Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 07:32
  • Data zakończenia: 7 czerwca 2025 07:35

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakiego rodzaju oprogramowanie należy zastosować do przedstawienia procesu produkcji?

A. CAM
B. SCADA
C. CAD
D. CAE
SCADA, czyli System Kontroli i Zbierania Danych, to oprogramowanie kluczowe w wizualizacji i zarządzaniu procesami produkcyjnymi. Jego głównym celem jest monitorowanie systemów w czasie rzeczywistym, co pozwala na szybkie reagowanie na wszelkie nieprawidłowości. SCADA umożliwia zbieranie danych z różnych czujników i urządzeń, a następnie ich przetwarzanie i wizualizację w formie intuicyjnych interfejsów graficznych. Dzięki temu operatorzy mogą pełniej zrozumieć stan systemu produkcyjnego, co jest istotne w kontekście optymalizacji procesów oraz minimalizacji przestojów. W praktyce SCADA często współpracuje z innymi systemami, takimi jak ERP (Enterprise Resource Planning) czy MES (Manufacturing Execution Systems), co jeszcze bardziej zwiększa jej użyteczność. Standardy takie jak ISA-95 definiują interakcje pomiędzy systemami produkcyjnymi a zarządczymi, co sprawia, że SCADA jest integralnym elementem nowoczesnych zakładów przemysłowych. Właściwe wykorzystanie SCADA przynosi korzyści w postaci zwiększonej efektywności operacyjnej oraz lepszego wykorzystania zasobów.

Pytanie 2

Na podstawie tabeli z dokumentacji techniczno-ruchowej przekładni napędu wskaż wszystkie czynności konserwacyjne, które należy przeprowadzić po upływie 4 lat i 3 miesięcy od przyjęcia jednostki napędowej do eksploatacji.

Lp.CzynnośćOdstępy czasu
1Sprawdzenie odgłosów z kół zębatych, łożyskco 1 miesiąc
2Sprawdzenie temperatury obudowy (maksymalna 90°C)
3Wizualne sprawdzenie uszczelnień
4Usunięcie kurzu, pyłu z powierzchni napędu
5Oczyszczenie korka odpowietrzającego i jego bezpośredniego otoczeniaco 3 miesiące
6Sprawdzenie śrub montażowych korpusu napęduco 6 miesięcy
7Sprawdzenie amortyzatorów gumowychco 48 miesięcy
8Wizualne sprawdzenie uszczelnień wału i ewentualnie wymiana

A. 5, 8
B. 1, 2, 3, 4, 5
C. 1, 2, 3, 4, 5, 8
D. 1, 2, 3, 4, 5, 6, 7
Niepoprawne odpowiedzi opierają się na mylnych założeniach dotyczących wymagań konserwacyjnych jednostki napędowej. Wybranie tylko niektórych czynności konserwacyjnych, jak w przypadku odpowiedzi 5, 8 czy 1, 2, 3, 4, 5, 6, 7, sugeruje niedostateczne zrozumienie całościowego podejścia do utrzymania tych systemów. Ważne jest, aby dostrzegać, że każda czynność konserwacyjna ma swoje uzasadnienie wynikające z długofalowych obserwacji, które pokazują, że niedoszacowanie potrzebnych działań może prowadzić do poważnych awarii. Na przykład, pomijając regularną kontrolę smarów i materiałów eksploatacyjnych, można nieświadomie doprowadzić do ich degradacji, co w efekcie zwiększa tarcie i obciążenie komponentów, a to może skutkować ich uszkodzeniem. Ponadto, odpowiedzi takie jak 5, 8 czy 1, 2, 3, 4, 5, 6, 7 nie uwzględniają cykliczności niektórych działań konserwacyjnych, które są kluczowe dla prawidłowego funkcjonowania przekładni. Niezrozumienie tych aspektów prowadzi do koncepcji, które mogą zagrażać bezpieczeństwu operacyjnemu i mogą narazić jednostkę na nieplanowane przestoje. Rekomendacje dotyczące utrzymania powinny być więc zgodne z najlepszymi praktykami i normami branżowymi, aby zapewnić wysoką efektywność i niezawodność urządzeń.

Pytanie 3

Jaki program służy do gromadzenia informacji o procesie przemysłowym, ich przedstawiania oraz archiwizacji?

A. Kompilator
B. SCADA
C. CAD/CAM
D. Linker
SCADA, czyli System Control and Data Acquisition, to kluczowy program używany w przemyśle do zbierania, monitorowania oraz archiwizacji danych procesowych. Dzięki SCADA operatorzy mogą uzyskiwać w czasie rzeczywistym informacje na temat pracy maszyn oraz efektywności procesów przemysłowych. System ten umożliwia wizualizację danych w formie graficznych interfejsów, co ułatwia identyfikację problemów i szybką reakcję na nie. Przykładem zastosowania SCADA może być zarządzanie systemem wodociągowym, gdzie program monitoruje ciśnienie, przepływ wody oraz stan zbiorników. Standardy takie jak ISA-95 czy ISA-88 definiują ramy, w których SCADA operuje, co zapewnia interoperacyjność z innymi systemami automatyki przemysłowej. Wiele nowoczesnych instalacji przemysłowych korzysta z SCADA, aby zwiększyć efektywność operacyjną, poprawić jakość produkcji oraz zminimalizować przestoje, co przekłada się na oszczędności finansowe i lepszą jakość produktów.

