Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 30 maja 2025 16:42
  • Data zakończenia: 30 maja 2025 17:01

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słaby kwas
B. słabą zasadę
C. gorącą wodę
D. mieszaninę chromową
Mieszanina chromowa, składająca się najczęściej z kwasu siarkowego i dichromianu potasu, jest skutecznym środkiem do usuwania zanieczyszczeń tłuszczowych z szkła miarowego. Tłuszcze, które są trudne do usunięcia wodą czy łagodnymi detergentami, ulegają skutecznemu rozkładowi pod wpływem silnych utleniaczy obecnych w tej mieszaninie. Dzięki zastosowaniu mieszaniny chromowej, można osiągnąć wysoki poziom czystości szkła, co jest kluczowe w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne. Przykładem zastosowania tej metody jest czyszczenie kolb, pipet i innych przyrządów pomiarowych, które były używane do pracy z substancjami organicznymi. W laboratoriach stosuje się standardy czyszczenia, które zalecają użycie odpowiednich reagentów, aby nie tylko oczyścić szkło, ale również nie uszkodzić go chemicznie. Warto też pamiętać, że po użyciu mieszaniny chromowej konieczne jest dokładne wypłukanie szkła wodą destylowaną, aby usunąć pozostałości reagentów.

Pytanie 2

Chemikalia, dla których upłynął okres przydatności,

A. można wykorzystać do końca opakowania
B. można je stosować, pod warunkiem że substancja pozostaje czysta
C. powinny być przechowywane w magazynie
D. należy zutylizować z odpadami chemicznymi
To, że odczynniki chemiczne po terminie ważności trzeba zutylizować jak odpady chemiczne, to bardzo dobra odpowiedź. Te substancje mogą być naprawdę niebezpieczne, zarówno dla zdrowia, jak i dla środowiska. Z tego, co wiem, każdy, kto korzysta z chemikaliów, powinien się z tym liczyć i robić to z głową. Na przykład, kwas siarkowy, jeśli nie zostanie właściwie usunięty, może zaszkodzić ziemi i wodom gruntowym. Utylizacja takich rzeczy według lokalnych przepisów, które zazwyczaj obejmują programy zbierania niebezpiecznych odpadów, jest kluczowa. Dbanie o to, żeby wszystko robić zgodnie z zasadami, zmniejsza ryzyko wypadków i kontaminacji. Warto też pamiętać, że trzymanie się przepisów dotyczących bezpieczeństwa chemicznego jest ważne dla reputacji firm i ich odpowiedzialności społecznej.

Pytanie 3

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 200g
B. 80g
C. 50g
D. 20g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 4

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Engler.
B. Kipp.
C. Soxleth.
D. Thiel.
Zrozumienie, jak działają różne aparaty laboratoryjne, jest kluczowe w kontekście chemii analitycznej. Odpowiedzi takie jak Soxletha, Englera czy Kipp są często mylone z aparatem Thielego, co prowadzi do nieporozumień. Soxleth jest używany do ekstrakcji substancji rozpuszczalnych w cieczy, co jest zupełnie inną funkcją niż pomiar temperatury topnienia. Engler to aparat służący do oznaczania temperatury wrzenia cieczy, co również nie ma związku z topnieniem. Z kolei aparat Kippa jest stosowany do wytwarzania gazów w reakcjach chemicznych, co zupełnie nie odnosi się do określania temperatury topnienia. Problemy te wynikają z mylnej koncepcji, że wszystkie aparaty mają podobne zastosowania. Kluczowe jest zrozumienie, że każdy z tych aparatów ma swoją specyfikę i przeznaczenie. Właściwe przypisanie urządzenia do zadania jest istotne dla uzyskania prawidłowych wyników i unikania błędów w analizach chemicznych. Niezrozumienie tych różnic może prowadzić do niskiej jakości wyników oraz niepoprawnych wniosków dotyczących badanych substancji. Dlatego ważne jest, aby podczas nauki chemii zwracać uwagę na funkcje poszczególnych urządzeń i ich zastosowanie w praktyce laboratoryjnej.

