Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 6 czerwca 2025 19:19
  • Data zakończenia: 6 czerwca 2025 19:41

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie są właściwe przewody w wtyku RJ-45 według standardu TIA/EIA-568 dla konfiguracji typu T568B?

A. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
B. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
C. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
D. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
Odpowiedź wskazująca na prawidłową kolejność przewodów we wtyku RJ-45 zgodnie z normą TIA/EIA-568 dla zakończenia typu T568B jest kluczowa w kontekście budowy i konfiguracji sieci lokalnych. Zgodnie z tym standardem, przewody powinny być ułożone w następującej kolejności: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy oraz brązowy. Ta specyfikacja zapewnia prawidłowe połączenia i minimalizuje interferencje elektromagnetyczne, co jest istotne dla stabilności i wydajności transmisji danych. Przykład zastosowania tej normy można zobaczyć w instalacjach sieciowych w biurach, gdzie formowanie kabli zgodnie z T568B jest standardem, umożliwiającym łatwe podłączanie urządzeń. Dodatkowo, w przypadku stosowania technologii PoE (Power over Ethernet), prawidłowa kolejność przewodów jest kluczowa dla efektywnego zasilania urządzeń sieciowych, takich jak kamery IP czy punkty dostępu. Znajomość tych standardów jest niezbędna dla każdego technika zajmującego się sieciami, aby zapewnić maksymalną wydajność oraz bezpieczeństwo w infrastrukturze sieciowej.

Pytanie 2

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. ipaddr show
B. traceroute
C. ipconfig
D. iproute show
Polecenie 'ipaddr show' jest odpowiednie do wyświetlania konfiguracji interfejsu sieciowego w systemie Linux, ponieważ jest częścią zestawu narzędzi związanych z konfiguracją sieci w nowoczesnych dystrybucjach. Narzędzie to pozwala na uzyskanie szczegółowych informacji na temat adresów IP przypisanych do interfejsów sieciowych, a także na wyświetlenie ich stanu. Przykładowo, po wpisaniu 'ipaddr show' w terminalu administrator może szybko sprawdzić, jakie adresy są przypisane do poszczególnych interfejsów, co jest kluczowe w procesie diagnozowania problemów z łącznością sieciową. W praktyce, to polecenie jest standardem w administracji systemami Linux, a jego znajomość jest niezbędna dla każdego specjalisty zajmującego się sieciami komputerowymi. Warto zauważyć, że 'ipaddr' jest częścią zestawu poleceń 'ip', które zastępują starsze polecenia, takie jak 'ifconfig', co pokazuje trend w kierunku bardziej zintegrowanych i funkcjonalnych narzędzi w administracji siecią.

Pytanie 3

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Rutera
B. Mostu
C. Koncentratora
D. Regeneratora
Ruter jest urządzeniem, które odgrywa kluczową rolę w łączeniu różnych domen rozgłoszeniowych, co pozwala na efektywną komunikację między różnymi sieciami. W przeciwieństwie do mostu czy koncentratora, które operują na warstwie drugiej modelu OSI (warstwie łącza danych), ruter funkcjonuje na warstwie trzeciej (warstwa sieci). Jego zadaniem jest zarządzanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że pakiety danych mogą być kierowane do odpowiednich adresów IP, co jest istotne w przypadku, gdy komputery są w różnych podsieciach. Dzięki temu, ruter potrafi zrozumieć, kiedy dane powinny zostać wysłane do innej sieci, a kiedy pozostają w obrębie tej samej. Przykładowo, w dużych organizacjach, które mają różne lokalizacje geograficzne, rutery umożliwiają komunikację między nimi poprzez sieci WAN. Praktyczne zastosowanie ruterów obejmuje nie tylko łączenie lokalnych sieci, ale także umożliwiają one stosowanie zaawansowanych funkcji, takich jak QoS (Quality of Service), które pomagają w zarządzaniu ruchem sieciowym, co jest kluczowe w przypadku aplikacji wymagających niskich opóźnień, jak np. wideokonferencje. W kontekście standardów, rutery muszą być zgodne z protokołami, takimi jak IP (Internet Protocol) oraz muszą wspierać różnorodne protokoły routingu, co czyni je nieodzownym elementem nowoczesnych infrastruktur sieciowych.

Pytanie 4

Jak nazywa się adres nieokreślony w protokole IPv6?

A. ::/128
B. 2001::/64
C. ::1/128
D. FE80::/64
Adres nieokreślony w protokole IPv6, zapisany jako ::/128, jest używany w sytuacjach, gdy adres nie może być określony lub jest nieznany. Jest to ważny element specyfikacji IPv6, ponieważ pozwala na odróżnienie urządzeń, które nie mają przypisanego konkretnego adresu. Przykładowo, gdy urządzenie próbuje komunikować się z innymi w sieci, ale jeszcze nie otrzymało adresu, może użyć adresu nieokreślonego do wysłania wiadomości. Użycie tego adresu jest kluczowe w kontekście protokołu DHCPv6, gdzie urządzenia mogą wysyłać zapytania o adres IP, korzystając z adresu ::/128 jako źródła. Dodatkowo, adres nieokreślony jest często stosowany w kontekście tworzenia aplikacji sieciowych, które muszą być elastyczne w kontekście przydzielania adresów. Standardy dotyczące IPv6, takie jak RFC 4291, wyraźnie definiują rolę oraz znaczenie adresów nieokreślonych, co czyni je niezbędnym elementem każdej nowoczesnej infrastruktury sieciowej.

Pytanie 5

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. realizacji czatów za pomocą interfejsu tekstowego
B. wysyłania wiadomości e-mail
C. transmisji dźwięku przez sieć
D. przesyłania wiadomości na forum dyskusyjnym
Internet Relay Chat (IRC) jest protokołem komunikacyjnym, który umożliwia prowadzenie rozmów za pomocą konsoli tekstowej w czasie rzeczywistym. Użytkownicy mogą łączyć się w kanałach, które działają jak wirtualne pokoje rozmowy, gdzie mogą wymieniać wiadomości tekstowe z innymi uczestnikami. IRC został zaprojektowany w latach 80. XX wieku i jest jednym z najstarszych protokołów komunikacyjnych w sieci. W praktyce, IRC jest często wykorzystywany do organizacji i koordynacji pracy zespołów, w społecznościach gier online oraz w różnych projektach open source, gdzie komunikacja w czasie rzeczywistym jest kluczowa. Standardowe klienty IRC, takie jak mIRC czy HexChat, oferują różne funkcje, takie jak możliwość tworzenia skryptów, co umożliwia automatyzację pewnych procesów. Warto również zauważyć, że IRC opiera się na architekturze klient-serwer, co oznacza, że klienci łączą się z serwerem IRC, który zarządza rozmowami i kanałami, co jest zgodne z najlepszymi praktykami w budowie systemów komunikacyjnych.

Pytanie 6

Jaki jest skrócony zapis maski sieci, której adres w zapisie dziesiętnym to 255.255.254.0?