Pytanie 4

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. amplitudy sygnału.
B. częstotliwości sygnału.
C. szerokości sygnału.
D. fazy sygnału.
Wybór odpowiedzi dotyczącej amplitudy impulsu, częstotliwości impulsu lub fazy impulsu odzwierciedla pewne nieporozumienia dotyczące zasad działania modulacji PWM. Modulacja amplitudy polega na zmianie wysokości impulsów w sygnale, co jest zupełnie inną techniką, która nie zapewnia taką samą efektywność w regulacji mocy. Z kolei modulacja częstotliwości polega na zmianie liczby impulsów w jednostce czasu, co również nie odpowiada idei PWM, gdzie kluczowe jest zachowanie stałej częstotliwości i zmiana szerokości impulsów. Wybór fazy impulsu mógłby sugerować, że modulacja polega na synchronizacji impulsów, co w kontekście PWM również jest błędne. Zrozumienie różnicy między tymi koncepcjami jest kluczowe: PWM polega na regulacji wypełnienia impulsów, a nie ich amplitudy, częstotliwości czy fazy. Te błędne odpowiedzi mogą wynikać z mylnego utożsamiania różnych technik modulacji, co jest częstym problemem w nauce o elektronice. Aby unikać takich błędów, warto zwrócić uwagę na konkretne definicje i zastosowania każdej z tych metod w praktyce.

Pytanie 5

Tłoczysko siłownika pneumatycznego porusza się poziomo ruchem prostoliniowym, lecz z wolniejszą prędkością niż zazwyczaj. Co może być najprawdopodobniejszą przyczyną opóźnienia ruchu siłownika?

A. Zepsute mocowanie siłownika
B. Nieszczelność, zużycie uszczelek lub pierścieni tłoka
C. Uszkodzone zewnętrzne amortyzatory siłownika
D. Wyboczone lub uszkodzone tłoczysko

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nieszczelność, zużycie uszczelek lub pierścieni tłoka są głównymi przyczynami spowolnienia ruchu siłownika pneumatycznego. W momencie, gdy uszczelki lub pierścienie są uszkodzone, dochodzi do wycieku powietrza, co prowadzi do utraty ciśnienia w układzie. To z kolei powoduje, że siłownik nie może osiągnąć pełnej prędkości, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja procesów lub linie montażowe. W praktyce, regularne kontrole stanu uszczelek i pierścieni są niezmiernie ważne, aby zapewnić optymalną wydajność systemu pneumatycznego. W przypadku wykrycia nieszczelności, należy natychmiast zidentyfikować źródło problemu i wymienić uszkodzone elementy, co minimalizuje ryzyko awarii całego systemu. Dobre praktyki w tej dziedzinie obejmują także stosowanie wysokiej jakości materiałów uszczelniających oraz przestrzeganie instrukcji producenta dotyczących montażu i konserwacji siłowników pneumatycznych.

Pytanie 6

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z trzech par
B. Z dziewięciu par
C. Z sześciu par
D. Z jednej pary

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Najprostszy wirnik silnika indukcyjnego trójfazowego składa się z jednej pary przewodów połączonych w ramki. Ta konstrukcja jest znana jako wirnik typu klatkowego, który jest powszechnie stosowany w silnikach asynchronicznych. W jednej parze przewodów mamy dwa przewody, które są odpowiedzialne za wytwarzanie pola magnetycznego w wirniku. Zastosowanie jednej pary przewodów pozwala na efektywne generowanie momentu obrotowego przy minimalnych stratach energetycznych. W praktyce, wirnik tego typu jest bardzo wydajny i mało awaryjny, co czyni go idealnym rozwiązaniem dla wielu zastosowań przemysłowych, takich jak pompy, wentylatory czy sprężarki. Projektując silniki elektryczne, inżynierowie bazują na normach takich jak IEC 60034, które definiują wymagania dotyczące wirników oraz ogólnie silników elektrycznych. Warto zaznaczyć, że w przypadku silników wielofazowych, liczba par przewodów w wirniku wpływa na charakterystyki pracy silnika, takie jak moc, moment obrotowy i wydajność, dlatego ich odpowiedni dobór jest kluczowy w projektowaniu.

Pytanie 7

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. SUB
B. DIV
C. MOVE
D. ADD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 8

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.

A. Ustawić poziomo butlę z gazem ochronnym.
B. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
C. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
D. Podłączyć wąż do półautomatu i do butli.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zdejmowanie kołpaka z butli oraz chwilowe odkręcenie zaworu butli jest kluczowym krokiem przed montażem reduktora. Kołpak działa jako zabezpieczenie, chroniące zawór przed uszkodzeniem oraz zanieczyszczeniami, które mogą wpłynąć na jakość gazu podczas użytkowania. Krótkie odkręcenie zaworu pozwala na wydostanie się niewielkiej ilości gazu, co pomaga w usunięciu zanieczyszczeń, takich jak kurz czy resztki, które mogą znajdować się w zaworze. Zgodnie z dobrymi praktykami w branży spawalniczej, takie działania zapobiegają późniejszym problemom, które mogą wystąpić w trakcie pracy, jak np. nieprawidłowe ciśnienie gazu, które wpłynie na jakość spawania. Dbanie o detale w procedurach przygotowawczych zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Obowiązujące normy dotyczące bezpieczeństwa, takie jak PN-EN ISO 2503, podkreślają znaczenie czystości i bezpieczeństwa przy podłączaniu urządzeń gazowych, co czyni ten krok nieodzownym elementem procesu.

Pytanie 9

Jakiego typu czujnik powinno się użyć do pomiaru masy?

A. Optyczny
B. Tensometryczny
C. Triangulacyjny
D. Pojemnościowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik tensometryczny to naprawdę ważne narzędzie, które używamy do pomiaru masy. Działa to tak, że jak na niego działają różne siły, na przykład ciężar przedmiotu, jego elementy się odkształcają. Te zmiany kształtu są potem przekładane na sygnał elektryczny, który nam pokazuje, ile waży ten przedmiot. Można je spotkać w różnych miejscach, na przykład w wagach przemysłowych, gdzie dokładność pomiarów jest super istotna, żeby kontrolować jakość produktów. W automatyce też są ważne, bo monitorują masę w trakcie produkcji. Warto pamiętać, że czujniki te należy regularnie kalibrować, żeby były pewne i dokładne. Dzięki połączeniu z systemami wag elektronicznych mamy też możliwość śledzenia procesów na bieżąco, co jest mega przydatne w szybkim środowisku produkcyjnym.