Pytanie 5

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. leki nasercowe
B. spirytus salicylowy
C. leki przeciwbólowe
D. środki opatrunkowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 6

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 22,4 dm3
B. 4,48 dm3
C. 2,24 dm3
D. 11,2 dm3
W przypadku analizy objętości gazu, kluczowe jest zrozumienie, jak molowość substancji wpływa na objętość, jaką zajmuje w danych warunkach. Podstawowym błędem w kilku z niepoprawnych odpowiedzi jest nieprawidłowe zastosowanie zasad dotyczących gazów. Odpowiedzi, które wskazują na 22,4 dm³, 4,48 dm³ oraz 11,2 dm³, wynikają z niezrozumienia liczby moli i ich konwersji na objętość gazu. Odpowiedź 22,4 dm³ sugeruje, że mówimy o całym molu gazu, a nie o 0,1 mola, co jest kluczowe w tym kontekście. W rzeczywistości, tylko 1 mol amoniaku zajmuje 22,4 dm³, a 1,7 g amoniaku to jedynie 0,1 mola. Podobnie, objętości 4,48 dm³ i 11,2 dm³ można uznać za wyniki nieprawidłowych obliczeń, gdzie mogły być pomieszane ilości moli lub zastosowane niewłaściwe przeliczniki. W praktyce, aby uniknąć takich błędów, ważne jest dokładne zrozumienie stoichiometrii reakcji chemicznych oraz umiejętność pracy z jednostkami miary. Często błędy te wynikają z pośpiechu lub nieuwagi podczas rozwiązywania problemów, co w kontekście chemicznym jest szczególnie istotne, gdyż niewłaściwe dane mogą prowadzić do niebezpiecznych sytuacji w laboratoriach i przemyśle.

Pytanie 7

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Przygotować bufor wyłącznie z wody kranowej.
B. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
C. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
D. Dodać soli buforowej do dowolnej ilości wody.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 8

W urządzeniu Soxhleta wykonuje się

A. dekantację
B. krystalizację
C. ługowanie
D. sublimację
Aparat Soxhleta jest narzędziem wykorzystywanym w laboratoriach chemicznych do procesu ługowania, czyli ekstrakcji substancji rozpuszczalnych w cieczy z materiałów stałych. Jego działanie opiera się na cyklicznym procesie, w którym rozpuszczalnik, najczęściej ciecz organiczna, jest wielokrotnie przepuszczany przez próbkę materiału. Dzięki temu można efektywnie wydobyć związek chemiczny, który jest rozpuszczalny w danym rozpuszczalniku. W praktyce, metodyka Soxhleta jest szczególnie przydatna w analizie tłuszczy, olejów, a także innych substancji organicznych. Przykładowo, w analizach żywnościowych, użycie aparatu Soxhleta pozwala na skuteczne oznaczenie zawartości tłuszczu w próbkach, co jest zgodne z normami, takimi jak ISO 6492. Dobrze przeprowadzony proces ługowania w aparacie Soxhleta charakteryzuje się wysoką efektywnością, co czyni go standardem w wielu laboratoriach zajmujących się analizą chemiczną.

Pytanie 9

Jakie roztwory chemiczne powinny być stanowczo pobierane przy włączonym dygestorium?

A. kwasu solnego o stężeniu 36%
B. kwasu cytrynowego o stężeniu 36%
C. etanolu o stężeniu 36%
D. glicerolu o stężeniu 36%
Kwas solny o stężeniu 36% jest substancją silnie żrącą i niebezpieczną dla zdrowia. Jego właściwości chemiczne sprawiają, że w przypadku kontaktu z skórą lub błonami śluzowymi może prowadzić do poważnych oparzeń oraz uszkodzenia tkanek. Dlatego zgodnie z zasadami bezpieczeństwa pracy w laboratoriach chemicznych, wszelkie operacje związane z kwasem solnym powinny być przeprowadzane pod włączonym dygestorium. Dygestorium zapewnia odpowiednią wentylację, eliminując ryzyko wdychania szkodliwych oparów i substancji lotnych, co jest zgodne z normami BHP oraz praktykami stosowanymi w laboratoriach. Przykłady zastosowania kwasu solnego obejmują jego użycie w procesach analitycznych, jak titracje, czy w syntezach chemicznych, co podkreśla jego znaczenie w branży chemicznej. Stosowanie dygestorium nie tylko chroni pracowników, ale także zapobiega zanieczyszczeniu środowiska laboratorium. Współczesne laboratoria stosują te zasady jako standard, zapewniając bezpieczeństwo i zgodność z normami ochrony zdrowia.

