Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 08:36
  • Data zakończenia: 3 kwietnia 2025 09:01

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Zasilacz impulsowy osiąga maksymalną moc wyjściową równą 60 W oraz napięcie 12 V. Jaki minimalny zakres prądu powinien być ustawiony, aby uniknąć uszkodzenia miernika?

A. 2 A
B. 5 A
C. 1 A
D. 0,5 A
Poprawna odpowiedź to 5 A, ponieważ aby określić minimalny zakres prądowy, który należy ustawić na mierniku, musimy obliczyć maksymalny prąd, jaki zasilacz impulsowy może dostarczyć przy maksymalnej mocy 60 W i napięciu 12 V. Zastosowanie wzoru P = U × I, gdzie P to moc, U to napięcie, a I to prąd, pozwala nam na obliczenie prądu: I = P / U = 60 W / 12 V = 5 A. Oznacza to, że przy prądzie o wartości 5 A zasilacz osiągnie swoją maksymalną moc wyjściową. Ustawienie niższego zakresu prądowego (np. 2 A, 1 A czy 0,5 A) spowoduje, że miernik nie będzie w stanie zmierzyć maksymalnego prądu, co może skutkować jego uszkodzeniem. Dlatego ważne jest, aby przy pomiarach prądowych stosować się do zasad bezpieczeństwa, zapewniając odpowiednią wartość zakresu pomiarowego, co jest podstawową praktyką w pracy z urządzeniami elektrycznymi i elektronicznymi.

Pytanie 2

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
Odpowiedź wskazująca na przewód sześciożyłowy z żyłą miedzianą typu drut o przekroju żyły 0,5 mm2 jest poprawna, ponieważ oznaczenie YTDY odnosi się do specyfikacji przewodów elektrycznych, w których 'Y' oznacza przewód miedziany, 'T' oznacza, że przewód ma zastosowanie do instalacji w trudnych warunkach, a 'D' i 'Y' oznaczają odpowiednio, że przewód jest wielożyłowy i ma izolację z PVC. Przewody z żyłą miedzianą są powszechnie używane w instalacjach elektrycznych ze względu na dobre przewodnictwo elektryczne oraz odporność na utlenianie. Przykładem zastosowania tego typu przewodu może być okablowanie oświetleniowe w budynkach mieszkalnych, gdzie przewody o małym przekroju są wystarczające do zasilania energooszczędnych źródeł światła. W przypadku instalacji, które nie wymagają znacznych obciążeń, przewody o przekroju 0,5 mm2 są odpowiednie, a ich elastyczność sprawia, że można je łatwo układać w różnych konfiguracjach. Zgodnie z normą PN-EN 60228, przewody tego typu powinny być stosowane zgodnie z określonymi zasadami, co zapewnia bezpieczeństwo użytkowania.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NO, systemy domofonowe – NC
B. Systemy blokowania przejścia – NO, systemy domofonowe – NO
C. Systemy blokowania przejścia – NC, systemy domofonowe – NC
D. Systemy blokowania przejścia – NC, systemy domofonowe – NO
Wybór elektrozaczepów w systemach blokowania przejścia oraz domofonowych wymaga zrozumienia ich funkcji oraz kontekstu użycia. W przypadku systemów blokowania przejścia, zastosowanie elektrozaczepów normalnie zamkniętych (NC) może prowadzić do opóźnień w procesie otwierania, co jest nieefektywne w sytuacjach, gdy szybka reakcja jest niezbędna. Podobnie, wybór elektrozaczepów normalnie otwartych (NO) w systemach domofonowych może wprowadzać ryzyko nieautoryzowanego dostępu, ponieważ drzwi pozostają odblokowane, gdy nie ma aktywnego sygnału. Błędne założenie, że obie funkcjonalności mogą być stosowane zamiennie, prowadzi do poważnych luk w bezpieczeństwie. W praktyce, systemy NC w domofonach są bardziej odpowiednie, ponieważ ich zamknięcie blokuje dostęp do momentu potwierdzenia tożsamości użytkownika, co jest zgodne z normami bezpieczeństwa. Ignorowanie tych zasad może skutkować nieodpowiednim doborem komponentów i w konsekwencji, niższym poziomem ochrony. Warto również pamiętać, że w kontekście zabezpieczeń budynków, stosowanie odpowiednich standardów i procedur jest kluczowe, aby zapewnić skuteczność systemów zabezpieczeń oraz minimalizować ryzyko wypadków.