A. /22
B. /24
C. /25
D. /23
Zapis skrócony maski sieci 255.255.254.0 to /23, co oznacza, że w pierwszych 23 bitach znajduje się informacja o sieci, a pozostałe 9 bitów jest przeznaczone na identyfikację hostów. W zapisie dziesiętnym maska 255.255.254.0 ma postać binarną 11111111.11111111.11111110.00000000, co potwierdza, że pierwsze 23 bity są jedynkami, a pozostałe bity zerami. Ta maska pozwala na adresowanie 512 adresów IP w danej podsieci, co jest przydatne w większych środowiskach sieciowych, gdzie liczba hostów może być znacząca, na przykład w biurach czy na uczelniach. Dzięki zapisie skróconemu łatwiej jest administracyjnie zarządzać adresami IP, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii sieciowej. Zrozumienie, jak funkcjonują maski sieciowe, pozwala na efektywne projektowanie sieci oraz optymalizację wykorzystania dostępnych zasobów adresowych.

Pytanie 7

Użytkownik, którego profil jest tworzony przez administratora systemu i przechowywany na serwerze, ma możliwość logowania na każdym komputerze w sieci oraz modyfikacji ustawień. Jak nazywa się ten profil?

A. profil obowiązkowy
B. profil tymczasowy
C. profil lokalny
D. profil mobilny
Profil mobilny to rodzaj profilu użytkownika, który jest przechowywany na serwerze i pozwala na logowanie się na różnych urządzeniach w sieci. Taki profil jest szczególnie przydatny w środowiskach, gdzie użytkownicy potrzebują dostępu do tych samych ustawień i danych niezależnie od miejsca, w którym się znajdują. Dzięki temu rozwiązaniu, konfiguracja osobista użytkownika, takie jak preferencje systemowe, tapety, czy zainstalowane aplikacje, są synchronizowane i dostępne na każdym komputerze w sieci. W praktyce, profil mobilny wspiera użytkowników w pracy zdalnej i w biurze, co jest zgodne z obecnymi trendami umożliwiającymi elastyczność pracy. Dobrą praktyką w organizacjach IT jest wdrażanie profili mobilnych, co zwiększa bezpieczeństwo i umożliwia lepsze zarządzanie danymi. Na przykład, w przypadku awarii lokalnego sprzętu, użytkownicy mogą szybko przełączyć się na inny komputer bez utraty swoich ustawień. Tego typu rozwiązania są często stosowane w środowiskach z systemami operacyjnymi Windows, gdzie korzysta się z Active Directory do zarządzania profilami mobilnymi.

Pytanie 8

Administrator zamierza zorganizować adresację IP w przedsiębiorstwie. Dysponuje pulą adresów 172.16.0.0/16, którą powinien podzielić na 10 podsieci z równą liczbą hostów. Jaką maskę powinien zastosować?

A. 255.255.240.0
B. 255.255.224.0
C. 255.255.128.0
D. 255.255.192.0
Odpowiedź 255.255.240.0 jest poprawna, ponieważ ta maska podsieci (znana również jako /20) umożliwia podział puli adresów 172.16.0.0/16 na 16 podsieci, z których każda ma 4096 adresów (w tym 4094 adresy hostów). Aby uzyskać 10 równych podsieci, administrator powinien wybrać maskę, która zapewni wystarczającą ilość adresów. Maska 255.255.240.0 dla podsieci /20 jest odpowiednia, ponieważ pozwala na stworzenie 16 podsieci (2^4), gdzie każda podsieć ma 4094 hosty (2^(32-20)-2). Takie rozwiązanie jest zgodne z najlepszymi praktykami w zarządzaniu adresacją IP, ponieważ zapewnia elastyczność w przyszłych rozbudowach sieci. Umożliwia to także efektywne wykorzystanie dostępnych adresów IP oraz ułatwia zarządzanie ruchem sieciowym.

Pytanie 9

Jaką rolę odgrywa ISA Server w systemie operacyjnym Windows?

A. Stanowi system wymiany plików
B. Służy do rozwiązywania nazw domenowych
C. Pełni funkcję firewalla
D. Działa jako serwer stron internetowych
ISA Server, czyli Internet Security and Acceleration Server, pełni kluczową rolę jako firewall w systemach operacyjnych Windows, zapewniając zaawansowaną ochronę sieci oraz kontrolę dostępu do zasobów. Jako firewall, ISA Server nie tylko blokuje nieautoryzowany ruch sieciowy, ale także monitoruje i filtruje dane, które przepływają między różnymi segmentami sieci. Dzięki funkcjom takim jak NAT (Network Address Translation), ISA Server ukrywa wewnętrzne adresy IP przed zewnętrznymi użytkownikami, co zwiększa bezpieczeństwo. W praktyce, administratorzy mogą definiować zasady dostępu, co pozwala na precyzyjne kontrolowanie, które aplikacje i usługi mogą komunikować się z siecią zewnętrzną. Przykładem zastosowania ISA Server może być organizacja, która chce ograniczyć dostęp do określonych stron internetowych, pozwalając jednocześnie na korzystanie z zasobów intranetowych. ISA Server oferuje również zaawansowane funkcje, takie jak monitoring ruchu oraz raportowanie, co umożliwia administratorom śledzenie potencjalnych zagrożeń oraz analizowanie wzorców użytkowania sieci. Te praktyki są zgodne z najlepszymi standardami bezpieczeństwa w branży IT, w tym z metodologią zarządzania ryzykiem według ISO/IEC 27001.

Pytanie 10

Do zakończenia kabla skręcanego wtykiem 8P8C wykorzystuje się

A. zaciskarkę do złączy typu F
B. zaciskarkę do wtyków RJ-45
C. narzędzie uderzeniowe
D. spawarkę światłowodową
Zaciskarka do wtyków RJ-45 jest narzędziem niezbędnym do zakończenia skrętek, które są powszechnie stosowane w sieciach Ethernet. Wtyki RJ-45, znane również jako wtyki 8P8C, mają osiem pinów, które muszą być odpowiednio umieszczone i zabezpieczone w obudowie wtyku. Proces zaciskania polega na wprowadzeniu skrętek do wtyku, a następnie użyciu zaciskarki do trwałego ściśnięcia metalowych styków wtyku, co zapewnia solidne połączenie elektryczne. W branży telekomunikacyjnej i informatycznej, stosowanie zaciskarki do RJ-45 jest standardową praktyką, szczególnie w instalacjach sieciowych. Umożliwia to tworzenie niestandardowych kabli Ethernet o różnych długościach, co znacznie ułatwia konfigurację i organizację sieci. Dobrą praktyką jest również przestrzeganie kolorów okablowania zgodnie z normą T568A lub T568B, co zapewnia spójność i poprawność połączeń. Ponadto, używanie zaciskarki do RJ-45 pozwala na łatwe naprawy kabli oraz ich rekonfiguracje, co jest niezwykle istotne w dynamicznie zmieniającym się środowisku IT.

