Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 maja 2025 16:03
  • Data zakończenia: 15 maja 2025 16:25

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas hibernacji komputera zachodzi

A. zapisanie zawartości pamięci na dysku twardym.
B. zamknięcie systemu.
C. przełączanie na zasilanie z UPS.
D. reset systemu.
Hibernacja systemu komputerowego to proces, w którym zawartość pamięci operacyjnej (RAM) jest zapisywana na dysku twardym w celu oszczędzania energii, a następnie system może zostać wyłączony. Ta metoda jest szczególnie przydatna w laptopach oraz urządzeniach mobilnych, gdzie długotrwałe użytkowanie na baterii ma kluczowe znaczenie. Po wznowieniu pracy, system odtworzy stan, w jakim został wstrzymany, przywracając wszystkie otwarte aplikacje i dokumenty. Hibernacja różni się od usypiania, gdzie dane w pamięci są zachowywane tylko na czas aktywnego stanu, przy minimalnym zużyciu energii. W standardach zarządzania energią, taki jak ACPI (Advanced Configuration and Power Interface), hibernacja jest zalecana jako efektywne rozwiązanie do zarządzania mocą, które pozwala na długotrwałe przechowywanie stanu systemu bez potrzeby ciągłego zasilania. Przykładem zastosowania hibernacji może być moment, gdy użytkownik planuje dłuższą przerwę od pracy i chce wrócić do tego samego miejsca w systemie bez utraty postępów.

Pytanie 2

Która z poniższych czynności nie należy do serwisowania systemu domofonowego?

A. Sprawdzenia napięć zasilających
B. Montażu przekaźnika dwuwejściowego
C. Dostosowania głośności unifonu
D. Zamiany żarówki podświetlającej panel
Wybór odpowiedzi, która wskazuje na czynności związane z regulacją głośności unifonu, wymianą żarówki podświetlenia panelu oraz kontrolą napięć zasilających, sugeruje niepełne zrozumienie różnicy między konserwacją a instalacją. Regulacja głośności unifonu jest zadaniem, które pozwala na dostosowanie poziomu dźwięku do potrzeb użytkownika, jednak nie wpływa na samą funkcjonalność instalacji w kontekście jej montażu. Wymiana żarówki podświetlenia, choć niezbędna dla poprawnej widoczności interfejsu użytkownika, również nie dotyczy aspektu konserwacji w sensie modernizacji czy dodawania nowych funkcji. Kontrola napięć zasilających jest z kolei kluczowym elementem diagnostyki, ale nie jest czynnością, która modyfikuje lub ulepsza system. W praktyce, czynności konserwacyjne powinny koncentrować się na zachowaniu integralności i efektywności istniejącego systemu domofonowego, a nie na jego rozbudowie. Błędne podejście do tych kwestii może prowadzić do mylnych przekonań na temat wymagań dotyczących konserwacji instalacji domofonowej, co w dłuższej perspektywie może skutkować nieefektywnym zarządzaniem systemem oraz zwiększonym ryzykiem awarii.

Pytanie 3

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NC, systemy domofonowe – NO
B. Systemy blokowania przejścia – NC, systemy domofonowe – NC
C. Systemy blokowania przejścia – NO, systemy domofonowe – NO
D. Systemy blokowania przejścia – NO, systemy domofonowe – NC
Wybór elektrozaczepów w systemach blokowania przejścia oraz domofonowych wymaga zrozumienia ich funkcji oraz kontekstu użycia. W przypadku systemów blokowania przejścia, zastosowanie elektrozaczepów normalnie zamkniętych (NC) może prowadzić do opóźnień w procesie otwierania, co jest nieefektywne w sytuacjach, gdy szybka reakcja jest niezbędna. Podobnie, wybór elektrozaczepów normalnie otwartych (NO) w systemach domofonowych może wprowadzać ryzyko nieautoryzowanego dostępu, ponieważ drzwi pozostają odblokowane, gdy nie ma aktywnego sygnału. Błędne założenie, że obie funkcjonalności mogą być stosowane zamiennie, prowadzi do poważnych luk w bezpieczeństwie. W praktyce, systemy NC w domofonach są bardziej odpowiednie, ponieważ ich zamknięcie blokuje dostęp do momentu potwierdzenia tożsamości użytkownika, co jest zgodne z normami bezpieczeństwa. Ignorowanie tych zasad może skutkować nieodpowiednim doborem komponentów i w konsekwencji, niższym poziomem ochrony. Warto również pamiętać, że w kontekście zabezpieczeń budynków, stosowanie odpowiednich standardów i procedur jest kluczowe, aby zapewnić skuteczność systemów zabezpieczeń oraz minimalizować ryzyko wypadków.

Pytanie 4

W trakcie udzielania pierwszej pomocy, zgodnie z zasadą ABC (ang. Airways, breath, circulation), co należy wykonać w pierwszej kolejności?

A. sztuczne oddychanie
B. masaż serca
C. układanie w pozycji bocznej
D. udrożnienie dróg oddechowych
Udrożnienie dróg oddechowych jest kluczowym krokiem w udzielaniu pierwszej pomocy, zgodnym z regułą ABC, która podkreśla kolejność podejmowanych działań w sytuacjach zagrożenia życia. Drugi i trzeci element, czyli wentylacja i krążenie, są nieefektywne, jeśli drogi oddechowe są zablokowane. W praktyce, aby udrożnić drogi oddechowe, można zastosować technikę przechylania głowy do tyłu i unoszenia bródki, co ułatwia przepływ powietrza. W przypadku pacjentów nieprzytomnych, istotne jest również zastosowanie manewru żuchwy, aby usunąć wszelkie przeszkody, takie jak ciała obce. Standardy resuscytacji, takie jak wytyczne American Heart Association, jednoznacznie wskazują na to, iż przed rozpoczęciem wentylacji lub masażu serca, należy zawsze upewnić się, że drogi oddechowe są udrożnione. Takie podejście zwiększa szansę na skuteczną pomoc i minimalizuje ryzyko powikłań, takich jak niedotlenienie mózgu. W sytuacjach kryzysowych, gdzie każda sekunda ma znaczenie, umiejętność szybkiego i skutecznego udrożnienia dróg oddechowych jest nieoceniona.

