Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 08:08
  • Data zakończenia: 30 maja 2025 08:25

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Lutownica na gorące powietrze z dyszą w kształcie 7x7
C. Rozlutownica
D. Lutownica z końcówką 'minifala'
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. uszkodzenie narządu słuchu
C. zmiany w układzie kostnym
D. porażenie prądem elektrycznym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 8

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. termistora
C. tensometru
D. pirometru
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zgodnie z normami ochrony przeciwpożarowej, do gaszenia urządzeń elektrycznych pod napięciem przekraczającym 1000 V należy zastosować gaśnicę

A. śniegową oznaczoną BC
B. proszkową oznaczoną ABC/E
C. pianową oznaczoną AF
D. proszkową oznaczoną ABC
Odpowiedź z gaśnicą proszkową ABC/E jest jak najbardziej trafna. Ta klasa gaśnicza jest stworzona do gaszenia pożarów, które mogą się zdarzyć w urządzeniach elektrycznych, gdy napięcie przekracza 1000 V. Gaśnice proszkowe ABC/E zawierają specjalny proszek, który świetnie radzi sobie z pożarami różnych typów – od ciał stałych, przez płyny, aż po gazy. To oznaczenie 'E' mówi nam, że można ich używać przy urządzeniach elektrycznych. Gdy wybuchnie pożar w elektryce, to ważne, żeby nie używać wody ani gaśnic pianowych, bo to może prowadzić do porażenia prądem. Przykładem może być sytuacja, kiedy w biurze zaczyna się palić komputer – wtedy użycie gaśnicy ABC/E pozwala na szybkie i bezpieczne ugaszenie pożaru, bez ryzyka dla ludzi. Przepisy przeciwpożarowe oraz normy, jak PN-EN 2, pokazują, jak ważny jest dobór odpowiedniego sprzętu gaśniczego w miejscach z elektroniką.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w gogle ochronne
B. w odzież ochronną
C. w rękawice antywibracyjne
D. w hełm ochronny
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 18

Enkoder to urządzenie przetwarzające

A. kąt obrotu na regulowane napięcie stałe
B. prędkość obrotową na impulsy elektryczne
C. kąt obrotu na impulsy elektryczne
D. prędkość obrotową na regulowane napięcie stałe
Enkoder to urządzenie, które przekształca kąt obrotu w impulsy elektryczne, co jest kluczowe w wielu aplikacjach automatyki i robotyki. Przykładami zastosowania enkoderów są systemy napędu w robotach, które muszą precyzyjnie określić położenie swoich kończyn. Działanie enkodera opiera się na zasadzie pomiaru kąta obrotu wału, co pozwala na dokładne śledzenie ruchu. W praktyce, impulsy elektryczne generowane przez enkoder są wykorzystywane przez kontrolery do regulacji prędkości i pozycji napędu. Standardowe normy, takie jak IEC 61131, definiują klasyfikację i wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich niezawodność i interoperacyjność w różnych systemach. Warto również zauważyć, że istnieją różne typy enkoderów, jak inkrementalne i absolutne, które różnią się zasadą działania, ale oba przekształcają kąt obrotu na impulsy elektryczne, co czyni je niezbędnymi w nowoczesnych systemach automatyzacji.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 20 V DC
B. 15 V DC
C. 30 V DC
D. 25 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 21

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. megaomomierzem
B. omomierzem
C. technicznym mostkiem Thomsona
D. laboratoryjnym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
B. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
C. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
D. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
W przypadku krwotoku zewnętrznego, kluczowe jest podjęcie odpowiednich działań, aby zminimalizować utratę krwi i wspierać dalsze leczenie. Przygotowanie jałowego opatrunku i mocne uciskanie go na ranie to prawidłowa metoda postępowania, ponieważ ucisk na ranę pomaga zatrzymać krwawienie. Takie działanie jest zgodne z zasadami pierwszej pomocy, które zalecają stosowanie ucisku w miejscach krwawienia, zwłaszcza w przypadku krwotoków tętniczych i żylnych. W praktyce, zastosowanie jałowego opatrunku eliminuje ryzyko zakażenia, a mocne uciskanie sprzyja tworzeniu się skrzepu i stabilizuje ranę. Ważne jest również, aby nie zakładać opaski uciskowej powyżej rany, ponieważ może to prowadzić do dalszych uszkodzeń tkanek. W sytuacji, gdy krwawienie nie ustępuje, należy kontynuować ucisk oraz wezwać pomoc medyczną. Ponadto, znajomość techniki użytku opatrunków i ich właściwego stosowania w praktycznych sytuacjach jest niezbędna dla każdego, kto może być narażony na sytuacje wymagające udzielenia pierwszej pomocy.