Pytanie 11

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 255 komputerów
B. 252 komputery
C. 256 komputerów
D. 254 komputery
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 12

Protokół ARP (Address Resolution Protocol) pozwala na konwersję logicznych adresów z poziomu sieci na rzeczywiste adresy z poziomu

A. fizycznej
B. łącza danych
C. transportowej
D. aplikacji
Wybór niewłaściwych odpowiedzi opiera się na kilku kluczowych nieporozumieniach dotyczących warstw modelu OSI oraz funkcji poszczególnych protokołów. Protokół ARP jest ściśle związany z warstwą łącza danych, a nie z warstwą transportową. Warstwa transportowa (TCP/UDP) odpowiada za dostarczanie danych pomiędzy aplikacjami, a nie za mapowanie adresów. Wybór związany z warstwą aplikacji również wprowadza w błąd, ponieważ ARP nie działa na poziomie aplikacji, lecz na poziomie sieciowym i łącza danych, co oznacza, że nie ma bezpośredniego związku z funkcjami aplikacyjnymi czy interfejsami użytkownika. Wreszcie, twierdzenie, że ARP jest związany z warstwą fizyczną, jest również mylące. Warstwa fizyczna dotyczy aspektów takich jak sygnały, media transmisyjne, a nie zarządzania adresami logicznymi i fizycznymi. Takie błędne zrozumienie prowadzi do problemów w projektowaniu i zarządzaniu sieciami, ponieważ kluczowe funkcje protokołów mogą być mylone lub niewłaściwie stosowane. Aby lepiej zrozumieć rolę ARP, warto zwrócić uwagę na standardy i dobre praktyki związane z zarządzaniem adresacją w sieciach komputerowych, takie jak DHCP dla dynamicznego przypisywania adresów IP, które są często używane w połączeniu z ARP w celu efektywnego zarządzania zasobami sieciowymi.

Pytanie 13

Atak DDoS (ang. Distributed Denial of Service) na serwer spowoduje

A. zbieranie danych o atakowanej infrastrukturze sieciowej.
B. zatrzymywanie pakietów danych w sieci.
C. zmianę pakietów transmisyjnych w sieci.
D. przeciążenie aplikacji dostarczającej określone informacje.
Atak DDoS, czyli Zdalne Odrzucenie Usługi, polega na jednoczesnym obciążeniu serwera dużą ilością zapytań przesyłanych z różnych źródeł, co prowadzi do przeciążenia aplikacji serwującej określone dane. Taki atak ma na celu uniemożliwienie dostępności usługi dla legalnych użytkowników. Przykładem może być atak na serwis internetowy, gdzie atakujący wykorzystują sieć botnetów do wysyłania ogromnej liczby żądań HTTP. W rezultacie aplikacja serwisowa nie jest w stanie przetworzyć wszystkich zapytań, co prowadzi do spowolnienia lub całkowitym zablokowaniem dostępu. W praktyce organizacje powinny implementować mechanizmy ochrony przed atakami DDoS, takie jak systemy zapobiegania włamaniom (IPS), a także skalowalne architektury chmurowe, które mogą automatycznie dostosowywać zasoby w odpowiedzi na wzrost ruchu. Przestrzeganie dobrych praktyk, takich jak regularne testowanie odporności aplikacji oraz monitorowanie ruchu sieciowego, jest kluczowe w zapobieganiu skutkom ataków DDoS.

Pytanie 14

Podczas realizacji projektu sieci LAN zastosowano medium transmisyjne w standardzie Ethernet 1000Base-T. Która z poniższych informacji jest poprawna?

A. Jest to standard sieci optycznych działających na wielomodowych światłowodach
B. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
C. Standard ten umożliwia transmisję w trybie full-duplex przy maksymalnym zasięgu 100 metrów
D. Standard ten pozwala na transmisję w trybie half-duplex przy maksymalnym zasięgu 1000 metrów
Standard Ethernet 1000Base-T, znany również jako Gigabit Ethernet, jest jednym z najpopularniejszych standardów transmisji w sieciach lokalnych. Umożliwia on przesył danych z prędkością 1000 Mbps (1 Gbps) przy użyciu standardowych kabli miedzianych typu skrętka (Cat 5e lub wyższej). Ważnym aspektem tego standardu jest to, że obsługuje on transmisję typu full-duplex, co oznacza, że dane mogą być jednocześnie wysyłane i odbierane, co podwaja efektywną przepustowość kanału. Maksymalny zasięg tego medium wynosi 100 metrów, co czyni go idealnym rozwiązaniem dla typowych zastosowań w biurach i małych instalacjach sieciowych. Przykładowo, w biurze z wieloma komputerami można zainstalować sieć 1000Base-T, aby zapewnić wysoką prędkość przesyłu danych między urządzeniami, co jest kluczowe przy przesyłaniu dużych plików czy korzystaniu z aplikacji wymagających dużej szerokości pasma. Warto również zaznaczyć, że standard ten jest zgodny z istniejącymi infrastrukturami Ethernet, co ułatwia migrację z wolniejszych standardów, takich jak 100Base-TX. "

Pytanie 15

Aby zrealizować ręczną konfigurację interfejsu sieciowego w systemie LINUX, należy wykorzystać komendę

A. route add
B. ipconfig
C. ifconfig
D. eth0
Odpowiedź 'ifconfig' jest poprawna, ponieważ jest to klasyczne polecenie używane w systemach Linux do konfigurowania i zarządzania interfejsami sieciowymi. Umożliwia ono nie tylko wyświetlenie szczegółowych informacji o aktualnych ustawieniach interfejsów, takich jak adres IP, maska podsieci czy stan interfejsu, ale także pozwala na zmianę tych ustawień. Przykładem użycia może być wydanie polecenia 'ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up', które ustawia adres IP dla interfejsu eth0. Pomimo że 'ifconfig' był standardowym narzędziem przez wiele lat, od czasu wprowadzenia narzędzia 'ip' w pakiecie iproute2, zaleca się używanie polecenia 'ip' do zarządzania interfejsami sieciowymi. Niemniej jednak, 'ifconfig' pozostaje w użyciu w wielu systemach oraz w starszych instrukcjach i dokumentacjach, co czyni go istotnym elementem wiedzy o administracji sieciami w systemach Linux.

Pytanie 16

Protokół wykorzystywany do wymiany wiadomości kontrolnych pomiędzy urządzeniami w sieci, takich jak żądanie echa, to

A. SNMP
B. SSMP
C. IGMP
D. ICMP
ICMP, czyli Internet Control Message Protocol, jest kluczowym protokołem w warstwie sieciowej modelu OSI, który służy do wymiany komunikatów kontrolnych między urządzeniami w sieci. Protokół ten jest powszechnie stosowany do diagnostyki i zarządzania siecią, umożliwiając przesyłanie informacji o stanie połączeń sieciowych. Przykładem zastosowania ICMP jest polecenie 'ping', które wysyła żądanie echa do określonego adresu IP w celu sprawdzenia, czy urządzenie jest dostępne i jak długo trwa odpowiedź. Użycie ICMP do monitorowania dostępności i czasu odpowiedzi serwerów jest standardową praktyką w administracji sieciowej. ICMP odgrywa również istotną rolę w raportowaniu błędów, takich jak informowanie nadawcy o tym, że pakiet danych nie mógł dotrzeć do celu. W kontekście standardów, ICMP jest dokumentowany w serii RFC, co zapewnia jego uniwersalne zastosowanie w różnych systemach operacyjnych i urządzeniach sieciowych.