Pytanie 10

Kontrola instalacji hydraulicznej obejmuje

A. ocenę stanu przewodów
B. zmianę rozdzielacza
C. wymianę filtra oleju w systemie
D. pomiar natężenia prądu zasilającego pompę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "sprawdzenie stanu przewodów" jest poprawna, ponieważ w ramach oględzin instalacji hydraulicznej kluczowe jest ocenienie stanu technicznego systemu. Oględziny powinny obejmować kontrolę szczelności przewodów, co jest niezwykle ważne dla zapobiegania wyciekom oraz zapewnienia efektywności całego układu. Ponadto, sprawdzając przewody, należy ocenić ich stan izolacji, co ma na celu uniknięcie potencjalnych uszkodzeń mechanicznych, które mogą być spowodowane różnymi czynnikami, takimi jak korozja czy działanie wysokiego ciśnienia. Dobre praktyki branżowe zalecają regularne przeprowadzanie takich oględzin, aby spełniały one normy bezpieczeństwa i efektywności, a także przedłużały żywotność systemu hydraulicznego. Przykładem zastosowania tej wiedzy może być rutynowa inspekcja w zakładach przemysłowych, gdzie niewłaściwy stan przewodów może prowadzić do poważnych awarii oraz wysokich kosztów naprawy.

Pytanie 11

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A

A. 400 V AC
B. 230 V DC
C. 400 V DC
D. 230 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 12

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
B. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
C. Zmniejszyć częstotliwość napięcia zasilającego
D. Zwiększyć wartość napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź polega na zmniejszeniu proporcjonalnie częstotliwości oraz wartości napięcia zasilającego w silniku indukcyjnym napędzanym przez przemiennik częstotliwości. W praktyce, takie działanie prowadzi do obniżenia prędkości wirowania wirnika, przy jednoczesnym zachowaniu stałego poziomu poślizgu. Poślizg jest to różnica między prędkością synchronizacyjną a rzeczywistą prędkością obrotową wirnika, a jego wartość pozostaje stabilna, gdy zmienia się obie te parametry w równym stopniu. W aplikacjach przemysłowych, gdy chcemy kontrolować prędkość silników, często stosuje się systemy regulacji, które uwzględniają te zależności. Zmniejszenie zarówno częstotliwości, jak i napięcia jest zgodne z zasadami dobrych praktyk w inżynierii mechatronicznej i pozwala na efektywne zarządzanie energią oraz minimalizację zużycia energii. Dodatkowo, takie podejście zapobiega przeciążeniom silnika oraz wydłuża jego żywotność.

Pytanie 13

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. czyszczenia żeber radiatorów
B. sprawdzania napięć silnika
C. wymiany zabrudzonego komutatora wirnika
D. sprawdzania połączeń elektrycznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra decyzja, wybierając odpowiedź o wymianie zabrudzonego komutatora wirnika. Wiesz, przegląd konserwacyjny napędów elektrycznych to głównie rutynowe zadania, jak czyszczenie czy kontrola, a nie jakieś skomplikowane prace wymagające rozkręcania całego silnika. Robimy takie rzeczy jak sprawdzanie napięć silnika czy czyszczenie radiatorów, które są fundamentalne dla tego, żeby wszystko działało jak należy. Wymiana komutatora wirnika to już inna bajka – trzeba mieć specjalistyczne umiejętności, narzędzia i trochę więcej czasu. Takie konkretne wymiany najlepiej załatwiać w ramach większych przeglądów serwisowych, a nie przy każdej rutynowej kontroli, żeby nie marnować czasu i zachować sprawność urządzeń.

Pytanie 14

Wartość parametru 20 V/1000 obr/min jest charakterystyczna dla

A. resolvera
B. induktosyna
C. sprzęgła elektromagnetycznego
D. prądnicy tachometrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Parametr 20 V/1000 obr/min to typowa wartość dla prądnicy tachometrycznej, która służy do pomiaru prędkości obrotowej różnych maszyn, w tym silników. W praktyce oznacza to, że im szybciej coś się kręci, tym większe napięcie generuje ta prądnica. W przypadku, który mamy, to 20 V przy 1000 obrotach na minutę. To naprawdę przydatne w automatyce i kontrolowaniu procesów. Spotykamy je często w aplikacjach związanych z kontrolą prędkości silników elektrycznych i w systemach serwonapędów. Dlatego dobry wybór prądnicy tachometrycznej jest mega ważny, żeby pomiary były dokładne i stabilne. Z doświadczenia wiem, że to kluczowy element w nowoczesnych technologiach przemysłowych.

Pytanie 15

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. w zakresie od 100 do 240 VDC
B. 12 VDC
C. w zakresie od 100 do 240 VAC
D. 12 VAC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '12 VDC' jest prawidłowa, ponieważ oznacza napięcie stałe, które zasilacz dostarcza do podłączonych urządzeń. W kontekście zasilaczy, oznaczenie 'OUTPUT 12 VDC' sugeruje, że napięcie wyjściowe wynosi 12 woltów w trybie prądu stałego, co jest powszechnie stosowane w wielu urządzeniach elektronicznych, takich jak kamery, routery czy systemy alarmowe. Zrozumienie napięcia wyjściowego zasilacza jest kluczowe dla zapewnienia kompatybilności z urządzeniami, które wymagają określonego napięcia do prawidłowego funkcjonowania. Przy projektowaniu układów zasilania istotne jest również przestrzeganie norm bezpieczeństwa, takich jak IEC 60950, które określają, jak powinny być skonstruowane zasilacze i jakie mają mieć zabezpieczenia. W zastosowaniach praktycznych, użycie zasilaczy o odpowiednich parametrach zapewnia nie tylko efektywność energetyczną, ale również długoterminową stabilność i niezawodność systemu.