Pytanie 5

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Poziom wilgotności powietrza
B. Temperatura otoczenia
C. Liczba użytkowników
D. Grubość ścian oraz stropów
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 6

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. router
B. wzmacniak
C. koncentrator
D. konwerter
Wzmacniak jest urządzeniem, które służy do zwiększania mocy sygnału, jednak nie jest odpowiedni do konwersji sygnałów między różnymi mediami transmisyjnymi, jak w przypadku światłowodu i skrętki. Użycie wzmacniaka w takim kontekście mogłoby prowadzić do dalszych strat sygnału i zakłóceń, gdyż wzmacniak nie rozwiązuje problemu różnic w technologii przesyłania danych. Router z kolei to urządzenie, które kieruje ruch sieciowy między różnymi sieciami, ale również nie posiada zdolności konwersji między typami kabli. Routery są niezbędne w złożonych sieciach, gdzie konieczne jest zarządzanie ruchem, jednak nie są one przeznaczone do łączenia światłowodu z kablami miedzianymi. Koncentrator to urządzenie, które umożliwia połączenie wielu urządzeń w sieci lokalnej, ale nie jest w stanie przeprowadzać konwersji sygnału. Zastosowanie koncentratora w sytuacji wymagającej połączenia dwóch różnych typów mediów transmisyjnych byłoby niewłaściwe, prowadząc do problemów z komunikacją i transmisją danych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niewłaściwych urządzeń, obejmują mylenie funkcji wzmacniaka czy routera z funkcjonalnością konwertera, co może wynikać z braku zrozumienia podstawowych różnic w ich działaniu oraz przeznaczeniu.

Pytanie 7

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. SINGLE
B. DUAL
C. X-Y
D. ADD
Tryb X-Y w oscyloskopie to naprawdę ważna sprawa, jeśli chodzi o analizowanie krzywych Lissajous. Dzięki temu można wyświetlać dwa sygnały jednocześnie. Gdy podłączysz sygnał o znanej częstotliwości do CH-B, a ten badany do CH-A, to przestawienie oscyloskopu w tryb X-Y pozwala zobaczyć, jak te sygnały się mają do siebie. Krzywe Lissajous są super do określania, jak częstotliwości i fazy sygnałów się między sobą porównują. Na przykład, jak masz sygnał referencyjny o częstotliwości 1 kHz, a badany o 2 kHz, to krzywa Lissajous będzie miała taki charakterystyczny kształt, który mówi, że sygnał badany jest w jakichś relacjach z referencyjnym. Jak się pracuje w laboratorium elektroniki czy inżynierii, to te analizy są na porządku dziennym. Warto mieć to na uwadze podczas pracy z oscyloskopem.

Pytanie 8

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
B. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
C. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
D. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka kluczowych błędów w zrozumieniu procesu odbioru sygnału satelitarnego. Na przykład, w niektórych odpowiedziach zakłada się, że odbiornik satelitarny powinien znajdować się przed konwerterem, co jest technicznie niepoprawne. Odbiornik satelitarny jest urządzeniem odpowiedzialnym za dekodowanie sygnału, który już przeszedł przez konwerter. Konwerter pełni kluczową rolę w przetwarzaniu sygnału, dlatego musi znajdować się bezpośrednio po antenie satelitarnej, a przed odbiornikiem satelitarnym. Innym typowym błędem jest ignorowanie znaczenia anteny satelitarnej, która jest pierwszym punktem kontaktu z sygnałem radiowym. Niepoprawna kolejność może prowadzić do braku sygnału lub znacznego pogorszenia jakości obrazu. Takie nieporozumienia często wynikają z braku wiedzy na temat funkcji poszczególnych komponentów systemu. Standardy branżowe określają, że właściwe ustawienie i konfiguracja systemu są kluczowe dla uzyskania najlepszego odbioru. Niezrozumienie tego procesu nie tylko może skutkować nieodpowiednim działaniem systemu, ale również ogranicza możliwości użytkownika w zakresie wykorzystania pełni potencjału technologii satelitarnej.

Pytanie 9

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. EOL
B. NO
C. 2EOL
D. NC
Konfiguracja EOL (End of Line) polega na zastosowaniu rezystorów na końcu linii czujników, co jest przydatne w bardziej skomplikowanych systemach, gdzie chcemy monitorować stan obwodu na całej jego długości. Jednak w przypadku obwodu sabotażowego bez rezystorów, zastosowanie tej konfiguracji nie jest możliwe, ponieważ wymaga ona dodatkowych komponentów, których w tym przypadku nie ma. Ustawienia NO (Normally Open) również nie są właściwe, ponieważ w tej konfiguracji obwód jest domyślnie otwarty, co w sytuacji sabotażu może nie wywołać alarmu, co jest sprzeczne z zamiarem zabezpieczenia. W przypadku sabotażu, gdy obwód jest otwarty, nie zostanie wysłany żaden sygnał, co prowadzi do poważnego ryzyka. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują niepełne zrozumienie zasad działania obwodów lub mylenie ich z innymi zastosowaniami. Wybór opcji 2EOL jest także niewłaściwy w kontekście danej kwestii, ponieważ ta metoda również zakłada użycie rezystorów na końcu linii, co nie jest zgodne z wymaganiami pytania. Ostatecznie, zrozumienie różnicy między tymi konfiguracjami oraz ich zastosowaniem w systemach alarmowych jest kluczowe dla skutecznego projektowania i wdrażania zabezpieczeń.

Pytanie 10

Jakie oznaczenie literowe ma przewód wykorzystywany w połączeniach elementów systemów alarmowych?

