Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 24 maja 2025 15:47
  • Data zakończenia: 24 maja 2025 16:03

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. EOL
B. 2EOL
C. NO
D. NC
Obwód sabotażowy z konfiguracją NC (Normally Closed) oznacza, że urządzenie jest domyślnie zamknięte. Gdy obwód jest przerwany (np. przez otwarcie drzwi), sygnał jest wysyłany do systemu alarmowego, co pozwala na wykrycie sabotażu. Użycie konfiguracji NC jest standardową praktyką w instalacjach alarmowych, ponieważ zapewnia, że w przypadku awarii (np. uszkodzenia przewodu) obwód zostanie przerwany, co wywoła alarm. W praktyce oznacza to, że wszystkie czujniki, takie jak kontaktrony lub czujniki ruchu, powinny być skonfigurowane w trybie NC, aby skutecznie monitorować stany i sygnalizować nieautoryzowany dostęp lub usunięcie elementów z systemu. Dodatkowo, dzięki temu podejściu system jest odporniejszy na fałszywe alarmy, ponieważ jakiekolwiek działanie niezgodne z normalnym funkcjonowaniem obwodu wywoła reakcję alarmową, co jest kluczowe w zabezpieczeniach.

Pytanie 2

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
B. pamięć podręczna cache procesora jest uszkodzona.
C. pamięć CMOS nie została ustawiona.
D. wystąpił problem z sumą kontrolną BIOS-u.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 3

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 8
B. 4
C. 10
D. 5
Wybór niewłaściwej liczby żył do podłączenia unifonu w systemie domofonowym 4+N często wynika z niepełnego zrozumienia zasad działania tego typu instalacji. System 4+N oznacza, że dla efektywnej pracy systemu oraz utrzymania jakości sygnału wymagane są cztery żyły do przesyłania dźwięku oraz zasilania, a dodatkowa żyła N pełni funkcję neutralną. W przypadku wyboru odpowiedzi 4, mylone jest pojęcie liczby przewodów sygnalizacyjnych z wymaganiami zasilania, co może prowadzić do problemów z funkcjonowaniem całego systemu. Odpowiedzi takie jak 10 czy 8 wskazują na nadmiar przewodów, co jest niezgodne z zasadą prostoty i efektywności w instalacjach elektronicznych. Przy projektowaniu systemów domofonowych, warto trzymać się sprawdzonych schematów i standardów, które podkreślają, że każdy dodatkowy przewód wprowadza nie tylko niepotrzebne komplikacje, ale także zwiększa koszty instalacji oraz ryzyko błędów. Dlatego kluczowe jest zrozumienie, że liczba żył w systemie jest ściśle określona przez jego specyfikację, a nie intuicję czy domysły. Właściwe zastosowanie i zrozumienie architektury systemu zapewnia jego optymalne działanie oraz łatwiejszą diagnostykę w przypadku awarii.

Pytanie 4

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. odchylania poziomego i pionowego
B. separatora sygnałów
C. wielkiej i pośredniej częstotliwości
D. wzmacniacza obrazu
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 5

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. rejestrator z dużą pojemnością dysku
B. obiektyw o wyższej rozdzielczości
C. dostęp do sieci komputerowej
D. zasilacz o większej mocy prądowej
Wielu użytkowników może mylnie sądzić, że rejestrator z dyskiem o dużej pojemności jest niezbędny do użycia kamery megapikselowej IP. Choć posiadanie takiego rejestratora ułatwia przechowywanie danych wideo z kamer, to nie jest to warunek konieczny do samego działania kamery. Kamery IP mogą transmitować obraz bezpośrednio przez sieć, co pozwala na zdalne monitorowanie bez potrzeby lokalnego rejestratora. Kolejnym błędem jest przekonanie, że obiektyw o zwiększonej rozdzielczości jest wymagany. Chociaż lepszy obiektyw może poprawić jakość obrazu, sama kamera IP działa niezależnie od rodzaju obiektywu, a jej funkcjonalność w dużym stopniu opiera się na dostępie do sieci. Innym nieporozumieniem jest zasilacz o podwyższonej wydajności prądowej. Kamery IP zazwyczaj korzystają z technologii Power over Ethernet (PoE), co oznacza, że mogą być zasilane bezpośrednio z kabla sieciowego, eliminując potrzebę dodatkowego zasilania. Tego rodzaju niejasności mogą prowadzić do błędnych decyzji przy planowaniu instalacji systemów monitoringu, dlatego ważne jest zrozumienie, że kluczowym elementem dla kamer IP jest ich integracja z siecią komputerową, a nie inne komponenty.

Pytanie 6

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. napięcie detektora
B. typ modulacji
C. zmiana częstotliwości
D. współczynnik zawartości harmonicznych
Współczynnik zawartości harmonicznych (THD - Total Harmonic Distortion) jest kluczowym parametrem w ocenie jakości sygnału w wzmacniaczach małej częstotliwości. Mierzy on, w jakim stopniu sygnał wyjściowy wzmacniacza zawiera harmoniczne, które nie występują w sygnale wejściowym. W praktyce, im niższy współczynnik THD, tym wyższa jakość dźwięku, ponieważ oznacza to mniejsze zniekształcenia sygnału. Wzmacniacze audio, na przykład, często dążą do uzyskania wartości THD poniżej 1%, co jest standardem w branży audiofilskiej. Dobrze zaprojektowane wzmacniacze powinny minimalizować zniekształcenia w celu wiernego odwzorowania dźwięku. Warto zwrócić uwagę na to, że współczynnik THD można poprawić poprzez odpowiedni dobór komponentów oraz zastosowanie technik, takich jak sprzężenie zwrotne, co jest powszechnie stosowane w inżynierii elektronicznej. Analiza THD jest więc istotna nie tylko dla inżynierów projektujących wzmacniacze, ale także dla użytkowników szukających sprzętu o wysokiej jakości dźwięku.