Pytanie 17

Jak wygląda konwencja zapisu ścieżki do zasobu sieciowego według UNC (Universal Naming Convention)?

A. //nazwa_zasobu/nazwa_komputera
B. \nazwa_zasobu azwa_komputera
C. \nazwa_komputera azwa_zasobu
D. //nazwa_komputera/nazwa_zasobu
Wybór odpowiedzi, która nie zawiera prawidłowego formatu ścieżki UNC, może wynikać z nieporozumienia dotyczącego konwencji nazewnictwa. Odpowiedzi, które zaczynają się od //nazwa_zasobu lub //nazwa_komputera, są nieprawidłowe, ponieważ taki format nie jest akceptowany w standardzie UNC. Zapis z użyciem podwójnych ukośników w kierunku w prawo jest charakterystyczny dla systemów operacyjnych opartych na Unixie, a nie dla Windows. Dodatkowo, odpowiedzi, które zamieniają miejscami zasoby i nazwy komputerów, również są niepoprawne, ponieważ w strukturalnej hierarchii UNC zasoby zawsze znajdują się po nazwie komputera. W praktyce, błędne podejście do zrozumienia struktury UNC może prowadzić do problemów z dostępem do zasobów w sieci, co jest szczególnie ważne w środowiskach, gdzie współpraca i dostępność danych są kluczowe. Dlatego istotne jest, aby zapoznać się z formalnymi zasadami określającymi sposób adresowania zasobów, co zapewnia nie tylko poprawność, ale również bezpieczeństwo w zarządzaniu danymi w sieciach komputerowych. Zrozumienie tych zasad jest również kluczowe w kontekście rozwiązywania problemów z konfiguracją sieci, gdzie lokalizacja zasobów sieciowych jest często przyczyną błędów w dostępie.

Pytanie 18

Gdy użytkownik wprowadza w wierszu poleceń komendę ping www.onet.pl, wyświetla się następujący komunikat: Żądanie polecenia ping nie może odnaleźć hosta www.onet.pl. Proszę sprawdzić nazwę i spróbować ponownie. Natomiast wpisując w wierszu poleceń komendę ping 213.180.141.140 (adres IP dla serwera www.onet.pl), użytkownik otrzymuje odpowiedź z serwera. Jakie mogą być przyczyny takiego zjawiska?

A. Błędnie skonfigurowana maska podsieci
B. Niewłaściwie skonfigurowana brama domyślna
C. Błędny adres IP serwera DNS
D. Niewłaściwy adres IP hosta
Niepoprawny adres IP serwera DNS jest główną przyczyną problemu, który zaobserwował użytkownik. Kiedy użytkownik próbuje wykonać polecenie ping dla adresu URL, system operacyjny musi najpierw przetłumaczyć tę nazwę na odpowiedni adres IP przy użyciu serwera DNS. Jeśli adres IP serwera DNS jest błędny lub serwer DNS nie jest dostępny, system nie będzie w stanie zlokalizować hosta, co skutkuje komunikatem o błędzie. W praktyce, w przypadku problemów z DNS, zaleca się sprawdzenie konfiguracji DNS w ustawieniach sieciowych, a także przetestowanie innych serwerów DNS, takich jak Google DNS (8.8.8.8) lub Cloudflare DNS (1.1.1.1). Warto również pamiętać, że poprawna konfiguracja serwera DNS jest kluczowa dla prawidłowego funkcjonowania wszelkich aplikacji internetowych i usług. Standardy sieciowe, takie jak RFC 1035, określają zasady dotyczące systemu DNS, a ich przestrzeganie jest niezbędne dla zapewnienia funkcjonalności i wydajności internetowych usług.

Pytanie 19

Jakie aktywne urządzenie pozwoli na podłączenie 15 komputerów, drukarki sieciowej oraz rutera do sieci lokalnej za pomocą kabla UTP?

A. Switch 24-portowy
B. Switch 16-portowy
C. Panel krosowy 16-portowy
D. Panel krosowy 24-portowy
Przełącznik 24-portowy to świetne rozwiązanie, bo można do niego podłączyć sporo urządzeń jednocześnie, jak komputery czy drukarki, do lokalnej sieci. W sytuacji, gdzie trzeba podłączyć 15 komputerów, drukarkę sieciową i router, ten przełącznik akurat ma tyle portów, że wszystko się zmieści. W codziennym użytkowaniu przełączniki są kluczowe w zarządzaniu ruchem w sieci, co umożliwia szybsze przesyłanie danych między urządzeniami. Dodatkowo, jak używasz przełącznika, można wprowadzić różne funkcje, na przykład VLAN, co pomaga w podziale sieci i zwiększeniu jej bezpieczeństwa. Jeśli chodzi o standardy, sprzęty zgodne z normą IEEE 802.3 potrafią działać naprawdę wydajnie i niezawodnie. Tak więc, na pewno 24-portowy przełącznik to sensowne rozwiązanie dla średnich sieci, które potrzebują elastyczności i dużej liczby połączeń.

Pytanie 20

Rekord typu MX w serwerze DNS

A. przechowuje alias dla nazwy domeny
B. przechowuje nazwę serwera
C. mapuje nazwę domenową na serwer pocztowy
D. mapuje nazwę domeny na adres IP
Rekordy MX (Mail Exchange) w systemie DNS (Domain Name System) odgrywają kluczową rolę w kierowaniu wiadomości e-mail do odpowiednich serwerów pocztowych. Poprawna odpowiedź wskazuje, że rekord MX mapuje nazwę domenową na nazwę serwera poczty, co jest istotnym elementem procesu dostarczania e-maili. Dzięki temu, gdy użytkownik wysyła wiadomość do danej domeny, serwery pocztowe mogą zidentyfikować, gdzie ta wiadomość powinna być dostarczona, analizując rekordy MX. Przykładowo, jeśli ktoś wysyła e-mail na adres [email protected], serwer odpowiedzialny za przetwarzanie poczty sprawdza rekord MX dla domeny przyklad.pl, aby określić, który serwer jest odpowiedzialny za odbiór wiadomości. Dobrą praktyką jest zapewnienie, aby rekordy MX były aktualne i poprawnie skonfigurowane, ponieważ błędne ustawienia mogą prowadzić do utraty wiadomości lub opóźnień w ich dostarczaniu. Ponadto, w kontekście bezpieczeństwa, warto implementować dodatkowe mechanizmy, takie jak SPF (Sender Policy Framework) czy DKIM (DomainKeys Identified Mail), aby zabezpieczyć domenę przed fałszywymi wiadomościami e-mail.