Pytanie 10

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu siarkowego(VI).
B. kwasu solnego.
C. kwasu azotowego(V).
D. kwasu fosforowego(V).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 11

Destylacja to metoda

A. zmiany ze stanu stałego w stan gazowy, omijając stan ciekły
B. oddzielania płynnej mieszanki poprzez odparowanie i kondensację jej składników
C. syntezy substancji zachodząca w obecności katalizatora
D. transformacji ciała z formy ciekłej w stałą
Destylacja jest procesem rozdzielania składników mieszaniny ciekłej, który opiera się na różnicy w ich temperaturach wrzenia. W praktyce polega to na odparowaniu jednej lub więcej frakcji z cieczy, a następnie ich skropleniu w osobnym naczyniu. Proces ten jest szeroko stosowany w przemyśle chemicznym oraz petrochemicznym do oczyszczania i separacji substancji, takich jak woda, alkohole czy oleje. Przykładem może być destylacja ropy naftowej, gdzie różne frakcje, takie jak benzyna, nafta czy olej napędowy, są oddzielane poprzez kontrolowane podgrzewanie. Zastosowanie destylacji można również zauważyć w laboratoriach chemicznych, gdzie wykorzystuje się ją do oczyszczania rozpuszczalników. Standardy branżowe, takie jak ASTM D86, opisują metody i procedury przeprowadzania destylacji, co jest kluczowe dla zapewnienia powtarzalności i dokładności wyników. W kontekście bezpieczeństwa, ważne jest stosowanie odpowiednich materiałów i urządzeń, aby zminimalizować ryzyko związane z procesem, zwłaszcza w przypadku substancji łatwopalnych.

Pytanie 12

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Kolby stożkowej o pojemności 200 cm3
B. Kolby miarowej o pojemności 100 cm3
C. Zlewki o pojemności 150 cm3
D. Zlewki o pojemności 200 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 13

Zamieszczony piktogram przedstawia substancję o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. niestabilne materiały wybuchowe.
B. gazy utleniające, kategoria zagrożenia 1.
C. sprężone gazy pod ciśnieniem.
D. gazy łatwopalne, kategoria zagrożenia 1.
Poprawna odpowiedź dotycząca klasyfikacji substancji jako niestabilne materiały wybuchowe jest fundamentem wiedzy w obszarze zarządzania bezpieczeństwem chemicznym. Piktogram przedstawiony w pytaniu jest zgodny z regulacjami międzynarodowymi, szczególnie z GHS, które podkreślają znaczenie odpowiedniego oznakowania substancji chemicznych. Niestabilne materiały wybuchowe są klasyfikowane jako substancje, które mogą eksplodować w wyniku działania bodźców mechanicznych czy termicznych. Przykładami takich substancji są niektóre rodzaje dynamitu lub azotanu amonu w pewnych formach, które są wykorzystywane w przemyśle budowlanym i górniczym. Zrozumienie tej klasyfikacji jest kluczowe dla profesjonalistów zajmujących się bezpieczeństwem w laboratoriach oraz w transporcie substancji chemicznych, ponieważ niewłaściwe postrzeganie i klasyfikacja mogą prowadzić do poważnych wypadków. Przepisy dotyczące transportu i przechowywania substancji niebezpiecznych wymagają ścisłego przestrzegania norm, co podkreśla wagę edukacji w tym zakresie. Znajomość tego typu oznaczeń pozwala na właściwe podejście do magazynowania oraz obsługi substancji chemicznych, minimalizując ryzyko dla zdrowia i środowiska.

Pytanie 14

Na podstawie zamieszczonych w tabeli opisów metod rozdzielania mieszanin, dobierz odpowiadające im nazwy.

Tabela. Metody rozdzielania mieszanin
Lp.Opis metody
I.Zlewanie cieczy znad osadu.
II.Przeprowadzenie ciekłego rozpuszczalnika w stan pary.
III.Wyodrębnianie z mieszaniny ciał stałych lub cieczy składnika przy pomocy rozpuszczalnika tak dobranego, aby rozpuszczał żądany związek chemiczny.
IV.Powolne opadanie cząstek substancji stałej w cieczy pod wpływem własnego ciężaru.