Pytanie 7

THT to metoda

A. prowadzenia przewodów przez otwory w ścianach
B. montowania elementów elektronicznych na płytkach drukowanych
C. realizacji instalacji podtynkowej
D. umieszczania kabli w rurkach instalacyjnych
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 8

Protokół internetowy, który pozwala na pobieranie wiadomości e-mail z serwera na komputer, to

A. POP3
B. FTP
C. ARP
D. DHCP
Wybór odpowiedzi innej niż POP3 wskazuje na pewne niezrozumienie funkcji protokołów w kontekście komunikacji internetowej. ARP, czyli Address Resolution Protocol, jest protokołem stosowanym w sieciach lokalnych do mapowania adresów IP na adresy MAC, co nie ma związku z odbieraniem poczty elektronicznej. Protokół DHCP (Dynamic Host Configuration Protocol) jest używany do automatycznej konfiguracji ustawień sieciowych urządzeń, co również nie dotyczy bezpośrednio przesyłania poczty e-mail. Z kolei FTP (File Transfer Protocol) to protokół służący do przesyłania plików między serwerem a klientem, a nie do odbierania wiadomości pocztowych. Często mylone są funkcje tych protokołów, ponieważ wszystkie mają na celu komunikację w sieci, lecz każdy z nich pełni zupełnie inną rolę. Poprawne rozróżnienie tych protokołów jest kluczowe dla właściwego zrozumienia, jak działają sieci komputerowe i jakie są mechanizmy wymiany informacji. Niezrozumienie takich podstawowych koncepcji może prowadzić do błędnych wniosków w zakresie projektowania systemów oraz ich konfiguracji. Użytkownicy powinni zwracać uwagę na specyfikacje i zastosowania zaawansowanych protokołów, aby lepiej zrozumieć ich funkcjonalności i zastosowania w praktyce.

Pytanie 9

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 0,1 kHz
C. 1 kHz
D. 100 kHz
Częstotliwość prądu zmiennego, tak jak w przypadku tego pytania, jest ściśle związana z pojęciem okresu, jednakże niepoprawne odpowiedzi mogą wynikać z nieporozumienia dotyczącego tego, jak te dwie wielkości są powiązane. Odpowiedzi 10 kHz, 0,1 kHz i 100 kHz powstają w wyniku błędnych obliczeń lub błędnego zrozumienia zasady odwrotności. Na przykład, wybierając odpowiedź 10 kHz, można pomyśleć, że wystarczająco mały okres (0,0001 s) mógłby odpowiadać tej częstotliwości, co jest jednak błędne. Takie błędne myślenie często wynika z niepełnego zrozumienia proporcji między okresem a częstotliwością. Podobnie, 0,1 kHz sugeruje, że okres mógłby wynosić 10 s, co jest całkowicie niezgodne z podanym okresem 0,001 s. Częstotliwość 100 kHz również błędnie zakłada, że krótki okres w sekundach (0,00001 s) jest poprawny, co z kolei jest niezgodne z zadanym okresem. Te pomyłki mogą prowadzić do problemów w praktycznych zastosowaniach, takich jak projektowanie układów elektronicznych, gdzie błędna częstotliwość może skutkować niewłaściwym działaniem urządzenia. Kluczowe jest, aby zrozumieć, że w inżynierii elektrycznej, poprawne obliczenia są podstawą skutecznego projektowania i optymalizacji systemów, a znajomość relacji między okresem a częstotliwością jest fundamentalnym krokiem w każdej analizie sygnału.

Pytanie 10

W instalacji antenowej, która ma być używana w warunkach podwyższonej wilgotności oraz zmiennych temperaturach, powinny być zastosowane kable

A. w płaszczu PCV
B. z oplotem miedzianym
C. z linką nośną
D. w płaszczu polietylenowym (PE)
Wybór odpowiedzi niezwiązanych z płaszczem polietylenowym może prowadzić do poważnych problemów w kontekście instalacji antenowych. Odpowiedź "z oplotem miedzianym" sugeruje, że miedź zapewnia ochronę przed wilgocią i zmiennymi temperaturami, co jest mylnym założeniem. Miedź, choć doskonała w przewodnictwie elektrycznym, jest podatna na korozję w warunkach wilgotnych, co może prowadzić do degradacji przewodów i utraty jakości sygnału. Odpowiedź "z linką nośną" odnosi się do aspektu konstrukcyjnego, ale nie dotyczy materiału izolacyjnego, co w kontekście ochrony przed wilgocią oraz temperaturą jest kluczowe. Linka nośna może pomóc w utrzymaniu przewodu w odpowiedniej pozycji, ale nie zapewnia odpowiedniej ochrony przed czynnikami zewnętrznymi. Z kolei opcja "w płaszczu PCV" jest nieodpowiednia, ponieważ chociaż PCV jest materiałem odpornym na starzenie, może nie wytrzymać ekstremalnych warunków temperaturowych i wysokiej wilgotności, co prowadzi do pęknięć i utraty elastyczności. Wybierając przewody do systemów antenowych, kluczowe jest kierowanie się nie tylko ich właściwościami elektrycznymi, ale również odpornością na warunki środowiskowe, co jest istotnym błędem, który należy unikać.

