nie działa jak tyrystor, który ma cztery warstwy. Wydaje mi się, że niektórym może się pomylić, że dioda może mieć czterowarstwową budowę, a to nieprawda. Z kolei warikap to dioda, która zmienia pojemność w odpowiedzi na napięcie, więc to też nie jest to, czego szukamy w tej sytuacji. A jeśli chodzi o tranzystory bipolarne, to mają trzy warstwy, co sprawia, że są zupełnie inne niż tyrystory. Wiem, że czasem łatwo pomylić różne elementy półprzewodnikowe, ale warto to zrozumieć, żeby nie wprowadzać się w błąd i nie robić błędów przy projektowaniu układów elektronicznych.

Pytanie 15

Maksymalny poziom natężenia dźwięku w biurze dla osoby zajmującej się projektowaniem układów elektronicznych, zgodnie z obowiązującymi normami, nie powinien przekraczać wartości

A. 25 dB
B. 35 dB
C. 45 dB
D. 55 dB
Wybór wartości 25 dB jako dopuszczalnego poziomu hałasu w biurze jest nieodpowiedni, ponieważ jest to wartość znacznie poniżej normy akceptowanej w kontekście biur. Poziom 25 dB odpowiada bardzo cichym pomieszczeniom, takim jak biblioteki czy ciche strefy w mieszkaniach, gdzie występuje minimalna akustyka. W środowisku biurowym, gdzie pracownicy korzystają z komputerów, prowadzą rozmowy telefoniczne lub współpracują z innymi, dźwięki te generują hałas, który naturalnie podnosi poziom hałasu do wartości powyżej 25 dB. Wartość 45 dB również jest nieadekwatna, ponieważ jest zbyt niska dla standardowego biura, w którym dźwięki mogą generować różne urządzenia biurowe oraz aktywność ludzi. Przyjęcie 35 dB jako dopuszczalnej wartości również nie uwzględnia realistycznych warunków biurowych, w których poziom hałasu często przekracza tę wartość, co może prowadzić do obniżonej efektywności pracy oraz dyskomfortu. Kluczowe jest, aby zrozumieć, że normy dotyczące hałasu w miejscu pracy są ustalane po to, aby promować zdrowe i sprzyjające efektywności środowisko pracy, gdzie wartości powyżej 55 dB są powszechnie akceptowane jako dopuszczalne w typowych biurach. Niezrozumienie tych standardów może prowadzić do nieodpowiednich warunków pracy oraz negatywnych skutków zdrowotnych dla pracowników.

Pytanie 16

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Zasilanie kamer za pomocą BNC
B. Rozpoznawanie twarzy
C. Kontrola kamer z obrotnicą PTZ
D. Sterowanie dodatkowymi źródłami światła dla kamer
Wielu użytkowników może mylnie sądzić, że rejestrator w systemach monitoringu pełni funkcje takie jak zasilanie kamer przez BNC, sterowanie dodatkowym oświetleniem kamer lub wykrywanie twarzy. Zasilanie kamer przez BNC nie jest możliwe, ponieważ ten typ złącza służy głównie do przesyłania sygnału wideo, a nie do zasilania. Kamery zazwyczaj są zasilane przez osobne złącza, takie jak złącze DC lub PoE (Power over Ethernet), co jest standardową praktyką w branży, zapewniającą odpowiednią moc bezprzewodowego przesyłania danych i zasilania. Jeśli chodzi o sterowanie oświetleniem, wiele kamer wyposażonych jest w funkcje nocnego widzenia, które automatycznie dostosowują się do warunków oświetleniowych, co czyni dodatkowe oświetlenie niepotrzebnym. Wykrywanie twarzy jest zaawansowaną funkcją, która zazwyczaj zależy od algorytmów w kamerach, a nie od rejestratora. Źle zrozumiane funkcje rejestratora mogą prowadzić do nieefektywnego wykorzystania systemów monitoringu, dlatego ważne jest, aby operatorzy posiadali rzetelną wiedzę na temat możliwości oraz ograniczeń sprzętu, którego używają.