Pytanie 6

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 100 Ω
B. 120 Ω
C. 75 Ω
D. 50 Ω
Wybieranie kabli, które nie mają 75 Ω, to spory problem w telewizji, bo mogą się pojawić kłopoty z jakością sygnału. Kable 50 Ω są fajne, ale lepiej sprawdzają się w radiokomunikacji, a w telewizji mogą powodować odbicia, które zniekształcają obraz. Kable 120 Ω? No, one są raczej do przesyłania danych, więc w telewizji dobrze ich unikać, bo nie spełniają wymogów sygnałów wideo. Kable 100 Ω to też nie to, co potrzeba do telewizji. Myślenie, że można stosować różne impedancje w różnych aplikacjach, to spory błąd, który może nas dużo kosztować. Jeśli nie znamy norm i dobrych praktyk, łatwo o błędy w instalacji, a przecież jakość obrazu w telewizji to najważniejsza sprawa.

Pytanie 7

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. przemysłowej
B. kablowej
C. naziemnej
D. satelitarnej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Złącza BNC umieszcza się na końcach kabli

A. koncentrycznych
B. symetrycznych
C. skrętka UTP
D. skrętka STP
Złącza BNC (Bayonet Neill-Concelman) są powszechnie wykorzystywane w systemach telekomunikacyjnych do przesyłania sygnałów wideo oraz danych. Montuje się je na końcach przewodów koncentrycznych, co wynika z ich konstrukcji i przeznaczenia. Przewody koncentryczne składają się z centralnego rdzenia przewodnika otoczonego dielektrykiem oraz ekranem, co zapewnia doskonałą izolację i ochronę przed zakłóceniami elektromagnetycznymi. Złącza BNC są idealne do tego typu przewodów, ponieważ ich konstrukcja zapewnia stabilne połączenie oraz łatwe rozłączanie. Typowymi zastosowaniami złącz BNC są instalacje CCTV, systemy telewizji kablowej oraz wszelkie aplikacje wymagające wysokiej jakości przesyłania sygnałów analogowych. W kontekście standardów branżowych, złącza BNC są zgodne z normami IEEE 802.3, co czyni je wiarygodnym wyborem w wielu środowiskach inżynieryjnych, gdzie jakość sygnału jest kluczowa.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Aby zabezpieczyć drogi oddechowe przed szkodliwymi oparami, podczas lutowania należy używać

A. odsysacza cyny
B. odsysacza dymu
C. półmaski filtracyjnej bez zaworka
D. wiatraka
Stosowanie wentylatora do usuwania dymu lutowniczego jest niewłaściwe, ponieważ wentylacja ogólna nie jest w stanie skutecznie eliminować szkodliwych substancji wytwarzających się podczas lutowania. Wentylatory mogą rozproszyć dym w pomieszczeniu, ale nie usuwają go z obszaru pracy, co może prowadzić do wdychania szkodliwych oparów. Odsysacz cyny, z kolei, jest urządzeniem przeznaczonym do usuwania nadmiaru cyny z miejsca lutowania, a nie do ochrony dróg oddechowych. Jego zastosowanie w celu ochrony przed wdychaniem dymu jest więc błędne, ponieważ nie może on skutecznie filtrować toksycznych oparów. Półmaski filtrujące bez zaworka są używane w pewnych sytuacjach, jednak ich skuteczność wobec dymu lutowniczego jest ograniczona. Mają one na celu ochronę przed cząstkami stałymi, a nie przed oparami chemicznymi. Należy również pamiętać, że niewłaściwe podejście do ochrony dróg oddechowych prowadzi do typowych błędów myślowych, takich jak przekonanie, że każde urządzenie wentylacyjne jest wystarczające do zapewnienia bezpieczeństwa. W rzeczywistości, zgodnie z normami BHP, ważne jest, aby stosować dedykowane rozwiązania, a nie polegać na suboptymalnych metodach, które mogą nie chronić zdrowia pracowników. Wybór odpowiednich metod ochrony jest kluczowy dla zapewnienia zdrowego środowiska pracy.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. WiFi
B. NFC
C. Bluetooth
D. IrDA
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 15