Pytanie 11

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. linii sabotażowych
B. faktury zakupu
C. stanu akumulatora
D. ustawienia czujek ruchu
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 12

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5

A. D.
B. C.
C. B.
D. A.
Odpowiedź A jest prawidłowa, ponieważ dioda prostownicza, którą wybrano, ma parametry URM=1000 V i IFAV=1 A, co przewyższa wymagania uszkodzonej diody o parametrach URM=200 V i IFAV=1 A. Wybór diody o wyższych parametrach jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, gdzie zawsze należy stosować komponenty z odpowiednim marginesem bezpieczeństwa. W przypadku diod prostowniczych, ważne jest, aby napięcie wsteczne (URM) było wyższe niż maksymalne napięcie, które może wystąpić w obwodzie, aby uniknąć uszkodzenia diody. Ponadto, prąd przewodzenia (IFAV) powinien być co najmniej równy prądowi, który przepływa przez diodę w normalnych warunkach pracy. Wybierając komponenty, warto także zwrócić uwagę na parametry dynamiczne diody, takie jak czas przełączania oraz współczynnik temperatury, co ma znaczenie w aplikacjach, gdzie dioda pracuje w zmiennych warunkach. Selekcja odpowiednich komponentów na podstawie ich specyfikacji jest kluczowa dla niezawodności i trwałości układów elektronicznych.

Pytanie 13

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
B. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
C. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
D. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 14

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5

A. BTA16-800B
B. BT136-500
C. BT138-500F
D. BT138-800
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 15

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. cewką regulowaną
B. filtr z regulowaną indukcyjnością
C. kondensatorem dostrojczym
D. potencjometrem
Potencjometr, cewka regulowana i filtr z regulowaną indukcyjnością to terminy, które często są mylone z kondensatorem dostrojczym, ale mają zupełnie inne właściwości i zastosowania. Potencjometr to element pasywny, który pozwala na regulację oporu w obwodzie elektrycznym, co jest przydatne w aplikacjach takich jak regulacja głośności w audio czy w kontrolerach jasności. Choć potencjometry mogą wpływać na sygnał elektryczny, nie są one używane do dostrajania częstotliwości, ponieważ nie zmieniają pojemności ani nie mają związku z obwodami rezonansowymi. Cewka regulowana, z kolei, to element indukcyjny, którego indukcyjność można modyfikować, ale nie jest to odpowiednik kondensatora dostrojczego. Cewki regulowane są stosowane w aplikacjach, gdzie zmiana indukcyjności jest kluczowa, jak w transformatorach czy filtrach, jednak same w sobie nie służą do regulacji pojemności. Filtr z regulowaną indukcyjnością również ma swoje specyficzne zastosowanie w filtracji sygnałów, ale nie zmienia pojemności obwodu w taki sposób, aby dostroić go do konkretnej częstotliwości. Typowym błędem w takich rozważaniach jest mylenie funkcji i zastosowań tych elementów; każdy z nich pełni inną rolę w obwodach elektronicznych, co jest kluczowe dla ich prawidłowego działania. Aby uzyskać pełne zrozumienie pojęć związanych z elektroniką, ważne jest, aby dokładnie poznawać właściwości i zastosowanie każdego z tych elementów.

Pytanie 16

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
B. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
C. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
D. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 17

Co oznacza skrót DISEqC?

A. modulator jedno wstęgowy używany w zbiorczych systemach telewizyjnych
B. adapter sieciowy do przesyłania sygnałów satelitarnych
C. konwerter satelitarny przeznaczony do hybrydowych sieci kablowych
D. protokół komunikacyjny do zarządzania urządzeniami satelitarnymi
Wszystkie inne odpowiedzi mogą wydać się w porządku, ale żadna z nich porządnie nie wyjaśnia, czym tak właściwie jest DISEqC. Jeśli ktoś mówi, że to konwerter satelitarny do hybrydowych sieci kablowych, to się myli – bo DISEqC to nie sprzęt, a właśnie ten protokół do komunikacji. Konwertery satelitarne to tylko sprzęt, który może korzystać z tego protokołu. Inna odpowiedź, która mówi o modulatorze jedno wstęgowym, też nie ma sensu, bo DISEqC nie zajmuje się modulowaniem sygnałów, tylko ich przekazywaniem i kontrolowaniem. Mówiąc o adapterze sieciowym do transmisji sygnałów satelitarnych, też jest nieprecyzyjnie, bo DISEqC nie jest adapterem, tylko protokołem, który różne urządzenia mogą używać do wymiany informacji. Te wszystkie błędy prowadzą do tego, że nie rozumiemy, jak ważne jest DISEqC w zarządzaniu urządzeniami satelitarnymi. Niezbędne jest zrozumienie tego protokołu, jeśli chce się dobrze obsługiwać systemy satelitarne, bo to fundament nowoczesnych rozwiązań w tej dziedzinie.