A. I – sedymentacja, II – sublimacja, III – destylacja, IV – dekantacja.
B. I – sedymentacja II– krystalizacja, III – ekstrakcja, IV – dekantacja.
C. I – dekantacja, II – sublimacja, III – filtracja, IV – sedymentacja.
D. I – dekantacja, II – odparowanie, III – ekstrakcja, IV – sedymentacja.
Dekantacja, odparowanie, ekstrakcja oraz sedymentacja to metody wykorzystywane w laboratoriach chemicznych oraz procesach przemysłowych do separacji substancji. Dekantacja polega na oddzieleniu cieczy od osadu poprzez zlanie cieczy znad osadu, co jest powszechną praktyką w procesach oczyszczania. Odparowanie to proces, w którym ciecz zostaje przekształcona w parę, co pozwala na oddzielenie substancji rozpuszczonych. Jest to często stosowane w przemyśle spożywczym, jak na przykład w koncentracji soków. Ekstrakcja polega na wydobywaniu substancji rozpuszczalnych z mieszaniny za pomocą odpowiednich rozpuszczalników, co jest kluczowe w produkcji leków oraz w laboratoriach chemicznych. Sedymentacja natomiast, polegająca na osadzaniu się ciał stałych w cieczy pod wpływem grawitacji, jest powszechnie stosowana w oczyszczaniu wód. Zrozumienie tych metod i ich zastosowania jest kluczowe dla efektywnego przeprowadzania procesów chemicznych i technologicznych w różnych dziedzinach.

Pytanie 15

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. indywidualny
B. selektywny
C. specyficzny
D. charakterystyczny
Zrozumienie różnicy między terminami używanymi w chemii analitycznej jest kluczowe, aby uniknąć nieporozumień. Wybór odpowiedzi "indywidualny" może budzić wątpliwości, gdyż sugeruje, że odczynnik działa w sposób izolowany, co nie oddaje istoty specyficzności. Odczynnik indywidualny niekoniecznie wskazuje na umiejętność wykrywania tylko jednego jonu, a może oznaczać po prostu reagowanie z jednym typem substancji, co jest niewystarczające w kontekście analityki. Selektywny odczynnik natomiast wskazuje na zdolność do reagowania z grupą jonów, a nie tylko z jednym, co prowadzi do nieprecyzyjnych wyników, ponieważ niektóre inne jony mogą również reagować, zafałszowując analizę. Odpowiedź "charakterystyczny" pozostaje w bliskim sąsiedztwie, ale nie wyraża pełnej idei dotyczącej specyficzności, jako że odnosi się do ogólnych właściwości odczynnika, bez podkreślania jego zdolności do selektywnej reakcji. Błędy te mogą wynikać z niepełnego zrozumienia terminów oraz ich zastosowania w praktyce laboratoryjnej, co jest kluczowe w kontekście analizy chemicznej. Właściwe zrozumienie, jak i kiedy stosować odczynniki specyficzne, jest niezbędne dla zapewnienia dokładności i rzetelności wyników w każdej analizie chemicznej.

Pytanie 16

Rozdział składników mieszaniny w chromatografii odbywa się dzięki ich różnym

A. rozpuszczalności
B. adsorpcji
C. lotności
D. absorpcji
Odpowiedzi dotyczące lotności, absorpcji oraz rozpuszczalności nie oddają sedna procesu rozdziału chromatograficznego, który w rzeczywistości opiera się na adsorpcji. Lotność odnosi się do zdolności substancji do przechodzenia w stan gazowy, co nie jest kluczowym czynnikiem w chromatografii, ponieważ proces ten zazwyczaj zachodzi w fazie ciekłej lub stałej. Odpowiedzi takie jak absorpcja mogą być mylone z adsorpcją, jednak obejmują one inny mechanizm, w którym cząsteczki są wchłaniane w objętość substancji, a nie tylko przyczepiają się do jej powierzchni. Rozpuszczalność, choć ważna w kontekście interakcji między fazami, nie jest bezpośrednim czynnikiem determinującym rozdział składników w chromatografii. W praktyce, zrozumienie tych różnic jest kluczowe w procesach analitycznych, ponieważ wybrana metoda rozdziału i fazy mogą znacząco wpłynąć na efektywność i wydajność analizy. Niewłaściwe zrozumienie tych terminów może prowadzić do błędnych wniosków i nieefektywnego rozdziału składników, co jest krytyczne w zastosowaniach przemysłowych oraz laboratoryjnych, takich jak analizy chemiczne czy kontrola jakości produktów.