Pytanie 17

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
B. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
C. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
D. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
Wybór odpowiedzi dotyczącej przewodu 6-żyłowego, zarówno aluminiowego, jak i miedzianego, nie jest zgodny z rzeczywistością techniczną opisanego oznaczenia YLY 3×6 mm². Przewody 6-żyłowe są stosowane w bardziej złożonych zastosowaniach, gdzie konieczne są dodatkowe żyły do zasilania różnych obwodów, co nie znajduje odzwierciedlenia w podanym oznaczeniu. Kluczowym błędem jest mylenie liczby żył oraz wyboru materiału przewodzącego. Oznaczenie '3×6 mm²' wskazuje na przewód z trzema żyłami, a nie sześcioma, co ma istotne znaczenie dla prawidłowego doboru przewodów w instalacjach. Dodatkowo, wybór żył aluminiowych w kontekście przewodów instalacyjnych może nie być najlepszym rozwiązaniem, ze względu na ich gorsze właściwości przewodnictwa w porównaniu do żył miedzianych. W praktyce, przewody aluminiowe wymagają specjalnych złączek oraz większej staranności w instalacji, co często prowadzi do problemów z połączeniami elektrycznymi i zwiększonego ryzyka awarii. Odpowiedzi sugerujące izolację polietylenową również są nietrafne, ponieważ przewody YLY, zgodnie z normami, są standardowo produkowane z izolacją polwinitową, która lepiej sprawdza się w warunkach eksploatacyjnych typowych dla instalacji elektrycznych. Warto podkreślić, że dobór odpowiednich materiałów i typów przewodów ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej systemów elektrycznych.

Pytanie 18

Aby podłączyć monitor do jednostki centralnej, należy użyć interfejsu

A. SATA
B. USB
C. D-SUB 15
D. IDE
Interfejs D-SUB 15, znany również jako VGA (Video Graphics Array), jest standardowym złączem stosowanym do przesyłania sygnału wideo z jednostki centralnej do monitora. To złącze umożliwia przesyłanie analogowego sygnału wideo, co czyni je jednym z najczęściej stosowanych rozwiązań w przypadku starszych monitorów oraz projektorów. D-SUB 15 jest zaprojektowany do obsługi rozdzielczości do 640x480 pikseli przy 60 Hz, a w przypadku nowszych technologii może obsługiwać wyższe rozdzielczości, chociaż z ograniczeniami wynikającymi z analogowej natury sygnału. W praktyce, aby prawidłowo podłączyć monitor z interfejsem D-SUB 15, użytkownik powinien upewnić się, że zarówno jednostka centralna, jak i monitor mają odpowiednie złącza. D-SUB 15 jest powszechnie stosowany w różnych zastosowaniach, takich jak prezentacje multimedialne czy w biurach, gdzie starsze technologie nadal są w użyciu.

Pytanie 19

Montaż wtyku F na kablu koncentrycznym polega na

A. usunięciu odciętej zewnętrznej izolacji, usunięciu folii, usunięciu izolacji żyły, założeniu wtyku
B. nacięciu zewnętrznej powłoki, usunięciu oplotu, usunięciu izolacji żyły, nałożeniu wtyku
C. usunięciu odciętej zewnętrznej izolacji, ułożeniu oplotu wzdłuż kabla, usunięciu izolacji żyły, nałożeniu wtyku
D. nacięciu zewnętrznej powłoki, usunięciu folii, usunięciu izolacji żyły, nałożeniu wtyku
Odpowiedź wskazuje na prawidłowy proces montażu wtyku F na przewodzie koncentrycznym. Kluczowym krokiem jest usunięcie odciętej izolacji zewnętrznej, co pozwala na odsłonięcie oplotu. Oplot ten należy prawidłowo ułożyć wzdłuż przewodu, co jest istotne dla zapewnienia dobrego kontaktu elektrycznego oraz ochrony przed zakłóceniami elektromagnetycznymi. Następnie, po usunięciu izolacji żyły, nakręcamy wtyk, co powinno być wykonane z odpowiednią siłą, aby zapewnić solidne połączenie. Praktyczne przykłady zastosowania obejmują instalacje telewizyjne oraz systemy monitoringu, gdzie jakość sygnału jest kluczowa dla poprawnego działania. Dobre praktyki w zakresie montażu wtyków obejmują stosowanie odpowiednich narzędzi, takich jak wyspecjalizowane zaciskarki oraz monitorowanie jakości połączeń za pomocą mierników sygnału. Doświadczeni technicy zwykle przestrzegają standardów branżowych, takich jak ISO/IEC 11801, które zapewniają wytyczne dotyczące instalacji i jakości sygnalizacji w systemach telekomunikacyjnych.