Pytanie 18

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 75 Ω
B. 50 Ω
C. 100 Ω
D. 120 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 19

W tabeli wymieniono dane techniczne

Przetwornik2 Mpx high-performance CMOS
Rozdzielczość1920 × 1080 (2 Mpx)
Czułość0 lux z IR
Obiektyw2,8 mm
Kąt widzenia103°
FunkcjeAGC, BLC, DWDR
Zasilanie12 V DC
ZastosowanieZewnętrzne, IP66

A. czujki PIR.
B. kamery CCTV.
C. dekodera DVB-T.
D. odbiornika telewizyjnego.
Kamery CCTV są urządzeniami przeznaczonymi do monitorowania i rejestrowania obrazu w różnych warunkach oświetleniowych. W danych technicznych, które wskazują na przetwornik, rozdzielczość, czułość oraz obiektyw, można zauważyć, że są to kluczowe parametry dla jakości obrazu. Na przykład, wysoka rozdzielczość jest niezbędna do uzyskania wyraźnych nagrań, które są istotne w kontekście identyfikacji osób i zdarzeń. Czułość kamery, zwłaszcza w warunkach słabego oświetlenia, pozwala na skuteczne monitorowanie w nocy. Funkcje takie jak AGC (Automatic Gain Control) oraz BLC (Back Light Compensation) poprawiają jakość obrazu w trudnych warunkach oświetleniowych, co jest kluczowe dla skutecznego nadzoru. Zasilanie 12 V DC oraz oznaczenie IP66 świadczą o tym, że kamera jest przeznaczona do stosowania na zewnątrz i jest odporna na warunki atmosferyczne, co jest standardem w branży monitoringu wizyjnego. Użycie tego typu kamer jest powszechne w systemach zabezpieczeń budynków, parków i innych obiektów publicznych.

Pytanie 20

Jakie rodzaje układów cyfrowych powinno się wykorzystać, aby zredukować liczbę linii przesyłu danych?

A. Koder i demultiplekser
B. Koder i transkoder
C. Multiplekser i demultiplekser
D. Multiplekser i dekoder
W przypadku odpowiedzi wskazujących na zastosowanie multipleksera i dekodera, ważne jest zrozumienie, że dekoder nie pełni funkcji redukcji linii przesyłowych. Dekodery są używane do konwersji binarnych sygnałów na sygnały wyjściowe, co może zwiększać liczbę linii wymaganych na wyjściu. Takie podejście prowadzi do nadmiarowości i nieefektywności, szczególnie w systemach o dużej liczbie sygnałów. W analogiczny sposób, wybór kodera i transkodera również nie jest odpowiedni w kontekście zmniejszenia linii przesyłowych. Kodery konwertują dane w celu ich efektywnego przesyłania lub przechowywania, natomiast transkodery zmieniają format tych danych. Oba te procesy mogą angażować dodatkowe zasoby, zamiast je minimalizować. Wreszcie, wybór kodera i demultipleksera jest równie mylący, gdyż koder nie jest dedykowany do redukcji linii, a demultiplekser, chociaż przydatny w rozdzielaniu sygnałów, nie niweluje potrzeby posiadania wielu linii na etapie kodowania. W analizie tych odpowiedzi często popełniane są błędy związane z niewłaściwym rozumieniem roli i funkcji poszczególnych układów cyfrowych oraz ich wpływu na architekturę systemów. Kluczowe jest, aby przy wyborze komponentów kierować się ich rzeczywistym zastosowaniem w kontekście redukcji zasobów, co powinno być podstawą wszelkich decyzji inżynieryjnych.

Pytanie 21

Jakie urządzenie służy do mierzenia ciśnienia?

A. luksomierz
B. manometr
C. pirometr
D. tachometr
Luksomierz, tachometr i pirometr to urządzenia pomiarowe, które mają inne zastosowania niż pomiar ciśnienia. Luksomierz jest używany do pomiaru natężenia oświetlenia, co jest istotne w kontekście projektowania oświetlenia oraz ergonomii pracy. Użycie luksomierza w niewłaściwym kontekście, takim jak pomiar ciśnienia, prowadzi do błędów w analizie warunków środowiskowych, co może wpłynąć na jakość produktów oraz bezpieczeństwo pracy. Tachometr mierzy prędkość obrotową obiektów, co jest kluczowe w monitorowaniu i kontrolowaniu maszyn w różnych zastosowaniach przemysłowych oraz motoryzacyjnych. Pomiar ciśnienia za pomocą tachometru byłby nieadekwatny, ponieważ nie odzwierciedla on rzeczywistych warunków ciśnieniowych w systemie. Pirometr to narzędzie służące do pomiaru temperatury obiektów na podstawie promieniowania cieplnego, co czyni go narzędziem nieodpowiednim do pomiaru ciśnienia. Błędem jest myślenie, że każde urządzenie pomiarowe może być stosowane zamiennie, co podkreśla znaczenie wiedzy na temat specyficznych funkcji różnych typów mierników. Prawidłowe zrozumienie zastosowania tych narzędzi jest kluczowe dla bezpieczeństwa i efektywności w różnych branżach.

Pytanie 22

Aby zestroić impedancję anteny z impedancją kabla, należy zastosować

A. symetryzator
B. detektor
C. głowicę UKF
D. zwrotnicę
Detektor, zwrotnica i głowica UKF to różne urządzenia, które mają swoje zadania w systemach komunikacyjnych, ale żaden z nich nie zajmuje się dopasowaniem impedancji anteny. Detektor przekształca sygnał radiowy w sygnał audio czy inny, ale impedancją się nie przejmuje. Zwrotnica służy do rozdzielania lub łączenia sygnałów z różnych źródeł, co też nie ma związku z tym dopasowaniem. Głowica UKF z kolei to część odbiornika, która zajmuje się selekcją i demodulacją sygnałów w paśmie UKF, ale też nie dopasowuje impedancji. Wiesz, często ludzie mylą te różne funkcje i przez to wyciągają błędne wnioski. A niewłaściwe dopasowanie impedancji może naprawdę prowadzić do problemów, jak straty sygnału czy nawet uszkodzenia sprzętu. Dlatego warto wiedzieć, jak ważna jest rola symetryzatora w tym wszystkim, zwłaszcza dla inżynierów zajmujących się telekomunikacją czy systemami radiowymi.