Pytanie 21

Organizacja zajmująca się standaryzacją na poziomie międzynarodowym, która stworzyła 7-warstwowy Model Referencyjny Połączonych Systemów Otwartych, to

A. ISO (International Organization for Standardization)
B. IEEE (Institute of Electrical and Electronics Engineers)
C. EN (European Norm)
D. TIA/EIA (Telecommunications Industry Association/Electronic Industries Association)
Międzynarodowa Organizacja Normalizacyjna, znana jako ISO (International Organization for Standardization), jest odpowiedzialna za opracowanie wielu standardów, które mają kluczowe znaczenie w różnych dziedzinach, w tym w telekomunikacji i informatyce. Model Referencyjny Połączonych Systemów Otwartym (OSI) składa się z siedmiu warstw, które pomagają w zrozumieniu procesów komunikacyjnych w sieciach komputerowych. Każda warstwa w modelu OSI odpowiada za różne aspekty komunikacji - od fizycznych po aplikacyjne. Przykładem zastosowania tego modelu jest projektowanie sieci komputerowych, gdzie inżynierowie mogą analizować problemy na różnych warstwach, co ułatwia diagnozowanie i rozwiązywanie problemów. ISO dostarcza także standardy dotyczące jakości, bezpieczeństwa i interoperacyjności, co jest istotne w kontekście globalnej wymiany danych. Właściwe zrozumienie modelu OSI jest kluczowe dla specjalistów w dziedzinie IT, którzy dążą do tworzenia efektywnych i skalowalnych rozwiązań sieciowych.

Pytanie 22

Polecenie dsadd służy do

A. usuwania użytkowników, grup, komputerów, kontaktów oraz jednostek organizacyjnych z usług Active Directory
B. modyfikacji właściwości obiektów w katalogu
C. dodawania użytkowników, grup, komputerów, kontaktów oraz jednostek organizacyjnych do usług Active Directory
D. przenoszenia obiektów w ramach jednej domeny
Polecenie dsadd jest kluczowym narzędziem w administracji usługi Active Directory, ponieważ umożliwia dodawanie nowych obiektów, takich jak użytkownicy, grupy, komputery, kontakty oraz jednostki organizacyjne. W praktyce, administratorzy sieci używają tego polecenia do efektywnego zarządzania zasobami w organizacji. Przykładowo, gdy nowy pracownik dołącza do firmy, administrator może szybko utworzyć nowe konto użytkownika przy pomocy dsadd, co pozwala mu na dostęp do zasobów sieci. Dodatkowo, dzięki możliwości tworzenia grup, administratorzy mogą przypisywać różne uprawnienia do grup, co ułatwia zarządzanie dostępem. W kontekście standardów branżowych, stosowanie Active Directory oraz narzędzi takich jak dsadd jest zalecane w celu zapewnienia spójności i bezpieczeństwa w zarządzaniu zasobami IT. Obiektowe podejście do zarządzania użytkownikami i zasobami w Active Directory jest zgodne z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT.

Pytanie 23

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer DHCP
B. serwer terminali
C. serwer aplikacji
D. serwer plików
Serwer plików jest dedykowanym systemem, którego główną rolą jest przechowywanie, udostępnianie oraz zarządzanie plikami w sieci. Umożliwia on użytkownikom dostęp do plików z różnych lokalizacji, co jest istotne w środowiskach biurowych oraz edukacyjnych, gdzie wiele osób współdzieli dokumenty i zasoby. Przykłady zastosowania serwera plików obejmują firmy, które chcą centralizować swoje zasoby, umożliwiając pracownikom łatwy dostęp do dokumentów oraz aplikacji. Serwery plików mogą być konfigurowane z wykorzystaniem różnych protokołów, takich jak SMB (Server Message Block) dla systemów Windows czy NFS (Network File System) dla systemów Unix/Linux, co pozwala na interoperacyjność w zróżnicowanych środowiskach operacyjnych. Warto także wspomnieć o znaczeniu bezpieczeństwa i praw dostępu, co jest kluczowe w zarządzaniu danymi, aby zapewnić, że tylko uprawnione osoby mają dostęp do wrażliwych informacji. Dobrą praktyką jest również regularne wykonywanie kopii zapasowych danych znajdujących się na serwerze plików, co chroni przed ich utratą.

Pytanie 24

Która z kombinacji: protokół – warstwa, w której dany protokół działa, jest poprawnie zestawiona według modelu TCP/IP?

A. DHCP – warstwa dostępu do sieci
B. IGMP - warstwa Internetu
C. RARP – warstwa transportowa
D. ICMP - warstwa aplikacji
Wybór RARP (Reverse Address Resolution Protocol) jako protokołu warstwy transportowej jest błędny, ponieważ RARP działa na warstwie łącza danych. Służy do mapowania adresów IP na adresy MAC, co jest kluczowe w kontekście lokalnych sieci komputerowych, gdzie urządzenia muszą znać adresy fizyczne dla udanej komunikacji. Przemieszczając się do kolejnej opcji, DHCP (Dynamic Host Configuration Protocol) to protokół używany do automatycznej konfiguracji urządzeń w sieci, jednak działa on na warstwie aplikacji, a nie dostępu do sieci. Wiele osób myli DHCP z operacjami na niższych warstwach, ponieważ jego funkcjonalność wpływa na sposób, w jaki urządzenia związane są z siecią. ICMP (Internet Control Message Protocol) pełni rolę komunikacyjną między węzłami w sieci, jednak również działa na warstwie Internetu, a nie aplikacji. Typowe błędy myślowe prowadzące do tych nieprawidłowych wniosków mogą obejmować zrozumienie protokołów jako jedynie narzędzi do komunikacji na poziomie użytkownika, podczas gdy wiele z nich operuje na znacznie niższych warstwach, pełniąc różne funkcje w zakresie zarządzania ruchem sieciowym oraz konfiguracji adresów.

Pytanie 25

W systemach Microsoft Windows, polecenie netstat –a pokazuje

A. statystyki odwiedzin witryn internetowych
B. tabelę trasowania
C. aktualne ustawienia konfiguracyjne sieci TCP/IP
D. wszystkie aktywne połączenia protokołu TCP
Polecenie netstat –a w systemach Microsoft Windows jest narzędziem, które wyświetla listę wszystkich aktywnych połączeń sieciowych oraz portów, które są aktualnie używane przez różne aplikacje. Dzięki tej funkcjonalności administratorzy mogą monitorować, które usługi na urządzeniu są otwarte i na jakich portach, co jest kluczowe w kontekście bezpieczeństwa sieci. Na przykład, jeśli użytkownik zauważy, że na porcie 80, który jest standardowym portem dla HTTP, działa usługa, może to sugerować, że serwer webowy jest uruchomiony. Użycie tego polecenia pomaga również identyfikować potencjalne nieautoryzowane połączenia, co jest istotne w zarządzaniu bezpieczeństwem informacji. W praktyce, administratorzy sieci często wykorzystują netstat –a w połączeniu z innymi narzędziami, takimi jak firewalle, aby upewnić się, że tylko zamierzone połączenia są dozwolone.

Pytanie 26

W biurze rachunkowym potrzebne jest skonfigurowanie punktu dostępu oraz przygotowanie i podłączenie do sieci bezprzewodowej trzech komputerów oraz drukarki z WiFi. Koszt usługi konfiguracji poszczególnych elementów sieci wynosi 50 zł za każdy komputer, 50 zł za drukarkę i 100 zł za punkt dostępu. Jaki będzie całkowity wydatek związany z tymi pracami serwisowymi?