Pytanie 16

Projektowana maszyna manipulacyjna posiada kinematykę typu PPP (TTT). Każdy z jej członów ma zakres ruchu wynoszący 1 m. Oznacza to, że efektor manipulacyjny będzie zdolny do realizacji operacji technologicznych w przestrzeni o wymiarach

A. 1 m × 1 m × 1 m
B. 1 m × 2 m × 1 m
C. 2 m × 1 m × 1 m
D. 1 m × 1 m × 2 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2 jest prawidłowa, ponieważ każdy z trzech członów maszyny manipulacyjnej typu PPP (TTT) umożliwia ruch w jednym wymiarze przestrzeni. Zasięg każdego członu wynosi 1 m, co oznacza, że efektor końcowy ma możliwość poruszania się w przestrzeni o wymiarach 1 m w każdym z kierunków. Wynikowy zasięg manipulacyjny to sześcian o boku 1 m, co idealnie odpowiada podanym wymiarom 1 m × 1 m × 1 m. W praktyce, maszyny tego rodzaju są szeroko stosowane w automatyzacji procesów produkcyjnych i montażowych, gdzie precyzyjne manipulowanie obiektami w ograniczonej przestrzeni jest kluczowe. Tego rodzaju manipulatory znajdują zastosowanie w robotyce przemysłowej, np. przy montażu delikatnych komponentów elektronicznych. Istotne jest, aby inżynierowie projektujący takie maszyny brali pod uwagę zasięg ruchu przy planowaniu operacji, co pozwala na efektywniejsze i bardziej precyzyjne działania w zakładach produkcyjnych.

Pytanie 17

Jaką czynność projektową nie jest możliwe zrealizowanie w oprogramowaniu CAM?

A. Wykonywania symulacji obróbki obiektu w środowisku wirtualnym
B. Generowania kodu dla obrabiarki CNC
C. Przygotowania dokumentacji technologicznej produktu
D. Przygotowania instrukcji (G-CODE) dla maszyn typu Rapid Prototyping

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Opracowania dokumentacji technologicznej wyrobu' jest prawidłowa, ponieważ oprogramowanie CAM (Computer-Aided Manufacturing) koncentruje się na wsparciu procesów produkcyjnych, takich jak generowanie kodu G dla maszyn CNC, symulacja obróbki oraz wsparcie w procesie rapid prototyping. W przypadku dokumentacji technologicznej, która obejmuje szczegółowe rysunki techniczne, specyfikacje materiałowe czy normy jakościowe, kluczową rolę odgrywa oprogramowanie CAD (Computer-Aided Design). Oprogramowanie CAM nie posiada funkcji umożliwiających tworzenie tego typu dokumentacji, ponieważ jego głównym celem jest przekształcanie modeli 3D i planów produkcyjnych na instrukcje operacyjne, które mogą być zrozumiane przez maszyny. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokumentacji technologicznej w zapewnieniu jakości i efektywności produkcji, co czyni współpracę między oprogramowaniem CAD a CAM niezbędną dla skutecznego procesu wytwórczego. Przykładowo, w branży lotniczej, dokumentacja technologiczna musi być zgodna z rygorystycznymi normami, których CAM nie jest w stanie w pełni zrealizować bez wcześniejszego opracowania odpowiednich schematów w CAD.

Pytanie 18

Jakiego elementu elektronicznego należy użyć do ograniczenia przepięć na cewce stycznika z napięciem stałym, który jest podłączony do wyjścia tranzystorowego sterownika PLC?

A. Tranzystor
B. Triak
C. Diodę
D. Diak

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dioda jest kluczowym elementem w układach elektronicznych, szczególnie w kontekście ochrony przed przepięciami. Stosowanie diody w obwodzie cewki stycznika napięcia stałego, która jest sterowana przez tranzystor, jest praktyką zgodną z zasadami inżynierii elektronicznej. Dioda pozwala na przepływ prądu w jednym kierunku, co jest niezbędne do ochrony elementów wrażliwych, takich jak tranzystory, przed niekontrolowanym wzrostem napięcia, który może wystąpić podczas wyłączania cewki. W momencie deaktywacji cewki, energia zgromadzona w polu magnetycznym cewki musi zostać odprowadzona. Dioda, umieszczona w przeciwnym kierunku względem normalnego przepływu prądu, umożliwia tę energię rozładować w sposób bezpieczny. Dzięki temu, stosowanie diod w takich aplikacjach jest zgodne z normami branżowymi i dobrymi praktykami, co przekłada się na dłuższą żywotność komponentów elektronicznych oraz większą niezawodność całego systemu. Przykłady zastosowań diod w obwodach obejmują nie tylko styczniki, ale także silniki DC i różne układy załączające, gdzie kontrola przepięć jest kluczowa dla ochrony układów elektronicznych.

Pytanie 19

Który z podanych kwalifikatorów działań, używanych w metodzie SFC, definiuje zależności czasowe?