Pytanie 17

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe

A. H2SO4
B. CaCl2
C. Na
D. żel krzemionkowy
Wybór jednego z pozostałych środków suszących, takich jak Na, H2SO4 czy żel krzemionkowy, w kontekście osuszania acetonu jest nieodpowiedni ze względu na specyfikę ich działania. Na, będący metalem alkalicznym, jest stosowany głównie do osuszania eterów, węglowodorów i amin trzeciorzędowych, gdzie jego reakcje z wodą prowadzą do powstawania sody i innych produktów, co czyni go nieodpowiednim do osuszania ketonów. H2SO4, czyli kwas siarkowy, jest odpowiedni do osuszania gazów obojętnych i kwasowych, jednak jego silne działanie drażniące oraz ryzyko reakcji egzotermicznych sprawiają, że nie nadaje się do osuszania substancji organicznych, takich jak aceton. Z kolei żel krzemionkowy, mimo że jest skutecznym środkiem osuszającym, jest zazwyczaj stosowany w eksykatorach, a nie w bezpośrednim osuszaniu cieczy. Typowe błędy w analizie polegają na pomijaniu specyficznych właściwości chemicznych poszczególnych substancji oraz ich zastosowań w laboratoriach. Aby skutecznie osuszać substancje chemiczne, należy znać ich właściwości, a także odpowiednie metody i środki, które są dostosowane do ich specyfiki. W kontekście standardów laboratoryjnych, brak takiej wiedzy może prowadzić do błędnych wniosków oraz zanieczyszczenia próbek, co wpłynie na wyniki analiz chemicznych.

Pytanie 18

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
B. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
C. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
D. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
Odpowiedź jest prawidłowa, ponieważ roztwory kwasów i zasad mogą być neutralizowane poprzez ich wzajemne mieszanie, co prowadzi do zmniejszenia ich niebezpiecznych właściwości. W praktyce, mieszając kwas z zasadą, powstaje sól i woda, co jest podstawą reakcji zobojętnienia. Ważne jest jednak, aby proces ten prowadzić ostrożnie, z uwagi na wydzielanie ciepła, które może być niebezpieczne. W przemyśle chemicznym oraz laboratoriach stosuje się standardowe procedury, które określają, jak powinno się postępować z odpadkami chemicznymi, aby zapewnić bezpieczeństwo. Istotne jest, aby nie przechowywać odpadów kwasowych i zasadowych w tym samym pojemniku bez neutralizacji, ponieważ może to prowadzić do nieprzewidywalnych reakcji chemicznych. Przykładowo, w laboratoriach często stosowane są odpowiednie pojemniki na odpady chemiczne, które są oznaczone i przystosowane do gromadzenia konkretnych typów substancji. Stosowanie się do wytycznych z zakresu ochrony środowiska oraz przepisów BHP jest kluczowe w każdym miejscu pracy zajmującym się substancjami chemicznymi.

Pytanie 19

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. sedymentacja
B. destylacja
C. filtracja
D. dekantacja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 20

Substancje kancerogenne to

A. mutagenne
B. enzymatyczne
C. uczulające
D. rakotwórcze
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 21

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. dokładnie oczyścić i osuszyć sprzęt
B. przed połączeniem nałożyć na szlify glicerynę
C. przed połączeniem nałożyć na szlify wazelinę
D. przed połączeniem wypłukać szlify acetonem
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 22

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Liofilizację.
B. Utrwalanie.
C. Oznaczanie wilgoci.
D. Wstępne suszenie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 23