A. SMY
B. LGY
C. YTDY
D. F/UTP
Odpowiedź YTDY jest jak najbardziej trafna. Ten kabel jest często spotykany w systemach alarmowych i zabezpieczeń. To kabel sygnałowy, który ma kilka żył, a do tego jest ładnie ekranowany, co znacznie ogranicza różne zakłócenia elektromagnetyczne. Z mojego doświadczenia wiem, że jego elastyczność i solidność są super istotne, zwłaszcza gdy trzeba to zamontować w trudnych warunkach. Właściwie, kabel YTDY to podstawa, kiedy chcemy przesyłać sygnały alarmowe z czujników do centrali. Zgadza się, że jego zastosowanie jest nie tylko skuteczne, ale także zapewnia bezpieczeństwo, co jest kluczowe. Dobrze jest też przypomnieć, że w sytuacjach, gdzie potrzebna jest duża odporność na zakłócenia, kabel YTDY jest często polecany, co potwierdzają różne normy dla systemów zabezpieczeń.

Pytanie 11

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. ekrany z uziemieniem
B. fartuchy ochronne
C. chodniki izolacyjne
D. kaski ochronne
Zastosowanie fartuchów roboczych, chodników izolacyjnych oraz kasków ochronnych w kontekście ochrony przed falami elektromagnetycznymi jest niewłaściwe, ponieważ te środki nie są zaprojektowane w celu redukcji promieniowania elektromagnetycznego. Fartuchy robocze mają na celu ochronę przed substancjami chemicznymi, ciepłem lub mechanicznymi uszkodzeniami, lecz nie oferują skutecznej ochrony przed falami elektromagnetycznymi. Chodniki izolacyjne, choć mogą być używane do ochrony przed porażeniem elektrycznym, nie działają jako bariera dla promieniowania elektromagnetycznego i nie eliminują jego szkodliwego wpływu. Kaski ochronne z kolei są przystosowane do ochrony głowy przed uderzeniami i nie mają właściwości związanych z osłoną przed promieniowaniem elektromagnetycznym. Typowym błędem myślowym jest zakładanie, że wszystkie środki ochrony osobistej mogą być stosowane w każdym kontekście, co prowadzi do błędnych wniosków. W rzeczywistości, aby skutecznie chronić pracowników przed promieniowaniem elektromagnetycznym, konieczne jest zastosowanie specjalistycznych rozwiązań, takich jak ekrany z uziemieniem, które są dostosowane do specyficznych zagrożeń. Właściwe zrozumienie i zastosowanie odpowiednich środków ochrony jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 12

Którego typu środka gaśniczego nie należy używać do gaszenia ognia pochodzącego z urządzenia elektrycznego?

A. Proszku gaśniczego.
B. Halon.
C. Piany gaśniczej.
D. Dwutlenku węgla.
Stosowanie halonu, dwutlenku węgla lub proszku gaśniczego w celu gaszenia płomieni wydobywających się z urządzeń elektrycznych może prowadzić do niebezpiecznych sytuacji. Halon, pomimo że nie przewodzi prądu, jest substancją szkodliwą dla środowiska i od 2015 roku nie jest już produkowany zgodnie z Protokołem Montrealskim. Jego zastosowanie jest ograniczone, a w wielu krajach całkowicie zakazane. Dwutlenek węgla jest skutecznym środkiem gaśniczym, ale nie jest idealnym rozwiązaniem w każdym przypadku. Może występować ryzyko zamarznięcia w dyszy, co może prowadzić do uszkodzeń sprzętu. Użycie proszku gaśniczego, choć może być skuteczne, wiąże się z ryzykiem uszkodzenia urządzeń elektronicznych oraz wymaga dokładnego oczyszczenia po akcji gaśniczej. Wybór środka gaśniczego powinien być dokładnie przemyślany, z uwzględnieniem specyfiki pożaru. Typowym błędem jest mylenie skuteczności działania różnych typów środków gaśniczych bez uwzględnienia ich właściwości w kontekście urządzeń elektrycznych. Właściwe szkolenia i znajomość zasad BHP są kluczowe, aby uniknąć niewłaściwych decyzji w sytuacji zagrożenia.

Pytanie 13

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest uszkodzony
B. w badanym obwodzie znajduje się źródło prądowe
C. badany obwód jest ciągły
D. w badanym obwodzie znajduje się złącze półprzewodnikowe
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 14

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. COM
B. NC
C. NO
D. IN
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 15

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
B. Odbiera programy telewizyjne
C. Nadaje sygnały z satelity
D. Przekazuje informacje pomiędzy satelitami
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 16

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Wydłużenie przewodu oraz obniżenie jego rezystancji
B. Skrócenie przewodu oraz podwyższenie jego rezystancji
C. Skrócenie przewodu oraz obniżenie jego rezystancji
D. Wydłużenie przewodu oraz podwyższenie jego rezystancji
Wzrost temperatury naprawdę ma duży wpływ na przewody miedziane. Jak wiadomo, materiały się rozszerzają, więc przewody miedziane też się wydłużają, kiedy robi się cieplej. To jest ważne, bo w instalacjach elektrycznych to może wpłynąć na ich działanie. Jeśli temperatura przewodów wzrasta, to niestety ich rezystancja też rośnie. Przykładowo, w temperaturze 20°C miedź ma swoją rezystancję, ale gdy podgrzejesz ją do 100°C, ta wartość wzrasta o jakieś 40%. W praktyce oznacza to, że projektując instalacje, musimy myśleć o tym, jak te zmiany wpłyną na naszą pracę. Warto zwracać uwagę na normy, jak IEC 60228, bo one pomagają w zapewnieniu bezpieczeństwa i funkcjonalności naszych instalacji. Po prostu trzeba o tym pamiętać przy tworzeniu projektów.