A. 250 zł
B. 300 zł
C. 100 zł
D. 200 zł
Cały koszt serwisu wynosi 300 zł. To wynik dodania kosztów za konfigurację trzech komputerów, drukarki i punktu dostępu. Koszt skonfigurowania jednego komputera to 50 zł, więc jeśli mamy trzy, to wychodzi 150 zł (50 zł razy 3). Do tego jeszcze 50 zł za drukarkę i 100 zł za punkt dostępu. Jak to zsumujesz, to dostaniesz 150 zł + 50 zł + 100 zł, co daje 300 zł. To jest ważne, bo pokazuje, jak kluczowe jest dobre planowanie budżetu w usługach IT. Z mojego doświadczenia, firmy często muszą uważnie oceniać koszty przy wprowadzaniu nowych technologii, bo inaczej mogą się zdziwić. Dlatego dobrze jest przeanalizować wszystko dokładnie przed startem projektu, żeby lepiej nią zarządzać i nie mieć niespodzianek z wydatkami w przyszłości.

Pytanie 27

Poniżej przedstawiono wynik działania polecenia

Interface Statistics

                         Received              Sent
Bytes                  3828957336        3249252169
Unicast packets          35839063         146809272
Non-unicast packets          5406             25642
Discards                       50                 0
Errors                          0                 0
Unknown protocols               0

A. ipconfig -e
B. netstat -e
C. dnslookup -e
D. tracert -e
Odpowiedź 'netstat -e' jest poprawna, ponieważ to polecenie w systemach operacyjnych Windows służy do wyświetlania szczegółowych informacji na temat statystyk interfejsu sieciowego. W szczególności, 'netstat -e' prezentuje dane dotyczące przesyłania pakietów i bajtów, co jest szczególnie przydatne w troubleshootingu i monitorowaniu wydajności sieci. Umożliwia administratorom systemów i sieci analizę błędów, odrzuconych pakietów oraz identyfikację nieznanych protokołów, co może wskazywać na potencjalne problemy z konfiguracją bądź bezpieczeństwem. W praktyce, korzystając z 'netstat -e', można szybko ocenić, czy interfejs sieciowy działa zgodnie z oczekiwaniami, co jest kluczowe w zarządzaniu infrastrukturą sieciową. Dobrym przykładem zastosowania jest sytuacja, gdy administrator zauważa spowolnienie działania aplikacji sieciowych i za pomocą tego polecenia może stwierdzić, czy interfejs jest w stanie przetwarzać odpowiednią ilość danych.

Pytanie 28

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.16.0.1
B. 171.0.0.1
C. 172.32.0.1
D. 172.0.0.1
Adres 172.16.0.1 jest poprawnym adresem prywatnym, definiowanym przez dokument RFC 1918, który ustanawia zakresy adresów IP przeznaczonych do użytku w sieciach lokalnych. Adresy prywatne nie są routowane w Internecie, co oznacza, że mogą być używane w sieciach wewnętrznych bez obawy o kolizje z adresami publicznymi. Zakres adresów prywatnych dla klasy B obejmuje 172.16.0.0 do 172.31.255.255, zatem 172.16.0.1 znajduje się w tym zakresie. Przykładowo, firmy często wykorzystują te adresy do budowy sieci lokalnych (LAN), co pozwala urządzeniom w sieci na komunikację bez potrzeby posiadania publicznego adresu IP. W praktyce, urządzenia takie jak routery lokalne przydzielają adresy prywatne w ramach sieci, a następnie wykorzystują translację adresów sieciowych (NAT) do komunikacji z Internetem, co zwiększa bezpieczeństwo i efektywność przydziału adresów.

Pytanie 29

Jaki adres wskazuje, że komputer jest częścią sieci o adresie IP 192.168.10.64/26?

A. 192.168.10.100
B. 192.168.10.1
C. 192.168.10.200
D. 192.168.10.50
Jak to jest z adresami IP? One mają swoją klasyfikację i maski podsieci, które mówią, ile bitów jest na identyfikację sieci, a ile na hosty. W przypadku 192.168.10.64 z maską /26, sieć powinna obejmować adresy od 192.168.10.64 do 192.168.10.127. Jak wybierasz adresy 192.168.10.50, 192.168.10.1 i 192.168.10.200, to nie do końca to rozumiesz. 192.168.10.50 trochę za blisko dolnej granicy, ale nie jest z tej sieci, bo jest w innej. 192.168.10.1, to zazwyczaj domyślny adres bramy u routerów, więc możesz się mylić. 192.168.10.200? To już za dużo, bo wychodzi z dostępnych adresów. Generalnie, problem leży w tym, że nie wiesz, jak działa maska podsieci i zakładasz, że różne adresy IP mogą być w tej samej sieci, a to nie tak działa.

Pytanie 30

Oblicz koszt brutto materiałów niezbędnych do połączenia w sieć, w topologii gwiazdy, 3 komputerów wyposażonych w karty sieciowe, wykorzystując przewody o długości 2 m. Ceny materiałów podano w tabeli.

Nazwa elementuCena jednostkowa brutto
przełącznik80 zł
wtyk RJ-451 zł
przewód typu „skrętka"1 zł za 1 metr

A. 252 zł
B. 92 zł
C. 89 zł
D. 249 zł
Aby obliczyć koszt brutto materiałów do stworzenia sieci w topologii gwiazdy dla trzech komputerów, kluczowe jest zrozumienie, jakie elementy są potrzebne do prawidłowego połączenia. W tym przypadku, do połączenia komputerów niezbędne są: przełącznik, przewody o długości 2 m oraz wtyki RJ-45. Koszt przełącznika jest stały, a koszt przewodów i wtyków można obliczyć na podstawie ich liczby. Każdy komputer wymaga jednego przewodu, co w przypadku trzech komputerów oznacza 3 przewody, czyli 6 m w sumie. Do tego dodajemy koszt przełącznika i wtyków. Po zsumowaniu wszystkich kosztów dochodzimy do kwoty 92 zł, która jest poprawna. Warto pamiętać, że w praktyce, przy projektowaniu sieci, właściwy dobór sprzętu i materiałów ma ogromne znaczenie dla wydajności i stabilności sieci. Wytyczne branżowe zalecają, aby przy budowie sieci lokalnych zwracać uwagę na jakość komponentów oraz ich zgodność z obowiązującymi standardami, co może zapobiec problemom z komunikacją i stabilnością w przyszłości.