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. liczbę osób pobierających próbkę
B. typ środka transportowego
C. nazwisko osoby, która pobrała próbkę
D. czas transportu próbki
Podanie nazwiska osoby pobierającej próbkę jest kluczowe dla zapewnienia odpowiedzialności oraz identyfikowalności procesu pobierania próbek środowiskowych. W praktyce, każda próbka powinna być związana z osobą, która ją pobrała, aby w razie potrzeby można było przeprowadzić dalsze wyjaśnienia lub analizy. Przykładowo, w przypadku wykrycia nieprawidłowości w wynikach badań, identyfikacja osoby pobierającej próbkę pozwala na ocenę, czy pobranie było przeprowadzone zgodnie z obowiązującymi procedurami oraz standardami jakości. Zgodnie z normami ISO 17025 oraz ISO 14001, odpowiednia dokumentacja jest kluczowym elementem systemu zarządzania jakością i ochroną środowiska. Dodatkowo, w sytuacji audytów lub kontroli, informacje o osobie odpowiedzialnej za pobranie próbki mogą być istotne dla potwierdzenia zgodności z wymaganiami regulacyjnymi i procedurami operacyjnymi. Właściwe oznaczenie próbek zwiększa również przejrzystość i wiarygodność wyników badań.

Pytanie 24

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. żółtym
B. szarym
C. zielonym
D. niebieskim
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 25

Proces mineralizacji próbki, który polega na jej spopieleniu w piecu muflowym w temperaturze 300-500°C i rozpuszczeniu pozostałych resztek w kwasach w celu oznaczenia zawartości metali ciężkich, to mineralizacja

A. ciśnieniowe.
B. suche.
C. mikrofalowe.
D. mokre.
Mineralizacja sucha to proces, który polega na spalaniu próbki w piecu muflowym w temperaturze 300-500°C. Taki sposób mineralizacji jest szeroko stosowany w analizach środowiskowych i chemicznych w celu oznaczania zawartości metali ciężkich. Po spaleniu próbki, pozostałości popiołu są rozpuszczane w odpowiednich kwasach, co umożliwia ich dalszą analizę, na przykład przez spektroskopię absorpcyjną czy atomową. Zastosowanie mineralizacji suchej jest zgodne z normami ISO dla analizy metali ciężkich, co zapewnia wysoką jakość i powtarzalność wyników. Dzięki tej metodzie można efektywnie eliminować materię organiczną, co zapewnia dokładniejsze pomiary stężenia metali. Praktyczne zastosowania obejmują badania gleby, osadów dennych oraz próbek biochemicznych, co czyni tę metodę kluczową w monitorowaniu zanieczyszczenia środowiska.

Pytanie 26

Materiał uzyskany przez zmieszanie prób pobranych w ustalonych odstępach czasu określa się mianem próbki

A. ogólną okresową
B. ogólnej
C. złożonej
D. proporcjonalnej
Odpowiedź "ogólną okresową" jest prawidłowa, ponieważ odnosi się do próbek, które są zbierane z określonymi odstępami czasowymi, co pozwala na uzyskanie reprezentatywnego obrazu danego zjawiska lub procesu w określonym czasie. Próbki te są kluczowe w wielu dziedzinach, takich jak monitorowanie jakości środowiska, analizy chemiczne czy badania statystyczne. Przykładem może być analiza jakości wody, gdzie próbki są pobierane regularnie, aby ocenić zmiany w zanieczyszczeniu w czasie. W praktyce, stosowanie próbek ogólnych okresowych pozwala na zminimalizowanie wpływu przypadkowych zjawisk i uzyskanie bardziej wiarygodnych danych. Przy takich badaniach istotne jest również przestrzeganie norm ISO, które zalecają określone metody pobierania próbek, aby zapewnić ich jednorodność i reprezentatywność. Zrozumienie tego konceptu jest kluczowe dla profesjonalistów zajmujących się badaniami, jakością oraz kontrolą procesów.

Pytanie 27

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Chemiczne zapotrzebowanie na tlen (ChZT).
B. Kwasowość.
C. Chlor pozostały.
D. Mangan.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 28

Jakie urządzenie wykorzystuje się do pomiaru lepkości cieczy?