Pytanie 23

Jakie jest zastosowanie symetryzatora antenowego?

A. do przesyłania sygnałów z kilku anten do jednego odbiornika
B. do dopasowania impedancyjnego anteny i odbiornika
C. aby zwiększyć zysk energetyczny anteny
D. w celu zmiany charakterystyki kierunkowej anteny
Wybór odpowiedzi, które sugerują, że symetryzator antenowy służy do zwiększenia zysku energetycznego anteny, zmiany kierunkowości anteny lub przesyłania sygnałów z kilku anten do jednego odbiornika, opiera się na nieporozumieniach dotyczących funkcji tych urządzeń. Symetryzator nie zwiększa zysku energetycznego anteny. Zysk energetyczny anteny odnosi się do jej charakterystyki radiowej, która jest związana z porównaniem wydajności anteny do standardowej anteny izotropowej, a nie do samego dopasowania impedancji. Zmiana charakterystyki kierunkowej anteny jest realizowana przez zastosowanie różnych typów anten, takich jak anteny kierunkowe lub omni-kierunkowe, a nie przez symetryzator. Symetryzator nie jest też urządzeniem, które przesyła sygnały z kilku anten. Zamiast tego, w sytuacji wymagającej podłączenia wielu anten, stosuje się urządzenia takie jak przełączniki antenowe lub wzmacniacze rozgałęźne. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie roli dopasowania impedancyjnego z parametrami wydajnościowymi anteny lub niewłaściwe zrozumienie funkcji urządzeń w systemach komunikacyjnych. Właściwe zrozumienie tych koncepcji jest niezbędne dla efektywnego projektowania i stosowania technologii antenowych.

Pytanie 24

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. skretkami telefonicznymi
B. drogą radiową
C. łączami światłowodowymi
D. kablami koncentrycznymi
Odpowiedzi 'skrótkami telefonicznymi', 'drogą radiową' oraz 'kabli koncentrycznymi' są nieprawidłowe, ponieważ każda z tych technologii nie jest odpowiednia do przesyłania sygnałów na duże odległości w telewizji kablowej. Skrętki telefoniczne, choć stosowane w telekomunikacji, mają ograniczoną przepustowość i są podatne na zakłócenia elektromagnetyczne. W praktyce, ich użycie w transmisji telewizyjnej na dużą skalę wiązałoby się z znacznymi stratami sygnału i nieefektywnością. Z kolei transmisja drogą radiową, mimo że może być użyteczna w niektórych zastosowaniach, wymaga silnych sygnałów i widoczności linii, co utrudnia stabilne przesyłanie sygnału w gęsto zaludnionych obszarach miejskich, gdzie przeszkody terenowe mogą prowadzić do znacznych strat jakości. Kable koncentryczne, chociaż były szeroko stosowane w telewizji kablowej, mają swoje ograniczenia w kontekście wydajności na dużych odległościach. Przesyłają sygnały analogowe lub cyfrowe, ale przy większych odległościach doświadczają znacznych spadków sygnału. Dodatkowo, kable koncentryczne są bardziej podatne na zakłócenia i interferencje w porównaniu z systemami światłowodowymi. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiedniej technologii dla efektywnej transmisji sygnału w nowoczesnych systemach telewizyjnych.

Pytanie 25

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. wzmacniacza mocy
B. zasilacza
C. głośnika
D. potencjometru
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 26

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 100,00 zł
B. 146,40 zł
C. 122,00 zł
D. 117,60 zł
Jak rozwiązywałeś to zadanie, to mogłeś się pogubić w liczeniu całkowitego kosztu usługi. Trzeba zrozumieć, że trzeba zsumować koszty materiałów, pensję pracownika i VAT. Jak coś pominiesz, na przykład wynagrodzenie serwisanta to może być problem. Możliwe, że niektóre odpowiedzi skupiły się na złych wartościach, co mogło prowadzić do błędnych wyników. Niekiedy też można pomylić kwoty, co oczywiście wpływa na zadania z dodawaniem czy obliczeniami procentowymi. W praktyce najważniejsze, żeby dokładnie policzyć wszystkie elementy kosztów. Może warto też korzystać z gotowych szablonów kosztorysów, które pomogą lepiej wszystko zaaranżować. Poza tym, czasami błędne odpowiedzi mogą wynikać z niepełnego ogarnięcia tematu VAT czy innego zrozumienia wartości procentowych. Warto wszystko dokładnie analizować, bo to naprawdę pozwala lepiej ogarniać finanse w każdym serwisie.

Pytanie 27

Multiswitch zainstalowany w systemie antenowym, mający 5 wejść, w tym jedno dla telewizji naziemnej, umożliwia odbiór wszystkich kanałów u każdego abonenta?