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor bipolarny
B. Tranzystor unipolarny
C. Trymer
D. Tyrystor
Tranzystor unipolarny, znany również jako tranzystor MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), jest elementem elektronicznym, który charakteryzuje się trzema głównymi terminalami: źródłem (S), bramką (G) oraz drenem (D). Te oznaczenia są standardem w dokumentacji technicznej i umożliwiają zrozumienie, jak tego typu tranzystor funkcjonuje. W tranzystorze unipolarnym prąd przepływa między drenem a źródłem, gdy na bramkę przyłożone jest odpowiednie napięcie, co kontroluje jego stan włączony lub wyłączony. Zastosowania tranzystorów unipolarnych obejmują obwody cyfrowe, wzmacniacze oraz układy przełączające, co czyni je niezwykle wszechstronnymi w różnych dziedzinach elektroniki, od komputerów po systemy komunikacji. Warto zauważyć, że ze względu na ich niskie zużycie energii i wysoką szybkość przełączania, tranzystory MOSFET są szeroko stosowane w nowoczesnych urządzeniach elektronicznych, co podkreśla ich znaczenie w branży.

Pytanie 16

Jakie urządzenie sieciowe działa w trzeciej warstwie modelu OSI, pełni rolę węzła w sieci komunikacyjnej i odpowiada za proces zarządzania ruchem?

A. ruter.
B. hub.
C. repeater.
D. gniazdo RJ-45.
Ruter jest kluczowym urządzeniem w sieciach komputerowych, które działa na trzeciej warstwie modelu OSI, znanej jako warstwa sieci. Jego podstawową funkcją jest kierowanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że podejmuje decyzje o trasach, które dane powinny pokonać, aby dotrzeć do swojego celu. Rutery analizują adresy IP pakietów, a następnie wybierają najefektywniejszą ścieżkę na podstawie dostępnych informacji o sieci, takich jak tablice routingu i protokoły routingu (np. OSPF, BGP). Dla przykładu, w przypadku łączności pomiędzy lokalną siecią a Internetem, ruter jako punkt graniczny analizuje ruch przychodzący i wychodzący, zapewniając odpowiednią trasę dla danych. Rutery mogą również implementować dodatkowe funkcje, takie jak filtrowanie ruchu, NAT (Network Address Translation) czy QoS (Quality of Service), co czyni je nieodzownym elementem nowoczesnych infrastruktury sieciowych. Zgodnie z dobrą praktyką, projektując sieć, istotne jest umiejętne wykorzystanie ruterów do zapewnienia efektywnej i bezpiecznej komunikacji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. generator
B. modulator
C. dekoder
D. spliter
Jeśli wybrałeś inne odpowiedzi, jak dekoder, generator czy modulator, to może być trochę nieporozumienie z tym, jak te urządzenia działają w kontekście instalacji antenowych. Dekoder to sprzęt, który przetwarza zakodowane sygnały, żebyśmy mogli je oglądać na telewizorze. On nie dzieli sygnału, a tylko go dekoduje, co jest zupełnie inną sprawą niż splitter. Generator robi coś innego, bo wytwarza sygnały, ale nie rozdziela ich. Można go używać przy produkcji sygnałów testowych, ale w instalacjach antenowych się nie sprawdzi. Modulator z kolei zamienia sygnał audio-wideo na coś, co można przesyłać przez różne media, co też nie pasuje do rozdzielania sygnałów. Fajnie jest znać te różnice, bo to pomoże lepiej konfigurować systemy antenowe i uniknąć problemów z jakością sygnału. Czasami ludzie mylą te funkcje, co może prowadzić do złych wyborów w budowaniu i utrzymywaniu instalacji.