Pytanie 17

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 305 zł
B. 350 zł
C. 250 zł
D. 200 zł
Koszt instalacji wideofonowej dla pojedynczego lokatora można obliczyć tylko wtedy, gdy weźmiemy pod uwagę wszystkie istotne elementy składające się na całkowity wydatek. Wiele osób popełnia błąd, pomijając istotne koszty, takie jak wynagrodzenie monterów, co prowadzi do nieprecyzyjnych obliczeń. Jeśli ktoś przyjmuje tylko koszt materiałów wynoszący 2000 zł i dzieli go przez liczbę lokatorów, otrzymuje 200 zł na lokatora, co nie uwzględnia kosztów robocizny ani podatku VAT. Taki sposób myślenia jest powierzchowny i nieodpowiedzialny, ponieważ w praktyce całkowity koszt instalacji musi zawierać zarówno wynagrodzenie pracowników, jak i dodatkowe opłaty. Inna powszechna pomyłka to nieuwzględnienie podatku VAT w obliczeniach. W przypadku instalacji, które podlegają opodatkowaniu, pominięcie tej kwestii może prowadzić do znacznych różnic w finalnych kosztach dla klientów. Ponadto, zrozumienie podstaw prawnych związanych z kosztami robocizny i materiałów jest kluczowe dla prawidłowego kalkulowania wydatków w branży. Dlatego ważne jest, aby zawsze kalkulować całkowity koszt usługi, co odpowiada standardom praktyki w branży budowlanej, aby uniknąć nieporozumień i zapewnić przejrzystość w relacjach z klientami.

Pytanie 18

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. gwiazdkowym
B. płaskim
C. krzyżowym
D. czworokątnym
Wkręty z łbem oznaczonym symbolem PH nie nadają się do użycia z wkrętakami płaskimi, ponieważ ich konstrukcja jest całkowicie niezgodna z profilem łba wkrętu. Wkrętaki płaskie mają prostą, płaską końcówkę, co ogranicza kontakt z rowkiem łba wkrętu i prowadzi do poślizgu narzędzia, a w efekcie do uszkodzenia zarówno wkrętu, jak i materiału, w którym jest osadzony. W kontekście wkrętów czworokątnych, które wymagają zupełnie innego typu wkrętaka, błędne jest stosowanie wkrętaka krzyżowego. Wkrętaki czworokątne mają inny kształt, który nie pasuje do standardu PH, co mogłoby prowadzić do zwiększonego ryzyka uszkodzenia narzędzia i elementów złącznych. Z kolei wkrętaki gwiazdkowe, choć mogą wyglądać podobnie do krzyżowych, różnią się budową, a ich końcówki są przystosowane do innych łbów wkrętów. Użycie niewłaściwego wkrętaka nie tylko zwiększa ryzyko uszkodzenia wkrętów, ale także prowadzi do marnotrawienia czasu i zasobów. W praktyce, stosowanie odpowiednich narzędzi zgodnych z typem wkrętu jest kluczowe dla efektywności i jakości pracy, a także dla unikania problemów związanych z nieodpowiednim doborem narzędzi.

Pytanie 19

Jakie narzędzie wykorzystuje się do usuwania resztek topnika z płytek drukowanych?

A. wacika
B. ligniny
C. pędzelka
D. gąbki
Wybór gąbki, ligniny lub wacika do usuwania resztek topnika z płytek drukowanych nie jest właściwy z kilku istotnych powodów. Gąbki, mimo że są absorbujące, mogą zostawiać włókna, co jest niepożądane w kontekście precyzyjnych urządzeń elektronicznych. Włókna te mogą stać się źródłem zwarcia lub wpływać na działanie elementów elektronicznych, prowadząc do ich degradacji lub awarii. Lignina, choć może być stosowana w kontekście czyszczenia, nie jest odpowiednia ze względu na swoją szorstkość oraz możliwości zostawiania resztek, co może prowadzić do zanieczyszczenia płytki. Z kolei waciki, które mogą wydawać się praktyczne, także nie są idealnym rozwiązaniem, gdyż ich struktura może zarysować delikatne powierzchnie lub również pozostawić włókna. Każda z tych alternatyw nie spełnia wymogów dotyczących dokładności oraz bezpieczeństwa, które są kluczowe w procesach związanych z elektroniką. Stosowanie niewłaściwych narzędzi czyszczących może prowadzić do uszkodzenia komponentów, co w dłuższej perspektywie generuje dodatkowe koszty i obniża jakość wyrobów. Dlatego w branży elektroniki zdefiniowane są specjalistyczne narzędzia i metody czyszczenia, które zapewniają dokładność oraz minimalizują ryzyko uszkodzeń, a pędzelek jest jednym z najczęściej zalecanych narzędzi w takich sytuacjach.

Pytanie 20

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Pomiary sprawdzające
B. Programowanie
C. Czyszczenie
D. Regulacja parametrów
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 21

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. hydronetki wodnej
B. gaśnicy proszkowej
C. gaśnicy pianowej
D. koca azbestowego
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 22

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Demultiplekser
B. Multiplekser
C. Stabilizator
D. Komparator
Wybór niewłaściwego układu, takiego jak multiplekser, demultiplekser czy stabilizator, jest wynikiem mylnych przekonań na temat ich funkcji. Multiplekser to układ, który umożliwia wybór jednej z wielu linii wejściowych i przesyłanie jej na wyjście. Jego głównym celem jest manipulacja danymi, a nie bezpośrednie porównywanie napięć, co czyni go nieodpowiednim do zadania porównania napięć. Z kolei demultiplekser działa w przeciwny sposób – rozdziela sygnał z jednego źródła na wiele wyjść, co również nie odpowiada na potrzeby porównawcze. Stabilizator natomiast ma za zadanie utrzymanie stałego napięcia na wyjściu, niezależnie od zmian w napięciu wejściowym lub obciążeniu, co również jest inną funkcjonalnością. Te błędne wybory wynikają często z nieporozumień dotyczących podstawowych funkcji tych układów. Na przykład, mylenie roli komparatora z funkcją multipleksera może prowadzić do sytuacji, w której użytkownik szuka rozwiązania dla problemu porównania napięć, używając układu, który nie jest w stanie wykonać tej operacji. Aby uniknąć takich błędów, ważne jest zrozumienie różnic między tymi układami oraz ich zastosowań w praktyce, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 23

Którego koloru nie powinien mieć przewód fazowy w kablu zasilającym, który dostarcza napięcie z sieci energetycznej do sprzętu elektronicznego?