A. S
B. N
C. D
D. R

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwalifikator 'D' w metodzie SFC (Sequential Function Chart) odnosi się do uzależnień czasowych, co oznacza, że służy do definiowania opóźnień w działaniach sterujących. Jego użycie jest kluczowe w kontekście programowania PLC, gdzie czas odgrywa istotną rolę w synchronizacji procesów. Na przykład, w automatyzacji procesów przemysłowych, użycie kwalifikatora 'D' pozwala na wprowadzenie opóźnień między cyklami produkcyjnymi, co może być niezbędne do zapewnienia odpowiedniego działania maszyn oraz bezpieczeństwa. Kwalifikator ten jest zgodny z zasadami modelowania systemów, gdzie precyzyjne zarządzanie czasem może znacząco poprawić efektywność operacyjną. W praktyce, w przypadku zaprogramowania maszyny do produkcji, która wymaga chwili na załadunek lub wyładunek materiałów, zastosowanie opóźnienia 'D' umożliwia prawidłowe przeprowadzenie operacji bez zatorów. Warto również zaznaczyć, że w systemach SCADA i HMI, wizualizacja takich opóźnień może znacznie ułatwić monitorowanie i zarządzanie procesami przemysłowymi.

Pytanie 20

Jakie typy silników są wykorzystywane w drukarkach atramentowych do ruchu głowicy?

A. Silniki indukcyjne klatkowe
B. Silniki krokowe
C. Silniki indukcyjne synchroniczne
D. Silniki liniowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki krokowe są preferowanym rozwiązaniem w drukarkach atramentowych ze względu na ich zdolność do precyzyjnego kontrolowania ruchu głowicy drukującej. W odróżnieniu od innych typów silników, silniki krokowe działają na zasadzie podziału pełnego obrotu na mniejsze kroki, co pozwala na dokładne i kontrolowane pozycjonowanie. Taki mechanizm jest kluczowy w aplikacjach wymagających wysokiej precyzji, jak drukowanie, gdzie każdy krok może decydować o jakości końcowego wydruku. Przykładowo, zastosowanie silników krokowych w technologii druku atramentowego pozwala na minimalizację przesunięć i błędów, co jest szczególnie istotne w przypadku złożonych wzorów czy grafik. Dodatkowo, silniki te charakteryzują się dobrą dynamiką, co pozwala na płynne przewożenie głowicy, a ich budowa jest dostosowana do wymagań wydajnościowych typowych dla drukarek. Zastosowanie silników krokowych w branży druku jest zgodne z najlepszymi praktykami, co czyni je standardem w tym obszarze.

Pytanie 21

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
B. Miejsce i datę, a także czas realizacji prac konserwacyjnych
C. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
D. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Protokół z prac konserwacyjnych frezarki numerycznej to coś, co musi mieć kilka ważnych rzeczy. Po pierwsze, musi być w nim data i opis tego, co dokładnie zrobiono. To jest mega ważne, żeby wiedzieć, co się działo z maszyną w czasie jej użytkowania. Dzięki temu łatwiej ogarnąć, kiedy powinny być następne przeglądy. A opis prac pozwala zobaczyć, co się zmieniło, co jest kluczowe, gdy planujemy przyszłe naprawy. I jeszcze podpis wykonawcy – to też istotne, bo jeśli coś się stanie, to wiemy, że to robił ktoś kompetentny. I wiesz, w kontekście norm ISO, taki protokół jest podstawą do audytów i kontroli jakości, co w produkcji ma ogromne znaczenie. Kiedy urządzenie się psuje, dobrze napisana dokumentacja ułatwia szybką diagnozę problemu, co jest bardzo pomocne.

Pytanie 22

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
B. Jest określany przez producenta maszyny w trakcie jej projektowania
C. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
D. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje, że punkt zerowy przedmiotu toczenia w obrabiarce CNC może być ustalony w dowolnym miejscu, chociaż zaleca się lokalizację na osi przedmiotu. Ustalenie punktu zerowego jest kluczowym krokiem w procesie obróbczy, ponieważ od tego punktu rozpoczyna się cała operacja toczenia. W praktyce, umiejscowienie punktu zerowego na osi przedmiotu pozwala na uzyskanie większej precyzji i powtarzalności obróbki. Zgodnie z dobrą praktyką, operatorzy powinni upewnić się, że punkt ten jest dobrze zdefiniowany, aby uniknąć błędów, które mogą prowadzić do odrzucenia części. Wiele nowoczesnych obrabiarek CNC oferuje funkcje automatycznej detekcji punktu zerowego, co może znacznie usprawnić proces przygotowania maszyny. Dobrze ustalony punkt zerowy ma również kluczowe znaczenie w kontekście dalszych operacji, takich jak frezowanie czy wiercenie, gdzie precyzyjna lokalizacja narzędzia względem przedmiotu jest niezbędna do osiągnięcia wysokiej jakości obróbki.

Pytanie 23

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. oceny zużycia styków
B. usuwania kurzu
C. dokonywania regulacji
D. sprawdzania dokręcenia śrub zacisków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 24

Jak powinna przebiegać poprawna kolejność instalacji systemu sprężonego powietrza z wykorzystaniem przewodów poliamidowych?

A. Cięcie przewodu, gratowanie krawędzi, montaż złączki, pomiar długości odcinka przewodu
B. Gratowanie krawędzi, pomiar długości odcinka przewodu, cięcie przewodu, montaż złączki
C. Pomiar długości odcinka przewodu, cięcie przewodu, gratowanie krawędzi, montaż złączki
D. Cięcie przewodu, gratowanie krawędzi, pomiar długości odcinka przewodu, montaż złączki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na właściwą kolejność działań przy instalacji sprężonego powietrza z przewodów poliamidowych. Wymierzenie długości odcinka przewodu jest kluczowym pierwszym krokiem, który zapewnia, że użyty materiał będzie odpowiedni do planowanej instalacji. Zbyt krótki przewód może uniemożliwić prawidłowe podłączenie złączek, natomiast zbyt długi może powodować zbędne straty ciśnienia i trudności w dalszej obróbce. Cięcie przewodu powinno następować po dokonaniu pomiarów, aby uzyskać dokładny odcinek. Gratowanie krawędzi jest niezbędne, aby usunąć wszelkie ostre krawędzie, które mogą uszkodzić uszczelki lub stwarzać zagrożenie dla użytkowników. Ostateczny etap to montaż złączki, który wykonujemy po odpowiednim przygotowaniu przewodu, aby zapewnić szczelność i bezpieczeństwo połączenia. Przestrzeganie tej kolejności jest zgodne z najlepszymi praktykami w branży oraz standardami bezpieczeństwa.