Pytanie 20

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 500 zł
B. 750 zł
C. 2 500 zł
D. 150 zł
W przypadku odpowiedzi, które nie wskazują poprawnego kosztu zakupu materiałów, istnieje kilka typowych błędów myślowych, które mogą mylić. Niektórzy mogą na przykład mylnie obliczyć ogólną liczbę radiatorów produkowanych dziennie, biorąc pod uwagę tylko część z pracowników lub błędnie interpretując dzienną produkcję jednego pracownika. Inni mogą popełnić błąd przy obliczaniu liczby potrzebnych kształtowników, co prowadzi do nieprawidłowego oszacowania kosztów. Kluczowe jest zrozumienie, że każdy kształtownik jest odpowiedzialny za produkcję określonej ilości produktów (w tym przypadku 10 radiatorów), a zatem dokładne podział zadań w zespole i znajomość wydajności są kluczowe. Również, błędna interpretacja kosztów jednostkowych kształtowników może prowadzić do nieprawidłowych obliczeń kosztów całkowitych. W praktyce, zdolność do precyzyjnego obliczania i analizowania tych kosztów jest niezbędna dla każdej firmy, aby zachować konkurencyjność na rynku i prawidłowo planować budżet produkcyjny.

Pytanie 21

W przedsiębiorstwie zajmującym się produkcją układów elektronicznych złożono zamówienie na 20 sztuk pilotów telewizyjnych. Cena komponentów potrzebnych do zrealizowania jednego pilota wynosi 30 zł. Koszt pracy pracownika przy wytworzeniu jednego pilota to 10 zł. Jak będzie wyglądać całkowity koszt zamówienia po uwzględnieniu 5% zniżki?

A. 800 zł
B. 760 zł
C. 840 zł
D. 720 zł
Obliczenie całkowitego kosztu zamówienia 20 sztuk pilotów TV wymaga uwzględnienia kosztów elementów oraz kosztów robocizny. Koszt elementów dla jednego pilota wynosi 30 zł, co daje łącznie 600 zł za 20 sztuk (20 x 30 zł). Dodatkowo, koszt wykonania jednego pilota przez pracownika wynosi 10 zł, co przekłada się na 200 zł za 20 pilotów (20 x 10 zł). Zatem łączny koszt produkcji wynosi 800 zł (600 zł + 200 zł). Po zastosowaniu 5% rabatu, który wynosi 40 zł (5% z 800 zł), całkowity koszt zamówienia obniża się do 760 zł (800 zł - 40 zł). Tego rodzaju kalkulacja jest standardową praktyką w branży produkcyjnej, gdzie rabaty są często stosowane przy większych zamówieniach, co może znacznie wpłynąć na ostateczny koszt. Zrozumienie tych obliczeń jest kluczowe dla zarządzania kosztami oraz efektywności finansowej w firmach produkcyjnych.

Pytanie 22

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. zestawić z tunerem satelitarnym.
B. połączyć go z Internetem.
C. spiąć z odtwarzaczem Blu-ray.
D. włożyć nośnik USB.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 23

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. gaśnicy proszkowej
B. koca azbestowego
C. hydronetki wodnej
D. gaśnicy pianowej
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 24

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Typ mocowania obiektywu
B. Kąt widzenia kamery
C. Czułość
D. Rozdzielczość
Rozdzielczość jest istotnym parametrem kamery, ale nie wpływa bezpośrednio na zdolność widzenia w słabym oświetleniu. Wyższa rozdzielczość oznacza więcej pikseli w obrazie, co przekłada się na większą szczegółowość. Niemniej jednak, nawet kamery o wysokiej rozdzielczości mogą mieć problem z uchwyceniem detali w warunkach słabego oświetlenia, jeśli ich czułość jest niska. Typ mocowania obiektywu dotyczy kompatybilności sprzętu, a nie zdolności kamery do pracy w nocy. Kąt widzenia kamery, choć wpływa na zakres obserwacji, również nie jest związany z jej wydajnością przy niskim oświetleniu. W praktyce, podczas wyboru kamery do monitoringu, kluczowym czynnikiem staje się czułość, ponieważ z odpowiednią wartością ISO można osiągnąć zadowalające rezultaty w trudnych warunkach. Nieprawidłowe zrozumienie roli czułości w kontekście niskiego oświetlenia prowadzi do błędnych decyzji zakupowych, gdzie użytkownicy mogą wybrać kamerę z wysoką rozdzielczością, ale niską czułością, co nie spełni ich oczekiwań w trudnych warunkach oświetleniowych.