A. aparat Boetiusa
B. piknometr
C. wiskozymetr
D. kriometr
Piknometr, aparat Boetiusa i kriometr to trochę inna historia, a ludzie często mylą je z pomiarem lepkości, co prowadzi do różnych nieporozumień. Piknometr jest urządzonkiem do mierzenia gęstości cieczy, a to oznacza, że patrzy na masę substancji w porównaniu do jej objętości. Gęstość jest ważna, ale nie ma nic wspólnego z lepkością, która odnosi się do oporu cieczy na przepływ. Aparat Boetiusa z kolei mierzy ciśnienie pary, więc nie ma tu nic do rzeczy, gdy mówimy o lepkości. Kriometr z kolei bada temperaturę zamarzania cieczy i może dać nam jakieś wskazówki co do składu chemicznego, ale z lepkością nie ma nic wspólnego. Rozumienie tych różnic jest naprawdę istotne, gdy wybiera się odpowiednie narzędzia do badań w laboratoriach. Z tego, co zauważyłem, wielu ludzi myli te pojęcia, bo nie rozumie podstawowych różnic między parametrami fizycznymi cieczy oraz ich wpływem na różne procesy technologiczne. Lepkość to tylko jedna z wielu cech fizycznych, a jej pomiar wymaga odpowiedniego sprzętu, jakim jest wiskozymetr.

Pytanie 29

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. oranżu metylowego
B. BaCl2
C. AgNO3
D. fenoloftaleiny
BaCl2, czyli chlorek baru, to super reagent do sprawdzania siarczanów(VI) w roztworach. Dlaczego? Bo tworzy nierozpuszczalny osad siarczanu baru (BaSO4) w obecności jonów siarczanowych. W praktyce robisz filtrację, oddzielasz te nierozpuszczalne zanieczyszczenia, a potem przemywasz wodą destylowaną. Jak dodasz BaCl2 do tych resztek, to jeśli są tam jakieś siarczany, zobaczysz biały osad. To oznacza, że siarczany są obecne. Ten proces jest zgodny z tym, co się robi w laboratoriach analitycznych, gdzie ważna jest dokładna detekcja siarczanów, żeby ocenić czystość próbek. Warto znać tę metodę, zwłaszcza w kontekście badań środowiskowych, bo tu precyzyjne dane są kluczowe.

Pytanie 30

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 30°C
B. 340 K
C. 20°C
D. 313 K
Odpowiedź 340 K jest poprawna, ponieważ w tej temperaturze CuSO4 rozpuszcza się efektywnie w wodzie. Rozpuszczalność wielu soli w wodzie zmienia się w zależności od temperatury, a dla siarczanu miedzi (II) jest to szczególnie istotne. W praktyce, aby osiągnąć zalecaną rozpuszczalność 25 g CuSO4 w 50 g wody, trzeba zapewnić odpowiednią energię cieplną, co pozwala cząsteczkom soli na przełamanie wiązań i ich rozpuszczenie. W kontekście laboratoryjnym, odpowiednia temperatura pozwala na uniknięcie nieefektywnego rozpuszczania i oszukiwania czasu pracy w badaniach analitycznych. W zastosowaniach przemysłowych, takich jak produkcja roztworów do procesów galwanicznych, kontrolowanie temperatury jest kluczowe, aby zapewnić jednorodność roztworu. Zgodnie z dobrą praktyką laboratoryjną, zawsze należy monitorować temperaturę, aby uzyskać optymalne wyniki. Ponadto, pamiętajmy, że temperatura ma wpływ na kinetykę reakcji chemicznych oraz na stabilność rozpuszczonych substancji.

Pytanie 31

Dekantacja to metoda

A. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
B. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
C. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
D. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 32

Ekstrakcję w trybie ciągłym przeprowadza się

A. w aparacie Soxhleta
B. w rozdzielaczu z korkiem
C. w zestawie do ogrzewania
D. w kolbie płaskodennej
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 33

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. adsorpcją
B. destylacją
C. filtracją
D. chromatografią
Chromatografia to technika rozdzielania składników mieszanin, która opiera się na różnicach w ich powinowactwie do fazy stacjonarnej i fazy ruchomej. Proces ten umożliwia analizę oraz oczyszczanie substancji chemicznych, a jego zastosowanie jest szerokie, od analizy jakościowej w laboratoriach chemicznych po przemysł farmaceutyczny, gdzie służy do czyszczenia składników aktywnych. W chromatografii cieczowej, która jest jedną z najczęstszych metod, próbka jest rozdzielana na podstawie różnic w szybkości migracji jej składników przez bibulę lub kolumnę wypełnioną odpowiednim materiałem. Zastosowanie chromatografii obejmuje zarówno naukę, jak i przemysł, umożliwiając kontrolę jakości, identyfikację substancji oraz badania środowiskowe, co czyni ją kluczowym narzędziem w analizach chemicznych. Standardy ISO oraz metodyka Good Laboratory Practice (GLP) regulują stosowanie chromatografii, zapewniając wysoką jakość wyników i bezpieczeństwo w laboratoriach.