Pytanie 31

Protokół używany do konwertowania fizycznych adresów MAC na adresy IP w sieciach komputerowych to

A. DNS (Domain Name System)
B. RARP (Reverse Address Resolution Protocol)
C. ARP (Address Resolution Protocol)
D. DHCP (Dynamic Host Configuration Protocol)
Protokóły DHCP, ARP i DNS pełnią różne funkcje w sieciach komputerowych, co może prowadzić do błędnych wniosków na temat ich zastosowania. DHCP, czyli Dynamic Host Configuration Protocol, koncentruje się na przydzielaniu adresów IP oraz innych parametrów konfiguracyjnych urządzeniom w sieci. Nie przekształca on adresów MAC na IP, lecz dynamicznie zarządza przydzielaniem adresów IP na podstawie zgłoszeń z urządzeń. ARP, czyli Address Resolution Protocol, jest stosowany do odwrotnego procesu, czyli przekształcania adresów IP na adresy MAC. Umożliwia to urządzeniom w sieci lokalnej komunikację z innymi urządzeniami, czyli przetłumaczenie adresu IP na odpowiadający mu adres MAC. DNS, z kolei, odpowiada za tłumaczenie nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania internetu. Działanie DNS nie ma związku z adresami MAC, co prowadzi do nieporozumień. Zrozumienie różnic między tymi protokołami jest kluczowe do prawidłowego zarządzania i projektowania sieci komputerowych. Często mylone są funkcje tych protokołów, co skutkuje nieefektywnym zarządzaniem adresowaniem i komunikacją w sieciach.

Pytanie 32

Sieć o adresie IP 172.16.224.0/20 została podzielona na cztery podsieci z maską 22-bitową. Który z poniższych adresów nie należy do żadnej z tych podsieci?

A. 172.16.240.0
B. 172.16.232.0
C. 172.16.228.0
D. 172.16.236.0
Wybór adresów 172.16.228.0, 172.16.232.0 oraz 172.16.236.0 może wynikać z mylnego zrozumienia podziału sieci oraz sposobu przydzielania adresów w podsieciach. Adres 172.16.228.0 jest pierwszym adresem drugiej podsieci, co oznacza, że jest to adres sieci, a nie adres hosta. Adres 172.16.232.0 jest pierwszym adresem trzeciej podsieci, również pełniąc tę samą funkcję. Podobnie, adres 172.16.236.0 jest początkiem czwartej podsieci. Te adresy są zatem w pełni poprawne, ponieważ mieszczą się w granicach odpowiednich podsieci stworzonych z pierwotnej sieci 172.16.224.0/20. Często popełnianym błędem w analizie takich zadań jest nieprawidłowe obliczenie zakresów adresów podsieci i mylenie adresów sieciowych z adresami dostępnymi dla hostów. Aby poprawnie zrozumieć, jakie adresy należą do danej podsieci, kluczowe jest zrozumienie koncepcji maski podsieci i jak ona dzieli dostępne adresy. Użycie narzędzi do analizy adresacji, takich jak kalkulatory podsieci, może znacznie ułatwić identyfikację prawidłowych adresów i pomóc uniknąć błędów w przyszłości. Przykładem może być sytuacja, w której administrator sieci planuje przydział adresów do nowych urządzeń – zrozumienie podziału na podsieci jest niezbędne, aby uniknąć konfliktów adresów i zapewnić efektywną komunikację w sieci.

Pytanie 33

Podstawowy protokół wykorzystywany do określenia ścieżki i przesyłania pakietów danych w sieci komputerowej to

A. POP3
B. RIP
C. SSL
D. PPP
RIP (Routing Information Protocol) to protokół trasowania, który jest używany w sieciach komputerowych do wymiany informacji o trasach między routerami. Działa na zasadzie protokołu wektora odległości, co oznacza, że każdy router informuje inne routery o znanych mu trasach oraz ich kosztach. Koszt trasy jest zazwyczaj mierzony w liczbie hopów, co oznacza liczbę routerów, przez które musi przejść pakiet, aby dotrzeć do celu. RIP jest szczególnie przydatny w małych i średnich sieciach, gdzie prostota konfiguracji i niskie wymagania dotyczące zasobów są kluczowe. Przykładem zastosowania RIP może być mała sieć biurowa, w której kilka routerów musi współdzielić informacje o trasach, aby zapewnić poprawne kierowanie ruchu. Zgodnie z najlepszymi praktykami, protokół RIP jest często wykorzystywany w połączeniu z innymi protokołami trasowania, takimi jak OSPF (Open Shortest Path First), w celu zwiększenia elastyczności i wydajności zarządzania ruchem w większych sieciach. Zrozumienie działania RIP oraz jego odpowiednich zastosowań jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 34

Aby serwer DNS mógł poprawnie przekształcać nazwy domenowe na adresy IPv6, konieczne jest skonfigurowanie rekordu

A. MX
B. AAAA
C. CNAME
D. A
Rekord AAAA to prawdziwy must-have w DNS, bo pozwala na zamienianie nazw domen na adresy IPv6. To coś innego niż rekord A, który działa tylko z IPv4. Rekord AAAA jest zaprojektowany na długie adresy IPv6, które mają osiem grup po cztery znaki szesnastkowe. Dlaczego to takie ważne? Liczba dostępnych adresów IPv4 się kończy, więc musimy przejść na IPv6. Na przykład, kiedy jakaś firma zakłada nową stronę www obsługującą ruch z IPv6, musi dodać odpowiedni rekord AAAA. Dzięki temu przeglądarki mogą znaleźć ich stronę. Po dodaniu tego rekordu, dobrze jest przetestować, czy wszystko działa, używając narzędzi jak dig czy nslookup. I jeszcze jedno – hadoby dobrze mieć i rekord A, i AAAA, żeby użytkownicy mogą korzystać z obu rodzajów adresów, czyli zarówno IPv4, jak i IPv6.

Pytanie 35

Co oznacza skrót WAN?

A. rozległą sieć komputerową
B. lokalną sieć komputerową
C. miejską sieć komputerową
D. prywatną sieć komputerową
Skrót WAN oznacza Wide Area Network, co w tłumaczeniu na polski oznacza rozległą sieć komputerową. WAN to typ sieci, który łączy komputery i urządzenia w dużym zasięgu geograficznym, obejmującym miasta, regiony, a nawet kraje. Zastosowanie WAN jest powszechne w dużych organizacjach oraz korporacjach, które potrzebują komunikować się między oddziałami rozrzuconymi na dużym obszarze. Przykłady zastosowania WAN obejmują sieci bankowe, które łączą różne placówki, oraz systemy informatyczne w przedsiębiorstwach międzynarodowych. W kontekście standardów, WAN zazwyczaj korzysta z protokołów takich jak MPLS (Multi-Protocol Label Switching) i Frame Relay, które zapewniają efektywną transmisję danych na dużą skalę. Dobrą praktyką w zarządzaniu WAN jest wykorzystanie rozwiązań typu SD-WAN (Software-Defined Wide Area Network), które umożliwiają lepsze zarządzanie ruchem sieciowym oraz zwiększają bezpieczeństwo połączeń. Zrozumienie koncepcji WAN jest kluczowe dla projektowania nowoczesnych, rozproszonych architektur sieciowych, które odpowiadają na potrzeby globalnych organizacji.

Pytanie 36

Jakie polecenie w systemach operacyjnych Linux służy do prezentacji konfiguracji sieciowych interfejsów?