Pytanie 25

Aby określić charakterystykę diody prostowniczej, konieczne jest użycie zasilacza, amperomierza oraz

A. amperometru
B. woltomierza
C. oscyloskopu
D. generatora
Aby wyznaczyć charakterystykę diody prostowniczej, niezbędne jest mierzenie napięcia oraz prądu, które są kluczowymi parametrami do określenia jej właściwości. Woltomierz służy do pomiaru napięcia na diodzie, natomiast amperomierz do pomiaru prądu przepływającego przez nią. Te dwa pomiary są niezbędne do skonstruowania charakterystyki prądowo-napięciowej (I-V), która obrazowo pokazuje, jak dioda reaguje na różne wartości napięcia i prądu. Zrozumienie tej charakterystyki jest istotne w zastosowaniach inżynieryjnych, ponieważ pozwala na dobór odpowiednich komponentów w obwodach elektronicznych, takich jak zasilacze czy układy prostownicze. W praktyce, dobry woltomierz powinien mieć odpowiednią klasę dokładności, aby zapewnić precyzyjne pomiary, co jest zgodne z najlepszymi praktykami w branży elektronicznej, gdzie jakość i dokładność pomiarów są kluczowe dla prawidłowego działania urządzeń.

Pytanie 26

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. satelitarnej
B. naziemnej
C. kablowej
D. przemysłowej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 27

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
B. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
C. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
D. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
Lutowanie rdzenia i oplotu w miejscu przerwania, choć może wydawać się praktycznym rozwiązaniem, nie jest zalecane w przypadku kabli koncentrycznych. Lutowanie może wprowadzić dodatkowe tłumienie sygnału z powodu zmian w impedancji, które mogą wystąpić na skutek niewłaściwego lutowania lub nieodpowiednich materiałów. Ponadto, w miejscach lutowania mogą pojawiać się zjawiska termiczne, które wpływają na jakość połączenia, w tym na trwałość samego kabla. Skręcanie rdzenia i oplotu to kolejna metoda, która, mimo że może być szybka i łatwa w zastosowaniu, prowadzi do niestabilnych połączeń. Takie połączenie jest bardziej narażone na zakłócenia elektromagnetyczne oraz wpływ warunków atmosferycznych, co może znacząco obniżyć jakość sygnału. Użycie tulejek zaciskowych również nie jest optymalne, ponieważ nie zapewnia odpowiedniego kontaktu elektrycznego, co może prowadzić do utraty sygnału w czasie. Rekomendowane standardy w branży telekomunikacyjnej, takie jak normy IEC dotyczące instalacji antenowych, wskazują na używanie złączy typu F jako najlepszego rozwiązania, co powinno skłonić profesjonalistów do unikania innych metod łączenia kabli koncentrycznych. W kontekście praktycznym, dobór odpowiedniej metody łączenia może znacząco wpłynąć na jakość odbioru sygnału telewizyjnego, dlatego warto stosować najnowsze standardy i technologie w celu zapewnienia optymalnej wydajności.