Pytanie 25

Które z wymienionych w tabeli czynności wchodzą w zakres oględzin napędu mechatronicznego, w którym elementem wykonawczym (napędowym) jest silnik komutatorowy?

Lp.Czynność
1.Sprawdzanie skuteczności chłodzenia elementów energoelektronicznych
2.Sprawdzanie stanu pierścieni ślizgowych i komutatorów
3.Pomiar temperatury obudowy i łożysk
4.Sprawdzanie stanu szczotek i szczotkotrzymaczy
5.Sprawdzanie jakości połączeń elementów urządzenia

A. 1, 2, 3
B. 2, 3, 5
C. 2, 4, 5
D. 1, 2, 4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na czynności 2, 4 i 5, jest poprawna, ponieważ te działania są kluczowe dla oceny stanu silnika komutatorowego w napędzie mechatronicznym. Sprawdzanie stanu pierścieni ślizgowych i komutatorów (2) pozwala na ocenę ich zużycia i efektywności przewodzenia prądu, co ma bezpośredni wpływ na pracę silnika. W przypadku stanu szczotek i szczotkotrzymaczy (4), ich właściwe działanie jest niezbędne do zapewnienia stabilnego kontaktu elektrycznego, co przekłada się na wydajność i żywotność silnika. Ostatnia czynność, czyli kontrola jakości połączeń elementów urządzenia (5), jest również niezbędna, ponieważ luźne lub uszkodzone połączenia mogą prowadzić do przerw w zasilaniu i awarii całego systemu. Dobre praktyki w zakresie konserwacji i diagnostyki napędów mechatronicznych zalecają regularne wykonywanie tych czynności, aby zapobiegać awariom i zapewnić optymalne działanie systemu. Oględziny te są zatem fundamentalne w kontekście zarówno prewencji, jak i diagnostyki usterek.

Pytanie 26

Na diagramach systemów hydraulicznych przyłącze rury odpływowej rozdzielacza oznacza się symbolem literowym

A. A
B. B
C. T
D. P

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź T jest poprawna, ponieważ w symbolice hydraulicznej oznaczenie literowe T odnosi się do przyłącza przewodu odpływowego w układach hydraulicznych. T jest skrótem od angielskiego terminu 'tank line', co wskazuje na przewód, którym olej hydrauliczny wraca do zbiornika. To kluczowe w projektowaniu układów hydraulicznych, ponieważ odpowiednie oznaczenia zapewniają właściwą identyfikację linii oraz ich funkcji w systemie. Używanie standardowych symboli, takich jak T dla linii powrotnej, jest istotne dla zrozumienia schematów przez techników i inżynierów, co przyczynia się do minimalizacji błędów w instalacjach. W praktyce, znajomość tych oznaczeń jest niezbędna podczas serwisowania i diagnozowania układów hydraulicznych, co wpływa na efektywność i bezpieczeństwo ich użytkowania. Standardy branżowe, takie jak ISO 1219, określają zasady oznaczania komponentów hydraulicznych, co ułatwia komunikację i współpracę w ramach zespołów projektowych.

Pytanie 27

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. PID
B. I
C. PD
D. P

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 28

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Roboczej
B. Systemowej
C. Użytkowej
D. Programu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "Systemowej", ponieważ odwołania do stanów fizycznych wejść sterownika PLC są zarządzane w bloku pamięci systemowej. To właśnie w tym obszarze pamięci gromadzone są informacje o aktualnym stanie wszystkich wejść i wyjść urządzenia, co jest kluczowe dla prawidłowego działania aplikacji sterującej. Przykładowo, w aplikacjach automatyki przemysłowej, gdzie czas reakcji jest istotny, programista musi mieć pewność, że wszystkie odczyty stanów wejść są wykonywane w czasie rzeczywistym. Wykorzystanie pamięci systemowej pozwala na efektywne przetwarzanie informacji, co w konsekwencji prowadzi do szybszego podejmowania decyzji przez systemy sterujące. Dobrą praktyką w programowaniu PLC jest regularne monitorowanie i aktualizacja stanów wejść, aby zminimalizować ryzyko błędów operacyjnych. Dodatkowo, zgodnie z normami branżowymi, takie jak IEC 61131, zarządzanie pamięcią systemową powinno być dobrze udokumentowane, aby zapewnić łatwość w diagnostyce i konserwacji systemu.

Pytanie 29

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Upload
B. Write
C. Erase Memory
D. Download

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 30

Jakiej z wymienionych aktywności nie powinien wykonywać operator pras hydraulicznych sterowanych przez sterownik PLC?

A. Uruchamiać programu sterującego
B. Weryfikować stan osłon urządzenia
C. Konfigurować parametrów urządzenia
D. Modernizować urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "modernizować urządzenia". Pracownik obsługujący prasę hydrauliczną sterowaną za pośrednictwem sterownika PLC nie powinien podejmować się modernizacji tych urządzeń, ponieważ działania te wymagają specjalistycznej wiedzy i umiejętności, które posiadają jedynie wykwalifikowani inżynierowie lub technicy zajmujący się modernizacją maszyn. Zmiany w konstrukcji lub oprogramowaniu mogą mieć istotny wpływ na bezpieczeństwo i funkcjonowanie całego systemu. Dlatego zgodnie z normami branżowymi, takimi jak ISO 12100, które dotyczą bezpieczeństwa maszyn, wszelkie modyfikacje powinny być przeprowadzane przez osoby posiadające odpowiednie kwalifikacje. Tego rodzaju zmiany mogą obejmować aktualizacje oprogramowania sterującego, co jest kluczowe dla poprawy wydajności oraz funkcjonalności maszyny. Odpowiedzialne podejście do takich działań pomaga w minimalizacji ryzyka awarii oraz zapewnienia ciągłości produkcji.