A. Brązowego
B. Niebieskiego
C. Szarego
D. Czarnego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ w standardach oznaczania przewodów elektrycznych w Europie, kolor niebieski jest zarezerwowany dla przewodu neutralnego, a nie dla przewodu fazowego. Przewód fazowy powinien być w kolorze brązowym, czarnym lub szarym. W przypadku instalacji elektrycznych, prawidłowe oznaczenie przewodów jest kluczowe dla zapewnienia bezpieczeństwa i funkcjonalności systemów zasilania. Na przykład, w domowych instalacjach elektrycznych, każdy przewód powinien być właściwie oznaczony, aby uniknąć pomyłek przy podłączaniu urządzeń, co może prowadzić do uszkodzeń sprzętu lub zagrożenia porażeniem prądem. Zgodnie z normą PN-EN 60446, separacja kolorów przewodów elektrycznych jest niezbędna dla identyfikacji ich funkcji. Wiedza na temat oznaczeń kolorów przewodów jest istotna nie tylko dla elektryków, ale także dla każdego, kto zajmuje się instalacją lub naprawą urządzeń elektrycznych.

Pytanie 24

Gdy zachodzi potrzeba połączenia światłowodu z przewodem skrętkowym, powinno się użyć

A. router.
B. konwerter.
C. koncentrator.
D. wzmacniak.
Wydaje mi się, że wybór wzmacniaka, routera lub koncentratora w przypadku łączenia światłowodu ze skrętką pokazuje, że nie do końca rozumiesz, jak te urządzenia działają i do czego służą w sieciach. Wzmacniak ma za zadanie zwiększać moc sygnału, co jest przydatne, gdy sygnał osłabia się na długich odcinkach, ale nie rozwiąże problemu, bo nie przekształca sygnału optycznego na elektryczny. Router z kolei zarządza ruchem w sieci i rozdziela sygnał, ale też nie służy do konwersji sygnałów. Wprowadzenie routera do połączenia światłowodu z skrętką może spowodować błędy w konfiguracji i nieefektywne wykorzystanie sieci. A koncentrator, czyli hub, działa tylko jako dzielnik pasma sieciowego, więc także nie rozwiązuje problemu. Użycie tych urządzeń w tej sytuacji sugeruje, że brakuje Ci wiedzy na temat ich realnych funkcji i roli w sieciach komputerowych. Żeby skutecznie wykorzystać technologię, warto znać standardy i zasady transmisji danych, co w tym przypadku wskazuje na to, że powinno się użyć konwertera.

Pytanie 25

Aby zapobiec uszkodzeniom spowodowanym wyładowaniami elektrostatycznymi, układy CMOS powinny być transportowane oraz przechowywane

A. umieszczone w styropianie
B. w torbach ekranujących ESD
C. w torbach z PCV
D. w skrzynkach drewnianych
Transportowanie i przechowywanie układów CMOS w workach wykonanych z PCV, drewnianych skrzynkach lub osadzonych w styropianie nie zapewnia odpowiedniej ochrony przed wyładowaniami elektrostatycznymi. Worki z PCV, choć mogą być wykorzystywane do innych celów, nie mają właściwości ekranowania ESD, co oznacza, że nie eliminują ryzyka gromadzenia się ładunków elektrycznych. W przypadku drewnianych skrzynek, materiał naturalny nie tylko nie chroni przed ESD, ale może nawet przyczyniać się do powstawania ładunków elektrostatycznych ze względu na swoje właściwości dielektryczne. Styropian, mimo że jest izolantem, nie oferuje odpowiedniego ekranowania, które jest niezbędne do ochrony wrażliwych komponentów elektronicznych, a jego stosowanie może prowadzić do gromadzenia się ładunków, co stanowi zagrożenie dla układów CMOS. Zrozumienie zasad ESD jest kluczowe, ponieważ wiele osób myli pojęcia związane z izolacją i ekranowaniem. Wybór odpowiednich materiałów do transportu i przechowywania komponentów elektronicznych powinien być oparty na wiedzy o ich właściwościach elektrostatycznych oraz zrozumieniu, jak różne materiały wpływają na ryzyko uszkodzeń. Dlatego kluczowe jest stosowanie specjalistycznych rozwiązań, takich jak worki ekranowane ESD, które spełniają branżowe standardy i wymagania, zapewniając bezpieczeństwo i niezawodność komponentów elektronicznych.

Pytanie 26

Korytka kablowe powinny być

A. zaciskane
B. przyspawane
C. przykręcone
D. przyklejone
Odpowiedź 'przykręcić' jest poprawna, ponieważ korytka kablowe do ściany budynku powinny być montowane w sposób zapewniający ich stabilność i trwałość. Przykręcanie korytek do ściany umożliwia ich solidne mocowanie, co jest istotne dla ochrony przewodów elektrycznych przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Do montażu korytek często stosuje się wkręty samowiercące lub wkręty do drewna, w zależności od materiału, z którego wykonana jest ściana. Przykładowo, w przypadku ścian betonowych lub murowanych można użyć kołków rozporowych. Dobrą praktyką jest również wykorzystanie odpowiednich dystansów, które pomogą w utrzymaniu korytka w odpowiedniej odległości od ściany, co sprzyja wentylacji i minimalizuje ryzyko przegrzewania się kabli. Zgodnie z normami, takimi jak PN-IEC 60364, odpowiedni montaż korytek kablowych jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej.