Pytanie 28

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. obuwie elektroizolacyjne
B. rękawice elektroizolacyjne
C. odzież ochronną
D. hełm ochronny
Wybór rękawic elektroizolacyjnych, hełmu ochronnego lub obuwia elektroizolacyjnego, mimo że są to elementy ochrony osobistej, nie jest adekwatny do konkretnego kontekstu prac serwisowych związanych z wlutowywaniem elementów elektronicznych we wzmacniaczu akustycznym. Rękawice elektroizolacyjne są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym, co jest istotne w sytuacjach pracy z napięciem, ale nie są one absolutnie wymagane w przypadku, gdy prace nie dotyczą elementów pod napięciem. Hełm ochronny ma zastosowanie w sytuacjach, gdzie istnieje ryzyko urazów głowy, jednak w typowym środowisku warsztatowym przy wlutowywaniu elementów, ryzyko to jest zminimalizowane. Obuwie elektroizolacyjne jest istotne w kontekście ochrony przed porażeniem, ale jego użycie nie jest konieczne, jeśli prace nie są wykonywane w obszarze zagrożonym wysokim napięciem. Niewłaściwe podejście do doboru środków ochrony osobistej może prowadzić do błędów w ocenie ryzyka, co z kolei zwiększa szansę na wystąpienie wypadków. Kluczowe jest zrozumienie, że każdy rodzaj ochrony powinien być dostosowany do specyfiki pracy, a ogólna zasada mówi, że zawsze należy stosować odpowiednią odzież ochronną, aby zapewnić bezpieczeństwo w miejscu pracy. W praktyce, niezastosowanie odzieży ochronnej może prowadzić do kontaktu z substancjami szkodliwymi, co może skutkować poważnymi konsekwencjami zdrowotnymi.

Pytanie 29

Jakie oznaczenie literowe ma przewód wykorzystywany w połączeniach elementów systemów alarmowych?

A. LGY
B. YTDY
C. F/UTP
D. SMY
Odpowiedzi F/UTP, SMY i LGY niestety nie pasują do kontekstu, gdy chodzi o przewody do systemów alarmowych. F/UTP, mimo że ma ekran, jest bardziej używany w sieciach komputerowych niż do alarmów. Jego budowa sprawia, że to kabel idealny do sieci Ethernet, ale niekoniecznie w temacie bezpieczeństwa. Co do SMY, to jest stosunkowo typowy w telekomunikacji, ale dla systemów alarmowych to raczej nie jest to odpowiedni wybór. A kabel LGY, chociaż używany w różnych instalacjach elektrycznych, nie jest pierwszym, który bym wskazał w kontekście zabezpieczeń. Wybór tych odpowiedzi bywa często wynikiem mylenia zastosowań kabli w różnych branżach i braku znajomości specyfikacji, które są ważne dla systemów alarmowych. Kluczowe, aby wybierać odpowiednie kable, jak YTDY, które zostały zaprojektowane z myślą o tym konkretnym zastosowaniu.

Pytanie 30

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. zwarcia wejścia układu
B. usunęcia kondensatora filtrującego
C. odłączenia układu od zasilania
D. podłączenia obciążenia sztucznego
Odłączenie układu od zasilania przed przystąpieniem do wymiany uszkodzonego tranzystora stopnia końcowego przetwornicy napięcia jest kluczowym krokiem zapewniającym bezpieczeństwo oraz ochronę sprzętu. Przed rozpoczęciem jakichkolwiek prac serwisowych, zawsze należy zidentyfikować źródło zasilania i je odłączyć, aby uniknąć porażenia prądem oraz uszkodzenia komponentów. Dobre praktyki inżynieryjne w elektronice nakazują stosowanie takich protokołów, aby zapewnić, że wszelkie potencjalnie niebezpieczne napięcia są wyeliminowane. W przypadku przetwornic napięcia, które często operują przy wysokich napięciach i prądach, jest to szczególnie istotne. Po odłączeniu zasilania, można bezpiecznie wymontować uszkodzony tranzystor, a następnie zainstalować nowy, mając pewność, że nie ma ryzyka dla technika ani dla innych elementów układu. Należy również pamiętać o odpowiednim wyładowaniu wszelkich kondensatorów, które mogą przechowywać ładunek elektryczny, co również jest częścią standardowych procedur konserwacyjnych.

Pytanie 31

Jakie cechy ma przewód U/UTP 4×2×0,5?

A. nieekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
B. ekranowany o czterech żyłach w podwójnej izolacji o długości 0,5 m
C. nieekranowany czterożyłowy o przekroju 0,5 mm2
D. ekranowany czterożyłowy o przekroju 0,5 mm2
W odpowiedziach, które nie są poprawne, można dostrzec pewne nieporozumienia dotyczące klasyfikacji przewodów. Odpowiedzi sugerujące, że przewód jest ekranowany, są błędne, ponieważ oznaczenie U/UTP samo w sobie oznacza, że przewód jest nieekranowany. Ekranowane przewody, takie jak F/UTP czy S/UTP, różnią się konstrukcją, mają dodatkowe warstwy ochronne, które chronią przed zakłóceniami elektromagnetycznymi, co nie jest przypadkiem przewodów U/UTP. Kolejnym błędem jest mylenie pojęć dotyczących liczby żył i ich przekroju. Odpowiedzi podające, że przewód miałby długość 0,5 m, wprowadzają w błąd, ponieważ oznaczenie 0,5 odnosi się do przekroju żyły, a nie długości przewodu. W praktyce, w instalacjach telekomunikacyjnych, ważne jest, aby prawidłowo rozumieć specyfikacje przewodów, gdyż błędna interpretacja może prowadzić do problemów z jakością sygnału i efektywnością sieci. Mylne koncepcje dotyczące ekranowania i przekroju żył mogą skutkować niewłaściwym doborem kabli do konkretnego zastosowania, co w dłuższej perspektywie wpływa na niezawodność i wydajność całego systemu. Dlatego kluczowe jest, aby dokładnie zapoznać się ze standardami oraz specyfikacjami technicznymi produktów, aby podejmować świadome decyzje w procesie projektowania i instalowania systemów telekomunikacyjnych.

Pytanie 32

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. zwiększyć poziom głośności w panelu
B. dostosować napięcie w kasecie rozmownej
C. zwiększyć napięcie zasilania elektrozaczepu
D. dostosować poziom głośności w unifonie
Wyregulowanie napięcia w kasecie rozmownej, podwyższenie poziomu głośności w panelu oraz zwiększenie napięcia zasilania elektrozaczepu to podejścia, które mogą wydawać się sensowne, jednak w rzeczywistości są one nieadekwatne do rozwiązywania problemu piszczącego dźwięku w unifonie. Regulacja napięcia w kasecie rozmownej jest zazwyczaj związana z zasilaniem urządzenia, a nie z jakościami dźwiękowymi. Zmiana tego napięcia nie wpłynie na głośność dźwięku w unifonie, a może wręcz prowadzić do dodatkowych problemów z działaniem systemu. Podwyższanie poziomu głośności w panelu również nie jest rozwiązaniem, ponieważ zbyt wysoka głośność może tylko nasilić efekt sprzężenia akustycznego, co prowadzi do jeszcze głośniejszych pisków. Zwiększenie napięcia zasilania elektrozaczepu jest całkowicie nieuzasadnione w tym kontekście, ponieważ elektrozaczep nie ma wpływu na audio unifonu. Takie podejście pokazuje typowy błąd myślowy, polegający na myleniu zjawisk związanych z dźwiękiem i zasilaniem, co może prowadzić do kosztownych pomyłek w instalacji systemów domofonowych. Kluczowe jest zrozumienie, że problemy z dźwiękiem powinny być rozwiązywane poprzez ustawienia audio, a nie modyfikacje parametrów zasilania, które mogą negatywnie wpłynąć na całe urządzenie. W kontekście standardów branżowych, ważne jest, by w takich sytuacjach kierować się zaleceniami producentów, które zazwyczaj podkreślają znaczenie właściwego ustawienia głośności w unifonie jako pierwszego kroku w diagnostyce problemów audio.

Pytanie 33

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. nadanego przez stację czołową
B. na wyjściach poszczególnych węzłów optycznych
C. w poszczególnych gniazdach abonenckich
D. w kanale zwrotnym
Odpowiedź 'w kanale zwrotnym' jest poprawna, ponieważ operatorzy telewizji kablowej monitorują jakość sygnału u abonentów, analizując parametry sygnału, które są przesyłane w kanale zwrotnym. Kanal zwrotny to część infrastruktury, w której sygnał z gniazd abonenckich wraca do stacji czołowej. Operatorzy mogą na przykład mierzyć poziom sygnału, jego jakość oraz wszelkie zakłócenia, które mogą wpływać na odbiór. W praktyce, pomiar tych parametrów pozwala na szybką diagnostykę ewentualnych problemów technicznych, co jest kluczowe dla utrzymania wysokiej jakości usług. W standardach branżowych, takich jak SCTE (Society of Cable Telecommunications Engineers), podkreśla się znaczenie monitorowania kanału zwrotnego jako elementu zapewniającego ciągłość i niezawodność usług telewizyjnych. Dzięki regularnym pomiarom, operatorzy mogą także dostosowywać swoje usługi do potrzeb klientów, co jest istotnym aspektem konkurencyjności na rynku telekomunikacyjnym.