Pytanie 24

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Graniczne
B. Rzeczywiste
C. Jednostronne
D. Nominalne
Wybór odpowiedzi, która nie odnosi się do wymiarów granicznych, może prowadzić do nieporozumień w zakresie tolerancji wykonania elementów mechanicznych. Odpowiedź 'Rzeczywiste' sugeruje skupienie na wymiarach, które są mierzone po zakończeniu produkcji. To podejście, choć istotne, nie definiuje dopuszczalnych błędów wykonania, a jedynie rzeczywiste wyniki pomiarów, które mogą być poza akceptowalnymi limitami, co prowadzi do problemów z jakością. Odpowiedź 'Nominalne' odnosi się do idealnych wymiarów projektowych, które są podstawą do określenia wymiarów granicznych, ale nie stanowią one o tolerancjach wykonania. Z kolei 'Jednostronne' sugeruje podejście do tolerancji, które nie jest standardowo stosowane w produkcie, ponieważ rzeczywiste aplikacje często wymagają tolerancji dwustronnych dla zapewnienia pełnej funkcjonalności i bezpieczeństwa komponentów. Poprzez takie myślenie, można nieświadomie wprowadzać błędy do procesu projektowania i produkcji, prowadząc do nieprzewidzianych błędów montażowych oraz awarii mechanicznych. Dlatego kluczowe jest zrozumienie, że tolerancje graniczne odgrywają fundamentalną rolę w inżynierii i produkcji, a ich pominięcie może skutkować krytycznymi problemami operacyjnymi.

Pytanie 25

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. obr./min
B. Hz
C. V
D. V/(obr./min)
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. hallotronem
B. termistorem
C. pirometrem
D. tensometrem
Pomiar siły nacisku tłoka siłownika hydraulicznego za pomocą termistora, hallotronu czy pirometru jest nieadekwatny, gdyż każde z tych urządzeń ma inne zastosowanie i nie jest przeznaczone do pomiaru siły mechanicznej. Termistor jest czujnikiem temperatury, który wykorzystuje zależność oporu elektrycznego od temperatury. W przypadku siłowników hydraulicznych istotne jest mierzenie siły, a nie temperatury, więc nie może on być użyty do tego celu. Hallotron, z drugiej strony, jest czujnikiem pola magnetycznego, który działa na zasadzie pomiaru siły magnetycznej, co nie ma związku z mechanicznymi siłami działającymi w tłoku siłownika. Nieodpowiednie jest także użycie pirometru, który służy do pomiaru temperatury obiektów na podstawie promieniowania podczerwonego. Właściwe podejście do pomiaru siły w hydraulice wymaga zastosowania specjalistycznych czujników, takich jak tensometry, które są zaprojektowane do tego celu. Użycie niewłaściwych narzędzi pomiarowych może prowadzić do błędnych wyników i wpływać negatywnie na efektywność działania systemu hydraulicznego, co jest sprzeczne z najlepszymi praktykami inżynieryjnymi. Kluczowe jest, aby stosować odpowiednie metody pomiarowe w kontekście danego zastosowania, co jest fundamentem dobrego projektowania systemów i urządzeń.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. SCADA
B. CAM
C. CAD
D. CAP
Wybór oprogramowania SCADA, CAD, lub CAP w kontekście wspomagania procesów wytwarzania maszyn CNC jest nietrafiony, ponieważ każde z tych narzędzi pełni inną, specyficzną funkcję, która nie jest bezpośrednio związana z kontrolą maszyn produkcyjnych. SCADA (Supervisory Control and Data Acquisition) jest systemem zarządzania, który służy do monitorowania i sterowania procesami w czasie rzeczywistym, ale nie generuje kodów produkcyjnych ani nie bezpośrednio nie obsługuje maszyn CNC. CAD (Computer-Aided Design) natomiast to narzędzie służące do projektowania i modelowania, ale samo w sobie nie ma zdolności przekształcania projektów w instrukcje ruchu dla maszyn. CAD może współpracować z systemami CAM, jednak nie może ich zastąpić. CAP (Computer-Aided Planning) to oprogramowanie, które wspiera procesy planowania produkcji, ale również nie jest odpowiednie do bezpośredniego sterowania maszynami CNC. Typowe błędy myślowe prowadzące do pomyłki w wyborze tych odpowiedzi obejmują mylenie funkcji różnych rodzajów oprogramowania oraz braku zrozumienia, że skuteczna produkcja wymaga ściśle zdefiniowanych procesów, w których CAM jest niezbędnym elementem. W przypadku maszyn CNC, ważne jest, aby korzystać z odpowiednich narzędzi, które są zaprojektowane do specyficznych zadań, aby zapewnić optymalne wyniki produkcyjne.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. rad/s
B. m/s
C. obr/min
D. km/h
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.

Pytanie 39

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Tłokowy pierścień uszczelniający
B. Sprężynę zaworu zwrotnego
C. Filtr oleju
D. Zawór bezpieczeństwa
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.