Pytanie 31

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Upload
B. Erase Memory
C. Download
D. Write

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Operacja 'Download' jest kluczowym procesem w programowaniu sterowników PLC, ponieważ umożliwia przesłanie zdefiniowanego programu z komputera do pamięci sterownika. W kontekście automatyki przemysłowej, połączenie komputera z PLC zazwyczaj odbywa się za pomocą interfejsów komunikacyjnych, takich jak Ethernet, RS-232 czy USB. Proces ten może obejmować różne etapy, w tym kompilację kodu źródłowego w programie inżynierskim, co jest standardową praktyką. Operatorzy muszą być świadomi, że po zakończeniu programowania i przetestowaniu logiki na symulatorze, bezpośrednie przesłanie programu do PLC jest kluczowe do wdrożenia rozwiązań automatyzacyjnych w rzeczywistym środowisku. Dobry program inżynierski będzie zawierał również funkcje walidacji, aby upewnić się, że przesyłany kod jest zgodny z wymaganiami systemu. Warto również dodać, że po dokonaniu operacji 'Download', użytkownik powinien monitorować działanie PLC, aby upewnić się, że program działa zgodnie z założeniami operacyjnymi. Zrozumienie tego procesu to fundament skutecznego zarządzania systemami automatyzacji.

Pytanie 32

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷160 barów
B. 0÷250 barów
C. 0÷25 barów
D. 0÷10 barów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.

Pytanie 33

Jaką czynność należy zrealizować w pierwszej kolejności przy wymianie filtru ssawnego w instalacji hydraulicznej?

A. Napełnić zbiornik czystym olejem oraz odpowietrzyć system
B. Spuścić olej do właściwego naczynia przez korek spustowy
C. Usunąć zanieczyszczenia z wnętrza zbiornika zasilacza hydraulicznego
D. Wyciągnąć wkład filtra oleju i powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Spuszczenie oleju do odpowiedniego naczynia przez korek spustowy to naprawdę ważny krok, gdy wymieniasz filtr ssawny w urządzeniu hydraulicznym. Dzięki temu unikniesz zanieczyszczenia nowego filtra oleju, co jest kluczowe dla prawidłowego działania. W praktyce, warto pamiętać, żeby spuścić olej w kontrolowany sposób, bo rozlanie go może narobić sporo problemów. Poza tym, olej, który już był używany, może zawierać niebezpieczne substancje, więc trzeba być ostrożnym. Zanim zrobisz coś więcej, jak czyszczenie zbiornika czy montaż nowego filtra, upewnij się, że zbiornik nie jest brudny. Takie podejście do wymiany filtra to nie tylko dobra praktyka, ale także dbałość o dłuższą żywotność sprzętu i lepszą wydajność hydrauliki.

Pytanie 34

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. uszkodzenia łożysk
B. zwarcia w uzwojeniach stojana lub wirnika
C. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
D. przerw w obwodzie zasilania silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 35

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. W kartach danych handlowych
B. Na tabliczce identyfikacyjnej
C. W instrukcji obsługi
D. Na dokumencie gwarancyjnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instrukcja obsługi jest kluczowym dokumentem, który zawiera szczegółowe informacje o konserwacji i użytkowaniu urządzeń mechatronicznych. Dzięki niej operatorzy oraz technicy mogą zrozumieć, jakie konkretne czynności konserwacyjne należy przeprowadzać, aby zapewnić optymalną wydajność i bezpieczeństwo urządzenia. Informacje te obejmują zarówno zalecany harmonogram konserwacji, jak i niezbędne procedury, co jest zgodne z najlepszymi praktykami w branży. W praktyce, regularne przeglądy i konserwacja zgodnie z instrukcją mogą znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest kluczowe w kontekście produkcji przemysłowej. Przykładem zastosowania może być robot przemysłowy, którego instrukcja obsługi podaje harmonogram czyszczenia i smarowania, co pozwala na utrzymanie jego precyzji i niezawodności w długim okresie eksploatacji. Należy również pamiętać, że nieprzestrzeganie tych wytycznych może prowadzić do utraty gwarancji oraz zwiększonych kosztów napraw. Dlatego zawsze warto na bieżąco zapoznawać się z instrukcją obsługi.

Pytanie 36

Obserwując zarejestrowany przebieg wartości regulowanej w systemie regulacji dwustanowej, dostrzeżono zbyt silne oscylacje wokół wartości docelowej. W celu zredukowania amplitudy tych oscylacji, należy w regulatorze cyfrowym

A. powiększyć szerokość histerezy
B. zmniejszyć wartość sygnału ustawiającego
C. zmniejszyć szerokość histerezy
D. zwiększyć amplitudę sygnału kontrolującego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmniejszenie szerokości histerezy w regulatorze cyfrowym to kluczowy krok w procesie redukcji oscylacji wokół wartości zadanej. Histereza jest zjawiskiem, które polega na tym, że wartość, przy której następuje przełączenie stanu, różni się w zależności od kierunku odchylenia od wartości zadanej. Zmniejszenie szerokości histerezy powoduje szybszą reakcję regulatora na niewielkie odchylenia, co w praktyce oznacza, że system będzie przełączał się pomiędzy stanami w krótszym czasie i z mniejszymi opóźnieniami. W zastosowaniach przemysłowych, gdzie precyzja i stabilność są kluczowe, takie podejście jest zgodne z najlepszymi praktykami w inżynierii automatyki, co przekłada się na większą efektywność i mniejsze ryzyko awarii. W systemach HVAC czy w regulacji temperatury, precyzyjne dostosowanie histerezy pozwala na optymalne zarządzanie zużyciem energii oraz komfortem użytkowników. Dobrze dobrana histereza pozwala nie tylko na stabilizację, ale również na poprawę responsywności systemu, co jest niezwykle istotne w złożonych układach regulacji.