Pytanie 34

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. Z80
B. UL7805
C. NE555
D. SN74151
Układ scalony NE555 jest niezwykle popularnym generatorem impulsów prostokątnych, szeroko stosowanym w różnych aplikacjach elektronicznych. Po dołączeniu odpowiednich elementów zewnętrznych, takich jak rezystory i kondensatory, NE555 może pracować w trybie astabilnym, co oznacza, że generuje ciąg impulsów prostokątnych o określonej częstotliwości. Przykładem zastosowania tego układu jest tworzenie sygnałów zegarowych w systemach cyfrowych, a także w aplikacjach związanych z automatyzacją, gdzie wymagana jest synchronizacja procesów. NE555 jest także wykorzystywany w projektach hobbystycznych, takich jak generatory tonów w zabawkach lub alarmach. Warto zauważyć, że NE555 jest zgodny z wieloma standardami branżowymi, co czyni go wszechstronnym narzędziem w inżynierii elektroniki. Prawidłowe dobieranie wartości elementów zewnętrznych pozwala na precyzyjne dostosowanie parametrów pracy układu, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 35

Jak monitoruje się jakość sygnału telewizyjnego u poszczególnych abonentów telewizji kablowej?

A. współczynnik szumów w sygnale dostarczanym przez stację czołową do abonentów
B. współczynnik szumów w kanale zwrotnym poszczególnych abonentów
C. poziom sygnału wizyjnego w gniazdach abonenckich różnych użytkowników
D. poziom sygnału przesyłanego przez stację czołową do abonentów
Odpowiedź dotycząca monitorowania jakości sygnału telewizyjnego poprzez współczynnik szumów w kanale zwrotnym poszczególnych abonentów jest trafna, ponieważ kanał zwrotny jest kluczowym elementem w systemach telewizji kablowej. Współczynnik szumów pozwala na ocenę stosunku sygnału do szumów, co jest istotne dla zapewnienia wysokiej jakości transmisji. W praktyce, monitorowanie tego parametru umożliwia szybkie wykrywanie usterek oraz identyfikowanie obszarów, gdzie jakość sygnału może być niedostateczna. Stosowanie standardów, takich jak DOCSIS, zapewnia odpowiednie metodyki pomiarowe, co pozwala operatorom na efektywne zarządzanie siecią. Dzięki tym pomiarom, operatorzy mogą podejmować działania korygujące, takie jak regulacja wzmacniaczy lub dostosowanie konfiguracji sieci, co w konsekwencji prowadzi do zadowolenia abonentów i redukcji skarg dotyczących jakości usług.

Pytanie 36

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. położenie anteny
B. metodę ułożenia przewodów
C. jakość sygnału w gniazdku
D. usytuowanie gniazd
Podczas rozważania, co należy sprawdzić podczas okresowej kontroli instalacji TV, można natknąć się na różne koncepcje, które niekoniecznie są kluczowe dla jakości odbioru. Na przykład, umiejscowienie anteny, mimo że istotne, nie jest przedmiotem analizy w kontekście okresowej kontroli, ponieważ zakłada się, iż antena została poprawnie zainstalowana na etapie montażu. W przypadku lokalizacji gniazd, również należy zauważyć, że ich umiejscowienie powinno być określone już na etapie projektowania instalacji. Ponadto, sposób ułożenia kabli, choć ważny dla estetyki i bezpieczeństwa, nie ma bezpośredniego wpływu na jakość sygnału. W rzeczywistości, niepoprawna analiza takiej sytuacji może prowadzić do błędnych wniosków, które nie rozwiążą problemów związanych z odbiorem telewizyjnym. Kluczowym elementem jest bowiem poziom sygnału, który jest bezpośrednio związany z jakością odbioru. Skupienie się na umiejscowieniu anteny, gniazd czy kabli bez zbadania poziomu sygnału może prowadzić do zignorowania podstawowego problemu, jakim jest nieodpowiednia moc sygnału. Tego typu myślenie może skutkować nieefektywnym podejściem do problematyki instalacji telewizyjnych, co w konsekwencji nie przynosi oczekiwanych rezultatów w postaci wysokiej jakości odbioru.