Pytanie 19

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 122,00 zł
B. 100,00 zł
C. 146,40 zł
D. 117,60 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

THT to metoda

A. realizacji instalacji podtynkowej
B. prowadzenia przewodów przez otwory w ścianach
C. umieszczania kabli w rurkach instalacyjnych
D. montowania elementów elektronicznych na płytkach drukowanych
Wybór odpowiedzi dotyczącej instalacji podtynkowej jest nieprawidłowy, ponieważ montaż przewlekany THT odnosi się wyłącznie do technologii elektronicznych, a nie do prac budowlanych związanych z instalacjami. Instalacje podtynkowe dotyczą rozmieszczenia przewodów elektrycznych, wodociągowych czy innych systemów w sposób, który jest ukryty w ścianach, co jest zupełnie odmiennym procesem. Kolejna odpowiedź, związana z umieszczaniem przewodów w rurkach instalacyjnych, również nie ma związku z technologią THT, która koncentruje się na montażu elementów elektronicznych na PCB. Ta technika nie dotyczy zarządzania przewodami, lecz sposobu, w jaki komponenty są osadzone na płytce. Odpowiedź dotycząca przeprowadzania przewodów przez otwory w ścianie, chociaż może być myląca ze względu na użycie słowa 'otwory', nie ma zastosowania w kontekście montażu przewlekane, jako że ten termin odnosi się do wkładania elementów elektronicznych w otwory w płytce, a nie w ścianie. Warto zrozumieć, że w elektronice terminologia jest bardzo precyzyjna, i mylenie montażu THT z innymi technikami prowadzi do nieporozumień, które mogą wpłynąć na jakość projektowania i produkcji elektroniki. Zrozumienie różnicy pomiędzy tymi pojęciami jest kluczowe dla właściwego zrozumienia procesu montażu w kontekście inżynierii elektronicznej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Wzmacniacz z tranzystorem bipolarnym w układzie OC
B. Źródło prądowe oparte na tranzystorze bipolarnym
C. Wzmacniacz z tranzystorem bipolarnym w układzie OB
D. Ogranicznik prądowy zrealizowany w technologii bipolarnej
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.

Pytanie 25

Jakie środki należy wykorzystać do ugaszenia ubrania palącego się na ciele?

A. koc gaśniczy
B. gaśnicę proszkową
C. gaśnicę śniegową
D. gaśnicę pianową
Koc gaśniczy jest najskuteczniejszym środkiem do gaszenia płonącego ubrania na ciele człowieka, ponieważ działa na zasadzie odcięcia dopływu tlenu do ognia, co szybko prowadzi do jego stłumienia. Koc gaśniczy, wykonany z materiałów odpornych na wysoką temperaturę, jest łatwy w użyciu i może być szybko rozłożony przez świadków zdarzenia. W przypadku pożaru odzieży koc gaśniczy powinien być zarzucony na płonącą osobę, co pozwoli na zminimalizowanie kontaktu z powietrzem. Dodatkowo, użycie koca gaśniczego pozwala na uniknięcie poparzeń, które mogą wystąpić podczas stosowania innych metod. Standardy BHP oraz procedury reagowania w sytuacjach awaryjnych w wielu krajach zalecają korzystanie z koca gaśniczego jako skutecznej metody w przypadku pożaru odzieży. Warto również pamiętać, że koc gaśniczy powinien być przechowywany w łatwo dostępnym miejscu, aby w razie nagłego wypadku mógł być szybko użyty, co może uratować życie. Praktyczne zastosowanie koca gaśniczego powinno być częścią każdego szkolenia z zakresu pierwszej pomocy oraz ppoż.