A. z 5 satelitów
B. z 4 satelitów
C. z 2 satelitów
D. z 1 satelity
Multiswitch to urządzenie stosowane w instalacjach antenowych, które umożliwia rozdzielenie sygnału z jednego źródła na wiele wyjść, co pozwala na jednoczesny odbiór sygnału przez różnych abonentów. W przypadku multiswitcha z pięcioma wejściami, z których jedno jest przeznaczone do telewizji naziemnej, oznacza to, że pozostałe cztery wejścia są przeznaczone do odbioru sygnału satelitarnego. Prawidłowa odpowiedź "z 1 satelity" wskazuje na fakt, że multiswitch może obsługiwać sygnał z jednego źródła satelitarnego, który jest następnie rozdzielany do różnych odbiorników, co jest zgodne z najlepszymi praktykami w projektowaniu systemów antenowych. Przykładowo, instalacja może korzystać z jednego talerza satelitarnego, który odbiera sygnał z konkretnej satelity, a następnie rozdziela go do różnych telewizorów w domu, co jest wydajnym rozwiązaniem, minimalizującym koszty i uproszczającym instalację. Warto zwrócić uwagę, że właściwe dobranie multiswitcha do konkretnego systemu antenowego jest istotnym elementem zapewniającym wysoką jakość odbioru.

Pytanie 28

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. dostosować napięcie w kasecie rozmownej
B. zwiększyć poziom głośności w panelu
C. dostosować poziom głośności w unifonie
D. zwiększyć napięcie zasilania elektrozaczepu
Wyregulowanie napięcia w kasecie rozmownej, podwyższenie poziomu głośności w panelu oraz zwiększenie napięcia zasilania elektrozaczepu to podejścia, które mogą wydawać się sensowne, jednak w rzeczywistości są one nieadekwatne do rozwiązywania problemu piszczącego dźwięku w unifonie. Regulacja napięcia w kasecie rozmownej jest zazwyczaj związana z zasilaniem urządzenia, a nie z jakościami dźwiękowymi. Zmiana tego napięcia nie wpłynie na głośność dźwięku w unifonie, a może wręcz prowadzić do dodatkowych problemów z działaniem systemu. Podwyższanie poziomu głośności w panelu również nie jest rozwiązaniem, ponieważ zbyt wysoka głośność może tylko nasilić efekt sprzężenia akustycznego, co prowadzi do jeszcze głośniejszych pisków. Zwiększenie napięcia zasilania elektrozaczepu jest całkowicie nieuzasadnione w tym kontekście, ponieważ elektrozaczep nie ma wpływu na audio unifonu. Takie podejście pokazuje typowy błąd myślowy, polegający na myleniu zjawisk związanych z dźwiękiem i zasilaniem, co może prowadzić do kosztownych pomyłek w instalacji systemów domofonowych. Kluczowe jest zrozumienie, że problemy z dźwiękiem powinny być rozwiązywane poprzez ustawienia audio, a nie modyfikacje parametrów zasilania, które mogą negatywnie wpłynąć na całe urządzenie. W kontekście standardów branżowych, ważne jest, by w takich sytuacjach kierować się zaleceniami producentów, które zazwyczaj podkreślają znaczenie właściwego ustawienia głośności w unifonie jako pierwszego kroku w diagnostyce problemów audio.

Pytanie 29

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. zwiększyć poziom głośności w panelu.
B. regulować napięcie w kasecie rozmownej.
C. dostosować poziom głośności w unifonie.
D. zwiększyć napięcie zasilania elektrozaczepu.
Podwyższenie poziomu głośności w panelu, a nie w unifonie, nie rozwiązuje problemu pisków, ponieważ to unifon jest bezpośrednim źródłem dźwięku. Zwiększenie głośności na panelu może jedynie intensyfikować problem, zamiast go eliminować. W praktyce, niezrozumienie, że unifon powinien mieć własną regulację głośności, prowadzi do błędnych wniosków. Podobnie, wyregulowanie napięcia w kasecie rozmownej nie jest odpowiednią metodą na rozwiązanie problemu z dźwiękiem. Kasa rozmowna pełni rolę zasilającą i sterującą, a nie audio, więc zmiana napięcia w tym miejscu nie wpłynie na jakość dźwięku. Co więcej, podwyższenie napięcia zasilania elektrozaczepu nie ma związku z problemami audio w unifonie. Elektrozaczep odpowiada za otwieranie drzwi, a nie za przekazywanie dźwięku. Typowym błędem w takich sytuacjach jest mylenie funkcji poszczególnych elementów systemu domofonowego, co prowadzi do nieefektywnych rozwiązań. Zrozumienie, że każdy komponent pełni swoją unikalną funkcję, jest kluczowe dla prawidłowej obsługi systemów audio-wideo, a także działania całego systemu domofonowego.

Pytanie 30

Na podstawie przeprowadzonych pomiarów pasma przenoszenia wzmacniacza ustalono dolną częstotliwość graniczną fd = 0,1 Hz oraz górną częstotliwość graniczną fg = 150 Hz. Jaki to typ wzmacniacza?

A. szerokopasmowy
B. dla górnej części pasma akustycznego
C. dla dolnej części pasma akustycznego
D. selektywny
Odpowiedź "dla dolnej części pasma akustycznego" jest prawidłowa, ponieważ wzmacniacz z dolną częstotliwością graniczną fd = 0,1 Hz i górną częstotliwością graniczną fg = 150 Hz jest przystosowany do przetwarzania sygnałów w niskich zakresach częstotliwości. Wzmacniacze tego typu są istotne w zastosowaniach, gdzie wymagane jest wzmocnienie sygnałów o niskiej częstotliwości, takich jak sygnały z mikrofonów, instrumentów muzycznych lub w systemach akustycznych. Przykładowo, w systemach audio wzmacniacze te mogą być używane do obsługi niskich tonów, co jest kluczowe w produkcjach muzycznych oraz w instalacjach dźwiękowych, gdzie reprodukcja basów jest istotna. Wzmacniacze te kategorii są projektowane w sposób umożliwiający efektywne wzmocnienie sygnałów w dolnym zakresie pasma akustycznego, co jest zgodne z normami branżowymi dotyczącymi jakości dźwięku. Dobre praktyki w projektowaniu takich wzmacniaczy obejmują minimalizację zniekształceń i szumów, co przekłada się na lepszą jakość dźwięku oraz większe zadowolenie użytkowników.