Pytanie 27

Kiedy instalacja systemu monitoringu realizowana jest przy użyciu przewodu współosiowego zakończonego złączami typu F, do podłączenia kamery analogowej należy użyć złącza typu

A. F/IEC męski
B. F/BNC
C. F/IEC żeński
D. F/chinch
Odpowiedź F/BNC jest poprawna, ponieważ złącze BNC (Bayonet Neill-Concelman) jest standardowym złączem stosowanym w kamerach analogowych. Kiedy instalacja monitoringu wykorzystuje przewody współosiowe, zakończone końcówkami typu F, konieczne jest zastosowanie odpowiedniej przejściówki, aby umożliwić podłączenie kamery. Złącza BNC zapewniają solidne połączenie oraz łatwość w instalacji, co jest kluczowe w systemach monitoringu, gdzie niezawodność i jakość sygnału są priorytetem. Dodatkowo, złącza te charakteryzują się niskimi stratami sygnału, co pozwala na przesyłanie obrazów w wysokiej rozdzielczości. Przykładowo, w systemach CCTV, gdzie wykorzystywane są kamery analogowe, złącza BNC są powszechnie stosowane, ponieważ umożliwiają kompatybilność z wieloma modelami kamer. Wspierają one również standardy przesyłu sygnału wideo, co jest istotne w kontekście zapewnienia wysokiej jakości obrazu oraz stabilności połączeń w systemach monitorujących.

Pytanie 28

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Wizualizuje procesy przemysłowe
B. Przekształca sygnał z czujnika
C. Kontroluje pracę siłownika
D. Rejestruje działanie sieci
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 29

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. telewizyjnego naziemnego
B. telewizji kablowej
C. telewizji satelitarnej
D. radiowego naziemnego
Telewizja kablowa, telewizyjna naziemna oraz radiowa naziemna operują na zupełnie innych zasadach dystrybucji sygnału, co czyni je mniej wrażliwymi na warunki atmosferyczne takie jak opady śniegu. W przypadku telewizji kablowej, sygnał transmitowany jest przez kable, co eliminuje wpływ warunków atmosferycznych na jakość obrazu. Użytkownicy telewizji kablowej nie doświadczają zatem tych samych problemów z jakością sygnału, gdyż sygnał jest dostarczany bezpośrednio przez infrastrukturę kablową, która nie jest podatna na zakłócenia atmosferyczne. Podobnie, telewizja naziemna korzysta z fal radiowych, które również są mniej narażone na problemy związane z opadami śniegu, ponieważ sygnały te mogą być odbierane przez anteny zamontowane w pomieszczeniach lub na dachach budynków, co pozwala na lepszą odporność na zakłócenia. Radiowa telewizja naziemna przesyła sygnał w inny sposób, co sprawia, że opady śniegu nie mają tak drastycznego wpływu na jakość odbioru. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują mylenie różnych technologii transmisji oraz ich specyfikacji, a także niedostateczne zrozumienie, w jaki sposób czynniki zewnętrzne wpływają na sygnały radiowe i telewizyjne. W rzeczywistości, dla technologii kablowych i naziemnych, warunki atmosferyczne mają znikomą lub żadną rolę w jakości sygnału, co jest sprzeczne z doświadczeniami użytkowników telewizji satelitarnej.

Pytanie 30

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o wyższej rezystancji i tej samej mocy
B. o niższej rezystancji i tej samej mocy
C. o identycznej rezystancji i wyższej mocy
D. o identycznej rezystancji i niższej mocy
Wybór rezystora o mniejszej rezystancji i tej samej mocy jest nieprawidłowy, ponieważ zmiana rezystancji w obwodzie wprowadza inne parametry do działania układu. Zmniejszenie rezystancji spowoduje wzrost prądu zgodnie z prawem Ohma, co może prowadzić do przeciążenia pozostałych elementów obwodu, a także spalić nowy rezystor, jeśli nie jest on odpowiednio dobrany do wymagań. Wybór rezystora o takiej samej rezystancji, ale mniejszej mocy, również jest błędny, ponieważ rezystor o mniejszej mocy nie będzie w stanie pracować w warunkach, które byłyby akceptowane dla oryginalnego elementu. Może to prowadzić do przegrzania i uszkodzenia rezystora. Wybór rezystora o większej rezystancji i tej samej mocy jest także niewłaściwy, gdyż zwiększenie rezystancji zmieni całkowity prąd w obwodzie, co z kolei wpłynie na działanie pozostałych komponentów. Takie podejście często wynika z niepełnego zrozumienia zasad działania obwodów elektrycznych oraz mechanizmów odpowiedzialnych za prąd i napięcie. Dlatego ważne jest, aby przy wyborze komponentów zawsze kierować się nie tylko ich rezystancją, ale także mocą, aby zapewnić pełną kompatybilność w obwodzie.

Pytanie 31

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. Główny Układ Mikroprocesorowy
B. Główny Urząd Miar
C. metodę wykonania układów cyfrowych
D. technologię realizacji układów scalonych
Główny Urząd Miar (GUM) jest centralnym organem administracji państwowej w Polsce, odpowiedzialnym za metrologię, czyli naukę o pomiarach. Jego zadania obejmują nie tylko legalizację przyrządów pomiarowych, ale również wydawanie wzorców miar oraz certyfikowanie laboratoriów pomiarowych. Dzięki GUM zapewniona jest zgodność pomiarów z obowiązującymi normami i standardami, co jest kluczowe w wielu dziedzinach, takich jak przemysł, medycyna, a także handel. Przykładowo, przed rozpoczęciem działalności gospodarczej w branży spożywczej, przedsiębiorcy muszą upewnić się, że ich urządzenia ważące są legalizowane przez GUM, aby zapewnić rzetelność transakcji. Działania GUM mają na celu nie tylko ochronę interesów konsumentów, ale także wspieranie rozwoju technologii pomiarowej, co przyczynia się do poprawy jakości produktów i usług na rynku. W kontekście międzynarodowym, GUM współpracuje z organizacjami takimi jak Międzynarodowa Organizacja Miar (OIML), co dodatkowo wzmacnia znaczenie metrologii w Polsce.