Pytanie 37

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. zgłoszenia sytuacji przełożonemu
B. przeprowadzenia masażu serca
C. odłączenia osoby od źródła prądu
D. wykonania sztucznego oddychania
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 38

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
B. transoptor
C. fototranzystor
D. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
Wybór innych opcji, takich jak fototranzystor czy transoptor, nie jest adekwatny do stworzenia niewidocznej bariery świetlnej. Fototranzystor, choć zdolny do detekcji światła, działa w całym zakresie widma optycznego, co oznacza, że może reagować na światło widzialne, jak i podczerwone. Użycie fototranzystora w systemach, które mają na celu detekcję obiektów bez widocznych elementów, może prowadzić do problemów z fałszywymi alarmami, zwłaszcza w dobrze oświetlonych pomieszczeniach. Z kolei transoptor, który jest elementem elektronicznym stosowanym do przesyłania sygnałów w izolacji galwanicznej, nie jest przeznaczony do detekcji obecności obiektów; jego działanie polega na przekazywaniu sygnałów, a nie na ich wykrywaniu. Ponadto, zestaw złożony z diody LED emitującej światło widzialne i fotodiody, nie zapewnia skutecznej bariery niewidocznej dla oka, co czyni go niewłaściwym wyborem dla takich zastosowań. W praktyce, stosowanie technologii, która działa w zakresie podczerwieni, daje większą elastyczność i skuteczność w budowie systemów detekcji, co jest zgodne z aktualnymi standardami branżowymi.

Pytanie 39

Jakiego sprzętu należy użyć podczas wymiany uszkodzonej diody w elektrozaczepie drzwi wejściowych?

A. Stacji lutowniczej
B. Lutownicy oporowej
C. Stacji na gorące powietrze
D. Lutownicy transformatorowej
Kiedy wybierasz inne narzędzia lutownicze, jak lutownica oporowa czy stacja lutownicza, mogą się zdarzyć problemy przy wymianie diod w elektrozaczepach. Lutownica oporowa, wiadomo, też się używa w elektronice, ale nie daje takiej samej kontroli nad temperaturą jak transformatorowa, co jest istotne, bo diody są wrażliwe na ciepło. Stacje lutownicze są lepsze jakościowo, ale też bardziej skomplikowane w obsłudze, co może być problemem dla początkujących. A stacje na gorące powietrze, choć przydatne, nie nadają się do precyzyjnego lutowania małych elementów, bo mogą rozgrzać otoczenie i uszkodzić inne komponenty. Niektórzy mylą sytuacje niskiej i wysokiej temperatury użytkowania, co może prowadzić do złych decyzji przy wyborze narzędzi. W sumie, ważne jest, żeby w odpowiednich sytuacjach sięgać po narzędzia, które są zgodne z branżowymi zaleceniami.

Pytanie 40

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5

A. C.
B. D.
C. B.
D. A.
Wybór odpowiedzi B, C lub D jest niewłaściwy z kilku powodów, które można analizować pod kątem technicznym. Odpowiedzi B i C oferują diody, które mają napięcie wsteczne (URM) niższe niż wymagane 200 V. Użycie komponentu o zbyt niskim napięciu wstecznym może prowadzić do ich awarii, zwłaszcza w przypadku wystąpienia napięcia przekraczającego dopuszczalne wartości. Dioda pracująca z napięciem wstecznym nieprzystosowanym do wymagań układu jest narażona na przebicie, co z kolei może skutkować uszkodzeniem nie tylko samej diody, ale i innych elementów układu. W przypadku odpowiedzi D, choć dioda może mieć napięcie wsteczne wystarczające do zaspokojenia wymagań, jej prąd przewodzenia (IFAV) jest niewystarczający. Przy wyborze diod istotne jest, aby ich prąd przewodzenia był równy lub większy niż maksymalny prąd, który dioda ma przewodzić. Niezadowalające parametry komponentów prowadzą do ich niewłaściwej pracy, co może prowadzić do przegrzewania, skrócenia żywotności oraz potencjalnych awarii całego układu. Często błędy w doborze diod wynikają z niedostatecznej wiedzy na temat ich specyfikacji, co podkreśla znaczenie ciągłej edukacji w dziedzinie elektroniki. Zrozumienie, jakie parametry są kluczowe w kontekście aplikacji, pozwala uniknąć typowych problemów związanych z niezawodnością i efektywnością urządzeń elektronicznych.