Pytanie 37

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. oleje mineralne oraz ciecze niepalne
B. mieszanki wody oraz olejów mineralnych
C. oleje pochodzenia roślinnego
D. mieszanki wody i olejów roślinnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 38

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. M
B. T
C. C
D. Q

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "M" jest poprawna, ponieważ symbol ten odnosi się do zmiennych wewnętrznych sterownika, które pełnią rolę cewek i styków w programowaniu PLC. Zmienne te są związane z pamięcią sterownika, co znajduje odzwierciedlenie w angielskim słowie "memory". W praktyce zmienne typu M są wykorzystywane do przechowywania stanów logicznych, które mogą być używane w różnych częściach programu, co zapewnia elastyczność i możliwość łatwego zarządzania danymi. Dobrą praktyką jest przydzielanie zmiennych pamięciowych do konkretnych funkcji, co ułatwia późniejsze debugowanie oraz utrzymanie programu. W kontekście standardów, w wielu systemach automatyki przemysłowej, takich jak Siemens TIA Portal czy Allen-Bradley, zmienne pamięciowe są kluczowym elementem programowania, ponieważ umożliwiają manipulację danymi oraz interakcję z fizycznymi urządzeniami. Warto także zaznaczyć, że zrozumienie i umiejętność wykorzystania zmiennych M ma istotne znaczenie w kontekście pisania efektywnych i bezpiecznych programów automatyki.

Pytanie 39

Nieszczelności występujące w systemie smarowania lub w obiegu cieczy chłodzącej, zauważone w trakcie pracy urządzenia hydraulicznego, powinny być usunięte podczas

A. ogólnego remontu maszyny
B. planowych napraw średnich realizowanych po demontażu całej maszyny
C. planowych napraw bieżących bez rozkładania całej maszyny
D. przeglądu technicznego w trakcie przestoju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przeglądu technicznego w czasie przestoju jako momentu na usunięcie nieszczelności w układzie smarowania lub cieczy chłodzącej jest trafny z wielu powodów. Nieszczelności te mogą prowadzić do poważnych problemów operacyjnych, takich jak przegrzewanie się maszyny czy jej uszkodzenie, co w konsekwencji może skutkować wstrzymaniem produkcji. Przegląd techniczny w czasie przestoju to idealny moment na przeprowadzenie dokładnej inspekcji, ponieważ pozwala na zidentyfikowanie i naprawienie problemów bez ryzyka wpływu na wydajność pracy. W ramach przeglądu można również przeprowadzić dodatkowe czynności, takie jak uzupełnienie płynów eksploatacyjnych czy wymiana zużytych elementów. Dobre praktyki branżowe wskazują na konieczność przeprowadzania takich inspekcji w regularnych odstępach czasowych, co podnosi bezpieczeństwo i efektywność pracy urządzeń hydraulicznych. Dlatego odpowiedź na to pytanie potwierdza świadomość znaczenia regularnych przeglądów w kontekście utrzymania ruchu maszyn.

Pytanie 40

W jednofazowym silniku indukcyjnym napędzającym urządzenie mechatroniczne uszkodzeniu uległ kondensator pracy o parametrach znamionowych 2,5 uF / 450 V. Którym z wymienionych kondensatorów należy zastąpić uszkodzony, aby naprawić urządzenie?

Dane techniczne:
Napięcie znamionowe450 V
Częstotliwość znamionowa50 ÷ 60 Hz
Tolerancja pojemności±5%
Oczekiwana żywotność10 000 h (HPFNT)
Stopień ochronyIP00
ModelPojemność [μF]Wymiary D x H [mm]
MK 450-1130 x 57
MK 450-1,51,530 x 57
MK 450-2230 x 57
MK 450-2,52,530 x 57
MK 450-101035 x 57
MK 450-12,512,535 x 70
MK 450-202040 x 70
MK 450-252540 x 70
MK 450-505040 x 70

A. MK 450-2,5
B. MK 450-25
C. MK 450-20
D. MK 450-2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensator oznaczony jako 'MK 450-2,5' jest poprawnym zamiennikiem uszkodzonego kondensatora o parametrach 2,5 uF / 450 V. Kluczowym czynnikiem przy doborze kondensatora jest zgodność zarówno z pojemnością, jak i napięciem znamionowym. W przypadku silników indukcyjnych, kondensatory są niezbędne do poprawnego rozruchu i funkcjonowania silnika, dlatego ich wybór ma fundamentalne znaczenie. Zastosowanie kondensatora o niewłaściwej pojemności może prowadzić do obniżenia wydajności silnika lub jego uszkodzenia. W praktyce, zastosowanie kondensatora MK 450-2,5, który spełnia te wymagania, zapewnia optymalną pracę silnika oraz minimalizuje ryzyko awarii. Warto również pamiętać, że stosowanie kondensatorów o wyższej pojemności lub napięciu może nie być zalecane, gdyż może to prowadzić do nieprawidłowego działania systemu. Zgodnie z normami branżowymi, należy zawsze dobierać komponenty zgodnie z ich specyfikacją techniczną. W przypadku wątpliwości, warto konsultować się z dokumentacją producenta lub specjalistą.