Pytanie 31

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
B. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
C. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
D. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 32

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. wzrost obrotów silnika
B. spadek obrotów silnika
C. wzrost prądu lasera
D. obniżenie prądu lasera
Zwiększenie prądu lasera w odtwarzaczu CD jest symptomem zużycia głowicy laserowej, ponieważ wraz z upływem czasu i eksploatacją, soczewki oraz fotodetektory w głowicy mogą tracić swoje optymalne właściwości. W rezultacie, aby odczytać dane z płyty CD, elektronika odtwarzacza musi zwiększyć prąd dostarczany do lasera, co pozwala na uzyskanie wystarczającej intensywności światła potrzebnej do odczytu. Taki proces może prowadzić do dalszego przyspieszenia zużycia głowicy laserowej, ponieważ wyższy prąd może powodować przegrzewanie i uszkodzenia elementów. W praktyce, kiedy zauważysz, że odtwarzacz CD potrzebuje zwiększonego prądu do poprawnego działania, może to być znak, że wymagana jest konserwacja lub wymiana głowicy. Utrzymywanie urządzeń w dobrym stanie poprzez regularne czyszczenie i unikanie nadmiernego używania może wydłużyć ich żywotność. W branży elektroniki użytkowej, normy jakościowe często zalecają monitorowanie parametrów pracy urządzeń, aby wykrywać takie anomalie jak wzrost prądu lasera.

Pytanie 33

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. JACK
B. S-VHS
C. EUROSCART
D. DIN 5
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 34

Jakie cechy posiada wzmacniacz kanałowy w złożonych systemach antenowych?

A. Wzmacnia sygnał kanałów wizyjnych o wyższych częstotliwościach
B. Wzmacnia selektywnie sygnały jednego lub kilku kanałów telewizyjnych
C. Wzmacnia sygnał wszystkich kanałów o takiej samej wartości
D. Zwiększa sygnał kanałów wizyjnych o niższych częstotliwościach
Wzmacniacz kanałowy jest kluczowym elementem rozbudowanych instalacji antenowych, który pełni istotną rolę w poprawie jakości sygnału telewizyjnego. Jego fundamentalną właściwością jest selektywne wzmacnianie sygnałów jednego lub kilku określonych kanałów telewizyjnych, co pozwala na eliminację zakłóceń i poprawę odbioru. W praktyce, zastosowanie wzmacniacza kanałowego pozwala na osiągnięcie lepszej jakości obrazu i dźwięku, zwłaszcza w warunkach, gdzie sygnał jest osłabiony przez czynniki zewnętrzne, takie jak odległość od nadajnika czy przeszkody terenowe. Wzmacniacze te są projektowane zgodnie z określonymi standardami, aby zapewnić optymalną wydajność i minimalizację strat sygnału. Na przykład w instalacjach kablowych lub w systemach zbiorowego odbioru telewizyjnego, wzmacniacze kanałowe są często wykorzystywane do selektywnego wzmacniania sygnałów z różnych źródeł, co umożliwia odbiór szerokiego zakresu kanałów bez zakłóceń. Dzięki temu użytkownicy mogą cieszyć się lepszym doświadczeniem telewizyjnym, a instalacje mają większą niezawodność i efektywność.

Pytanie 35

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa C
B. Klasa B
C. Klasa A
D. Klasa AB
Klasa A, B, i AB to typy wzmacniaczy, które są powszechnie stosowane w przetwarzaniu sygnałów akustycznych, każda z nich ma swoje charakterystyczne zalety i ograniczenia. Wzmacniacze klasy A są znane ze swojej doskonałej linearności i niskiego poziomu zniekształceń, co czyni je idealnymi do aplikacji audio, gdzie jakość dźwięku jest kluczowa. Charakteryzują się tym, że w każdym cyklu pracy tranzystor zawsze przewodzi prąd, co zapewnia ich wysoką jakość dźwięku, ale jednocześnie prowadzi do niskiej efektywności energetycznej. Klasa B to rozwiązanie, które poprawia efektywność, ponieważ tylko jedna połówka sygnału jest wzmacniana, co jednak prowadzi do zniekształceń w punkcie, gdzie obie połówki sygnału się łączą. Klasa AB, z kolei, to kompromis między klasą A i B, oferujący lepszą efektywność niż klasa A, ale przy zachowaniu niskiego poziomu zniekształceń. Wzmacniacze klasy C, mimo że są efektywne w zastosowaniach RF, nie nadają się do wzmacniania sygnałów akustycznych z powodu dużych zniekształceń nieliniowych, które generują. Wybór odpowiedniej klasy wzmacniacza powinien być zawsze uzależniony od specyficznych wymagań danej aplikacji, z uwzględnieniem zarówno jakości dźwięku, jak i efektywności energetycznej.