Pytanie 26

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. typ modulacji
B. zmiana częstotliwości
C. współczynnik zawartości harmonicznych
D. napięcie detektora
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 10 zł
B. 3 zł
C. 15 zł
D. 5 zł
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Demultiplekser
B. Stabilizator
C. Multiplekser
D. Komparator
Wybór niewłaściwego układu, takiego jak multiplekser, demultiplekser czy stabilizator, jest wynikiem mylnych przekonań na temat ich funkcji. Multiplekser to układ, który umożliwia wybór jednej z wielu linii wejściowych i przesyłanie jej na wyjście. Jego głównym celem jest manipulacja danymi, a nie bezpośrednie porównywanie napięć, co czyni go nieodpowiednim do zadania porównania napięć. Z kolei demultiplekser działa w przeciwny sposób – rozdziela sygnał z jednego źródła na wiele wyjść, co również nie odpowiada na potrzeby porównawcze. Stabilizator natomiast ma za zadanie utrzymanie stałego napięcia na wyjściu, niezależnie od zmian w napięciu wejściowym lub obciążeniu, co również jest inną funkcjonalnością. Te błędne wybory wynikają często z nieporozumień dotyczących podstawowych funkcji tych układów. Na przykład, mylenie roli komparatora z funkcją multipleksera może prowadzić do sytuacji, w której użytkownik szuka rozwiązania dla problemu porównania napięć, używając układu, który nie jest w stanie wykonać tej operacji. Aby uniknąć takich błędów, ważne jest zrozumienie różnic między tymi układami oraz ich zastosowań w praktyce, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. ekranu.
B. żyły.
C. izolacji wewnętrznej.
D. izolacji zewnętrznej.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 39

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. telewizji dozorowej
B. instalacji antenowej
C. systemu alarmowego
D. sieci komputerowej
Mierniki błędów, takie jak BER, są narzędziami specyficznymi dla transmisji danych, co może prowadzić do nieporozumień dotyczących ich zastosowania w różnych systemach. Na przykład, systemy alarmowe, które opierają się na sygnałach analogowych lub cyfrowych, nie korzystają bezpośrednio z pomiaru BER, ponieważ ich skuteczność jest częściej oceniana na podstawie niezawodności sygnału i czasu reakcji. W przypadku sieci komputerowych, chociaż jakość transferu danych może być istotna, to bardziej odpowiednie do oceny tych systemów są wskaźniki takie jak straty pakietów, opóźnienia czy pasmo. W telewizji dozorowej, z kolei, kluczowym czynnikiem jest jakość obrazu i dźwięku, a nie bezpośrednio miara błędów bitowych. W instalacjach antenowych, gdzie BER rzeczywiście jest istotnym wskaźnikiem, inne systemy, takie jak alarmowe czy telewizji dozorowej, mają swoje specyficzne metody oceny jakości sygnału. Typowe błędy myślowe mogą obejmować mylenie funkcji różnych urządzeń pomiarowych oraz zastosowanie ich w niewłaściwych kontekstach, co może prowadzić do nieefektywnego diagnozowania problemów i obniżenia wydajności systemu. Właściwe zrozumienie roli, jaką BER odgrywa w określonych instalacjach, jest kluczowe dla skutecznego zarządzania i utrzymania jakości usług.

Pytanie 40

Zanim przystąpimy do konserwacji jednostki centralnej komputera stacjonarnego podłączonego do lokalnej sieci, najpierw powinniśmy

A. odłączyć przewód zasilający
B. wyciągnąć przewód sieciowy
C. uziemić metalowe elementy obudowy
D. otworzyć obudowę jednostki centralnej
Odpowiedź 'odłączyć przewód zasilający' jest kluczowa przed przystąpieniem do konserwacji jednostki centralnej komputera, ponieważ wyłącza zasilanie urządzenia. W przypadku konserwacji, takiej jak czyszczenie komponentów czy wymiana podzespołów, istnieje ryzyko zwarcia, które może prowadzić do uszkodzenia sprzętu lub zagrożenia dla zdrowia użytkownika. Odłączenie przewodu zasilającego jest pierwszym krokiem w procedurze bezpiecznej konserwacji i jest zgodne z najlepszymi praktykami w branży IT. Przykładowo, w standardach OSHA (Occupational Safety and Health Administration) oraz IEC (International Electrotechnical Commission) podkreśla się znaczenie odłączania zasilania przed jakimikolwiek pracami serwisowymi. Warto również pamiętać o używaniu odpowiednich narzędzi, takich jak opaski antyelektrostatyczne, aby zminimalizować ryzyko uszkodzenia komponentów przez ładunki elektrostatyczne. W prawidłowej konserwacji istotne jest, aby zawsze działać zgodnie z zaleceniami producenta sprzętu, co dodatkowo podnosi poziom bezpieczeństwa i efektywności działań serwisowych.