Pytanie 32

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. linką miedzianą o dużej średnicy
B. skrętką komputerową i symetryzatorem
C. skrętką komputerową z transformatorami pasywnymi
D. kablem antenowym o impedancji 300 Ω
Zastosowanie kabla antenowego o impedancji 300 Ω w systemie dozorowym jest nieodpowiednie, ponieważ przewody te zostały zaprojektowane głównie do aplikacji radiowych i telewizyjnych, gdzie impedancja 300 Ω jest standardem. W systemach dozorowych najczęściej stosuje się przewody koncentryczne z impedancją 75 Ω, co oznacza, że użycie przewodu antenowego w tym kontekście prowadziłoby do znacznych strat sygnału i degradacji jakości obrazu. Alternatywnie, propozycja użycia skrętki komputerowej bez transformatorów pasywnych również jest błędna. Skrętka komputerowa sama w sobie nie jest wystarczająca do przesyłania sygnału wideo bez odpowiedniej konwersji, co może skutkować zakłóceniami i zniekształceniami sygnału. Takie podejście jest rezultatem nieprawidłowego zrozumienia zależności między typami kabli a ich zastosowaniami. Linka miedziana o dużej średnicy również nie jest właściwym rozwiązaniem, ponieważ nie odpowiada standardom przesyłu sygnałów w systemach dozorowych. Właściwe dobieranie materiałów w takich systemach wymaga głębszej wiedzy na temat impedancji, charakterystyk sygnału oraz norm branżowych, a ignorowanie tych aspektów prowadzi do błędnych wniosków i, w konsekwencji, do awarii systemu.

Pytanie 33

Elementy urządzeń elektronicznych przeznaczone do recyklingu nie powinny być

A. składowane w pomieszczeniach bezpośrednio na podłożu
B. oddzielane od obudowy z materiałów sztucznych
C. demontowane ręcznie, jeśli są wykonane z stali lub aluminium
D. demontowane ręcznie, w przypadku gdy zawierają wysoką ilość metali szlachetnych
Ręczne demontowanie elementów urządzeń elektronicznych w przypadku metali szlachetnych oraz oddzielanie ich od obudowy z tworzyw sztucznych mogą wydawać się praktycznymi rozwiązaniami, jednak wymagają one dużej ostrożności oraz odpowiednich umiejętności. Stal i aluminium, będące popularnymi materiałami w elektronice, są zazwyczaj łatwe do demontażu, ale nie powinny być poddawane tej procedurze bez przestrzegania odpowiednich norm. Demontaż elementów zawierających dużą koncentrację metali szlachetnych wymaga szczególnej uwagi ze względu na ich wartość i potencjalne zagrożenia, które mogą wynikać z niewłaściwej obróbki tych materiałów. Ponadto, oddzielanie części z tworzyw sztucznych od innych materiałów jest kluczowe dla procesu recyklingu, ponieważ różne materiały muszą być przetwarzane w odmienny sposób. Jednakże, niewłaściwe podejście do demontażu, takie jak wykonywanie go w nieprzystosowanych warunkach czy bez środków ochrony osobistej, może prowadzić do wypadków oraz nieefektywnego wykorzystania surowców. Kluczowe jest zrozumienie, że wszystkie te czynności muszą być wykonywane zgodnie z regulacjami prawnymi oraz standardami branżowymi, aby zminimalizować ryzyko i stworzyć efektywny proces recyklingu. Dlatego przed podjęciem jakichkolwiek działań związanych z demontażem urządzeń elektronicznych, warto skonsultować się z odpowiednimi specjalistami lub korzystać z usług certyfikowanych firm zajmujących się recyklingiem.

Pytanie 34

Wybierz z podanych parametrów sygnałów, które poziomy sygnałów analogowych są wykorzystywane w systemach automatyki przemysłowej do transmisji danych?

A. 4 A ÷ 20 A
B. 4 mV ÷ 20 mV
C. 4 V ÷ 20 V
D. 4 mA ÷ 20 mA
Wybór poziomów sygnałów innych niż 4 mA ÷ 20 mA wskazuje na niepełne zrozumienie zasad funkcjonowania systemów automatyki przemysłowej. Sygnały 4 mV ÷ 20 mV są zbyt niskie, aby skutecznie przesyłać informacje na znaczące odległości w środowisku przemysłowym, gdzie zakłócenia elektryczne są powszechne. Podobnie, sygnały 4 A ÷ 20 A są rzadko stosowane, co może prowadzić do nieodpowiedniego doboru elementów systemu, a także do trudności w integracji z urządzeniami, które funkcjonują w standardzie 4 mA ÷ 20 mA. Odnośnie poziomów 4 V ÷ 20 V, ten zakres jest także mniej powszechny, a jego użycie może być niepraktyczne w kontekście pomiarów analogowych, gdzie prąd jest bardziej stabilny i odporny na zakłócenia. Domyślnym rozwiązaniem w automatyce przemysłowej jest sygnał prądowy, ponieważ prąd jest mniej podatny na wpływ oporu kabli na różne długości, co sprawia, że pomiary są bardziej wiarygodne. Użycie niewłaściwego zakresu sygnałowego może prowadzić do błędnych odczytów, co z kolei może rzutować na efektywność i bezpieczeństwo procesów przemysłowych. Zrozumienie standardów sygnałów analogowych jest kluczowe dla skutecznej pracy w dziedzinie automatyki i kontroli procesów.

Pytanie 35

Jakie będzie powiązanie prądu spoczynkowego z temperaturą w tranzystorowej końcówce mocy wzmacniacza m.cz., gdy układ kompensacji temperaturowej nie funkcjonuje?