A. ifconfig
B. ping
C. ipconfig
D. tracert
Polecenie 'ifconfig' jest klasycznym narzędziem używanym w systemach operacyjnych Linux do wyświetlania oraz konfigurowania interfejsów sieciowych. Umożliwia ono administratorom systemów monitorowanie oraz zarządzanie parametrami sieciowymi, takimi jak adres IP, maska podsieci, status interfejsu, a także inne istotne informacje. Przykładowo, używając polecenia 'ifconfig', można sprawdzić, które interfejsy sieciowe są aktywne oraz jakie mają przypisane adresy IP. Dodatkowo, 'ifconfig' pozwala na dokonywanie zmian w konfiguracji interfejsów, co jest niezwykle przydatne w sytuacjach, gdy konieczne jest przypisanie nowego adresu IP lub aktywacja/dezaktywacja interfejsu. Warto również wspomnieć, że 'ifconfig' jest częścią standardowych narzędzi sieciowych w wielu dystrybucjach Linuxa, a jego znajomość jest wręcz niezbędna dla każdego administratora systemów. Choć 'ifconfig' pozostaje w użyciu, warto zauważyć, że nowoczesne systemy operacyjne promują bardziej zaawansowane narzędzie o nazwie 'ip', które oferuje rozszerzone funkcjonalności i lepsze wsparcie dla nowoczesnych protokołów sieciowych."

Pytanie 37

Jaką wartość ma domyślna maska dla adresu IP klasy B?

A. 255.0.0.0
B. 255.255.255.255
C. 255.255.0.0
D. 255.255.255.0
Domyślna maska dla adresu IP klasy B to 255.255.0.0. Oznacza to, że pierwsze dwa oktety adresu IP (16 bitów) są zarezerwowane na identyfikator sieciowy, podczas gdy pozostałe dwa oktety (16 bitów) mogą być wykorzystywane do identyfikacji poszczególnych hostów w tej sieci. Ta struktura pozwala na obsługę dużej liczby hostów, co czyni ją idealną do zastosowań w średnich i dużych sieciach. Na przykład, w sieci klasy B z maską 255.255.0.0 można zaadresować do 65,534 hostów (2^16 - 2, gdzie 2 odejmujemy z powodu adresu sieci oraz adresu rozgłoszeniowego). Użycie klasy B i odpowiedniej maski pozwala na efektywne zarządzanie adresacją IP w organizacjach, które wymagają dużej liczby unikalnych adresów, takich jak uczelnie czy duże przedsiębiorstwa. W praktyce, często wykorzystuje się tę maskę w połączeniu z protokołami routingu, aby zapewnić optymalne przesyłanie danych w sieciach rozległych (WAN).

Pytanie 38

Aby uzyskać sześć podsieci z sieci o adresie 192.168.0.0/24, co należy zrobić?

A. zmniejszyć długość maski o 2 bity
B. zwiększyć długość maski o 3 bity
C. zmniejszyć długość maski o 3 bity
D. zwiększyć długość maski o 2 bity
Zwiększenie długości maski o 2 bity nie jest wystarczające do wydzielenia sześciu podsieci. W takim przypadku, przy dodaniu dwóch bitów do maski /24, otrzymujemy maskę /26. Zastosowanie maski /26 pozwala na uzyskanie jedynie 4 podsieci, co nie spełnia wymagań. Ponadto, zmniejszenie długości maski o 2 lub 3 bity prowadzi do zwiększenia liczby dostępnych hostów w każdej podsieci, co w przypadku potrzeby stworzenia większej ilości podsieci jest niewłaściwe. Zmniejszenie maski z /24 powoduje, że część adresów sieciowych zostaje użyta na identyfikację hostów, co ogranicza liczbę generowanych podsieci. Prawidłowe planowanie adresacji IP wymaga zrozumienia, że każda zmiana maski wpływa na liczbę dostępnych podsieci oraz hostów. Przy tworzeniu sieci, należy stosować standardowe praktyki, takie jak rozważenie liczby przyszłych podsieci oraz potencjalnych potrzeb w zakresie adresacji. Niepoprawne podejścia mogą prowadzić do nagromadzenia adresów IP i problemów z zarządzaniem siecią, co jest sprzeczne z zasadami efektywnej administracji sieci.

Pytanie 39

W jakiej usłudze serwera możliwe jest ustawienie parametru TTL?

A. DNS
B. HTTP
C. FTP
D. DHCP
TTL, czyli Time To Live, to parametr stosowany w systemach DNS (Domain Name System), który określa czas, przez jaki dane rekordy DNS mogą być przechowywane w pamięci podręcznej przez resolvera lub serwer DNS. Ustawienie odpowiedniego TTL jest kluczowe dla efektywności zarządzania ruchem sieciowym oraz aktualizacją rekordów. Na przykład, jeśli TTL jest ustawiony na 3600 sekund (czyli 1 godzinę), to po upływie tego czasu resolver będzie musiał ponownie zapytać o rekord DNS, co zapewnia, że zmiany wprowadzone na serwerze DNS będą propagowane w odpowiednim czasie. W praktyce, krótszy czas TTL może być użyteczny w sytuacjach, gdy często zmieniają się adresy IP lub konfiguracje serwera, natomiast dłuższy TTL może zmniejszyć obciążenie serwera i przyspieszyć odpowiedzi dla użytkowników. Dobrą praktyką jest dostosowywanie wartości TTL w zależności od specyfiki danego zastosowania oraz dynamiki zmian konfiguracji sieciowej. Znalezienie odpowiedniego kompromisu pomiędzy szybkością aktualizacji a wydajnością jest kluczowe w administracji sieciami. Dlatego TTL jest niezwykle istotnym parametrem w kontekście zarządzania DNS.

Pytanie 40

Jakie urządzenie należy wykorzystać, aby połączyć lokalną sieć z Internetem dostarczanym przez operatora telekomunikacyjnego?

A. Konwerter mediów
B. Przełącznik warstwy 3
C. Punkt dostępu
D. Ruter ADSL
Ruter ADSL jest urządzeniem, które łączy lokalną sieć komputerową z Internetem dostarczanym przez operatora telekomunikacyjnego. Działa on na zasadzie modulacji sygnału ADSL, co pozwala na jednoczesne przesyłanie danych przez linię telefoniczną, bez zakłócania połączeń głosowych. Ruter ADSL pełni funkcję bramy do sieci, umożliwiając podłączenie wielu urządzeń w sieci lokalnej do jednego połączenia internetowego. Zazwyczaj wyposażony jest w porty LAN, przez które można podłączyć komputery, drukarki oraz inne urządzenia. Przykładem zastosowania może być domowa sieć, gdzie ruter ADSL łączy się z modemem telefonicznym, a następnie rozdziela sygnał na różne urządzenia w sieci. Dodatkowo, rutery ADSL często zawierają funkcje zarządzania jakością usług (QoS) oraz zabezpieczenia, takie jak firewall, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci. Warto również zauważyć, że rutery ADSL są standardowym rozwiązaniem w przypadku lokalnych sieci, które korzystają z technologii xDSL i są szeroko stosowane w domach oraz małych biurach.