Pytanie 34

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
B. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
C. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
D. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 35

Najwyżej czyste odczynniki chemiczne to odczynniki

A. spektralnie czyste.
B. czyste do analizy.
C. chemicznie czyste.
D. czyste.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 36

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w metalowym naczyniu.
B. w szklanej butelce.
C. w butelce z ciemnego szkła.
D. w polietylenowej butelce.
Przechowywanie próbki do oznaczania biochemicznego zapotrzebowania tlenu (BZT) w butelce z ciemnego szkła jest kluczowe, aby zapewnić jej integralność i dokładność pomiarów. Ciemne szkło chroni próbkę przed działaniem światła, które może prowadzić do fotodegradacji niektórych składników organicznych, co w konsekwencji zafałszowałoby wyniki analizy. Przechowywanie w odpowiedniej temperaturze, zazwyczaj w zakresie 2-5°C, również ma fundamentalne znaczenie, ponieważ niska temperatura spowalnia procesy biochemiczne, które mogłyby wpłynąć na zmiany w stężeniu tlenu. Zgodnie z normami ISO i dobrymi praktykami laboratoryjnymi, nieprzekraczanie tych warunków gwarantuje wyższej jakości wyniki. W praktyce, takie podejście jest stosowane w laboratoriach zajmujących się analizą wód, gdzie prawidłowe przechowywanie próbek jest kluczowe dla monitorowania stanu ekologicznego zbiorników wodnych. Zastosowanie butelek z ciemnego szkła jest zatem nie tylko zgodne z wymaganiami, ale także odzwierciedla wysokie standardy profesjonalizmu w pracy laboratoryjnej.

Pytanie 37

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 0,1 mol/dm3
B. 10 mol/dm3
C. 100 mol/dm3
D. 1 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 38

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. rozpoczęciu resuscytacji
B. wyniesieniu osoby poszkodowanej na świeże powietrze
C. zwilżeniu zimną wodą czoła i karku
D. rozpoczęciu reanimacji
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 39

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
B. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
C. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
D. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
Odpowiedź, że można przygotować 500 cm3 roztworu o stężeniu 0,2000 mol/dm3, jest prawidłowa, ponieważ można to uzasadnić z definicji stężenia molowego oraz objętości roztworu. Fabrycznie przygotowana odważka analityczna zawiera 0,1 mola EDTA. Aby obliczyć, ile roztworu można przygotować o określonym stężeniu, należy zastosować wzór: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość w dm3. W przypadku stężenia 0,2000 mol/dm3, mamy: 0,1 mola = 0,2000 mol/dm3 * V. Po przekształceniu równania do postaci V = n/C otrzymujemy V = 0,1 mol / 0,2000 mol/dm3 = 0,5 dm3, co odpowiada 500 cm3. Przygotowując roztwór o tym stężeniu, możemy wykorzystać EDTA w titracji kompleksometrycznej, co jest standardową metodą analizy chemicznej, szczególnie w badaniach jakości wody i analizie metali. Takie podejście zapewnia dokładność i zgodność z normami analitycznymi, co jest kluczowe w laboratoriach chemicznych.

Pytanie 40

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 2500 g
C. 100 g
D. 200 g
Wybór masy próbki wynoszącej 100 g jest zgodny z normami obowiązującymi dla wielkości ziaren poniżej 1 mm. W praktyce, przy analizach materiałów sypkich, takich jak proszki czy granulaty, istotne jest, aby masa próbki była dostosowana do rozmiaru cząstek, co wpływa na dokładność wyników. W przypadku cząstek o wielkości 1·10^-5 m, co odpowiada 0,01 mm, ich właściwości fizyczne i chemiczne są różne od większych ziaren, co wymaga odpowiedniego podejścia do pobierania próbek. Dla takich cząstek, minimalna masa próbki określona w normach branżowych wynosi 100 g, co zapewnia reprezentatywność oraz wystarczającą ilość materiału do przeprowadzenia analizy. Przykładowo, w laboratoriach zajmujących się analizą materiałów budowlanych lub farmaceutycznych, przestrzeganie takich wytycznych jest kluczowe dla uzyskania wiarygodnych wyników badań.