Pytanie 36

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. naziemnej
B. kablowej
C. dozorowej
D. satelitarnej
Standard DVB-C (Digital Video Broadcasting - Cable) jest kluczowym standardem wykorzystywanym w telekomunikacji kablowej, który umożliwia przesyłanie sygnałów telewizyjnych i multimedialnych przez sieci kablowe. Umożliwia on kodowanie oraz kompresję sygnałów wideo, co pozwala na efektywne wykorzystanie pasma i dostarczenie wielu kanałów telewizyjnych w wysokiej jakości. DVB-C opiera się na modulacji QAM (Quadrature Amplitude Modulation), co pozwala na przesyłanie danych o wysokiej prędkości. W praktyce, standard ten jest szeroko stosowany przez/operatorów telewizji kablowej na całym świecie, co pozwala na poprawę jakości transmisji oraz zwiększenie liczby dostępnych programów telewizyjnych. Przykładowo, wiele europejskich krajów korzysta z DVB-C jako standardu dla telewizji kablowej, oferując abonentom różnorodne pakiety kanałów oraz usługi VOD (Video on Demand). Dodatkowo, DVB-C wspiera interaktywność oraz usługi dodatkowe, co jest istotnym atutem w nowoczesnych instalacjach telewizyjnych.

Pytanie 37

Jakie urządzenia należy wykorzystać w systemie monitoringu, aby zwiększyć dystans między kamerą a rejestratorem, jeśli połączenie jest zrealizowane za pomocą kabla UTP?

A. Zwrotnice
B. Transformatory wideo
C. Symetryzatory
D. Filtry wideo
Wybór symetryzatorów może prowadzić do zamieszania, jeśli chodzi o zwiększanie odległości między kamerą a rejestratorem w systemach wideo. Tak naprawdę, symetryzatory mają na celu poprawę jakości sygnału w audio i wideo, ale głównie to chodzi o eliminację zakłóceń i wzmocnienie sygnału. Nie są one zbyt odpowiednie do przesyłania sygnału na długie odległości. Często w monitoringu wideo się ich nie stosuje, bo nie są projektowane pod kątem sygnału wideo, który potrzebuje specyficznych parametrów, jak impedancja czy pasmo przenoszenia. Filtry wideo, które usuwają niepożądane częstotliwości, też nie są idealnym rozwiązaniem, jeśli chodzi o zwiększanie odległości – raczej poprawiają jakość sygnału przy określonej długości kabla. A zwrotnice to inna sprawa, używane są w telekomunikacji do kierowania sygnałami, ale w kontekście monitoringu nie pomagają zwiększyć odległości. Często myśli się, że każde urządzenie, które poprawia sygnał, będzie też dobre do przesyłania na dużą odległość, ale to wcale nie jest takie proste. Wymagania dotyczące przesyłu sygnału wideo są dość szczegółowe i trzeba używać odpowiednich rozwiązań, jak właśnie transformatory wideo, które zapewniają lepszą jakość na długich dystansach.

Pytanie 38

Luty miękkie obejmują luty

A. miedziano-fosforowe
B. mosiężne
C. cynowo-ołowiowe i bezołowiowe
D. srebrne
Odpowiedzi dotyczące mosiężnych, srebrnych oraz miedziano-fosforowych lutów są nieprawidłowe, ponieważ te materiały nie są klasyfikowane jako luty miękkie. Luty mosiężne, składające się głównie z miedzi i cynku, charakteryzują się wyższą temperaturą topnienia i są klasyfikowane jako luty twarde, co uniemożliwia ich stosowanie w aplikacjach wymagających niskotemperaturowego lutowania. Srebro, będące metalem szlachetnym, jest stosowane w lutach srebrnych, które również mają wyższą temperaturę topnienia i są bardziej odpowiednie dla połączeń wymagających dużych obciążeń mechanicznych oraz odporności na wysokie temperatury. Luty miedziano-fosforowe z kolei, chociaż są wykorzystywane w niektórych zastosowaniach, również nie mieszczą się w kategorii lutów miękkich, gdyż mają zastosowanie w lutowaniu twardym, szczególnie w instalacjach miedzianych. Wybór lutów powinien być oparty na właściwościach materiałów oraz wymaganiach konkretnej aplikacji. Zrozumienie tych różnic jest kluczowe dla uniknięcia błędów w lutowaniu, które mogą prowadzić do awarii połączeń oraz zmniejszenia trwałości całych układów elektronicznych.

Pytanie 39

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 160 V
B. 40 V
C. 120 V
D. 80 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 40

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. skrócenia okresu użytkowania
B. wzrostu temperatury pracy urządzenia
C. uszkodzenia urządzenia
D. pojawienia się napięcia na obudowie
Podłączenie urządzenia elektronicznego posiadającego I klasę ochronności do gniazdka instalacji elektrycznej bez bolca ochronnego stwarza ryzyko pojawienia się napięcia na obudowie. Urządzenia te są projektowane w taki sposób, aby ich obudowy były uziemione, co zapobiega przypadkowemu porażeniu prądem w sytuacji awaryjnej. W przypadku, gdy bolca ochronnego brakuje, obudowa nie jest uziemiona, co oznacza, że w przypadku awarii lub zwarcia, napięcie może pojawić się na obudowie urządzenia. Przykładem zastosowania tej zasady jest użycie urządzeń takich jak pralki, lodówki, czy komputery, które powinny być podłączane do gniazdek z uziemieniem, aby zapewnić bezpieczeństwo użytkowników. Normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 61140, podkreślają znaczenie poprawnego uziemienia dla ochrony przed ryzykiem porażenia prądem. Dobre praktyki w zakresie instalacji elektrycznych nakazują, aby każde urządzenie klasy I było zawsze podłączane do gniazdka z bolcem ochronnym, co minimalizuje ryzyko wystąpienia niebezpiecznych sytuacji.