A. Prąd spoczynkowy wzrośnie w miarę zwiększania się temperatury
B. Prąd spoczynkowy zmaleje w miarę wzrostu temperatury
C. Prąd spoczynkowy może wzrosnąć lub zmaleć w zależności od użytych tranzystorów
D. Brak powiązania prądu spoczynkowego z temperaturą
Wzrost prądu spoczynkowego w tranzystorowej końcówce mocy wzmacniacza m.cz. wraz ze wzrostem temperatury jest zjawiskiem typowym i wynika z charakterystyki pracy tranzystorów bipolarno-junction (BJT). W miarę wzrostu temperatury, energia termiczna zwiększa ruchliwość nośników ładunku, co prowadzi do zwiększenia prądu bazy, a tym samym prądu kolektora. W praktyce oznacza to, że bez układu kompensacji temperaturowej, prąd spoczynkowy może wzrosnąć do wartości, które mogą uszkodzić tranzystor, a w skrajnych przypadkach prowadzić do zjawiska termicznej awarii. W celu zapobiegania tym skutkom, projektanci wzmacniaczy często stosują układy kompensacji temperaturowej, które automatycznie dostosowują prąd spoczynkowy do zmieniających się warunków. Wiedza ta jest niezbędna przy projektowaniu i eksploatacji końcówek mocy, gdzie stabilność parametrów pracy wpływa na jakość sygnału oraz trwałość komponentów. Zrozumienie tej zależności jest kluczowe dla inżynierów zajmujących się elektroniką i audio.

Pytanie 36

Jaką funkcję pełni PTY w radiu?

A. Wybieranie i przeszukiwanie typu programu
B. Odbiór wiadomości tekstowych
C. Odbiór informacji drogowych
D. Automatyczną "regulację głośności"
Funkcja PTY, czyli Program Type, jest kluczowym elementem standardu RDS (Radio Data System), który pozwala na identyfikację i klasyfikację programów radiowych. Główna rola PTY polega na umożliwieniu słuchaczom łatwego wyszukiwania stacji radiowych na podstawie ich rodzaju programowego, co znacząco ułatwia odbiór audycji odpowiadających ich zainteresowaniom. Na przykład, użytkownik może ustawić odbiornik tak, aby automatycznie wyszukiwał stacje nadające muzykę pop lub wiadomości. Dzięki temu, w sytuacji, gdy słuchacz chce zmienić stację, nie musi przeszukiwać wszystkich dostępnych sygnałów ręcznie. PTY jest stosowane w praktyce przez wiele stacji radiowych, które nadają programy o różnych typach. Wspiera to również standardy jakości dźwięku i dostępu do informacji, które są obowiązujące w branży radiowej, a także zwiększa komfort użytkowania odbiorników. Użytkownicy powinni zwrócić uwagę na dostępność tej funkcji w swoich odbiornikach radiowych, ponieważ może to być istotny atut przy wyborze sprzętu.

Pytanie 37

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. zwrotnicę
B. spliter
C. symetryzator
D. switch
Jak chodzi o rozdzielenie sygnału z anteny, to takie odpowiedzi jak symetryzator, switch czy zwrotnica to nie to samo co spliter. Symetryzator działa głównie w systemach przesyłowych i przekształca sygnał niesymetryczny na symetryczny. Pomaga, ale nie rozdziela sygnału z anteny. Switch z kolei przełącza sygnały między różnymi źródłami, ale nie dzieli ich na kilka odbiorników. W telewizji używamy go, gdy chcemy wybrać konkretne źródło sygnału, ale nie do dzielenia. Zwrotnica to też inna bajka – ona łączy lub dzieli sygnały, ale głównie w systemach kablowych. Wiele osób myli te urządzenia ze splitterem, co prowadzi do błędnych decyzji przy składaniu systemu telewizyjnego. Warto po prostu ogarnąć, jak każde z tych urządzeń działa, żeby dobrze skonfigurować swój telewizyjny setup.

Pytanie 38

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
B. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
C. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
D. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
Konwerter satelitarny typu Twin jest specjalistycznym urządzeniem stosowanym w systemach telekomunikacyjnych, które umożliwia jednoczesne odbieranie sygnału z jednej anteny satelitarnej i przesyłanie go do dwóch odbiorników. To rozwiązanie jest szczególnie przydatne w domach lub biurach, gdzie więcej niż jeden odbiornik telewizyjny jest używany. Dzięki zastosowaniu kabli koncentrycznych, sygnał jest przekazywany w sposób efektywny i stabilny, co zapewnia wysoką jakość obrazu i dźwięku. W praktyce oznacza to, że użytkownicy mogą korzystać z różnych kanałów telewizyjnych na dwóch odbiornikach jednocześnie, co zwiększa komfort oglądania. Zastosowanie konwertera Twin jest zgodne z obowiązującymi standardami branżowymi, co zapewnia jego niezawodność i efektywność. Ponadto, takie rozwiązanie eliminuje potrzebę instalacji dodatkowej anteny, co jest korzystne z punktu widzenia kosztów oraz estetyki. W nowoczesnych instalacjach satelitarnych konwertery Twin stanowią standard, a ich wdrożenie znacząco podnosi funkcjonalność systemów odbiorczych.

Pytanie 39

W zasilaczu buforowym, który zasila system alarmowy, konieczne jest pomiar napięć w trzech lokalizacjach:
1) na wejściu sieciowym transformatora,
2) na wyjściu transformatora 18 V,
3) na terminalach akumulatora 12 V.

Jakie zakresy pomiarowe w multimetrze powinny być ustawione?

A. 1) 750 V AC, 2) 20 V AC, 3) 20 V AC
B. 1) 200 V AC, 2) 200 V AC, 3) 20 V DC
C. 1) 750 V DC, 2) 200 V AC, 3) 20 V DC
D. 1) 750 V AC, 2) 20 V AC, 3) 20 V DC
Wybór odpowiednich zakresów pomiarowych w mierniku uniwersalnym jest kluczowy dla uzyskania dokładnych pomiarów oraz zapewnienia bezpieczeństwa podczas pracy z instalacjami elektrycznymi. W przypadku zasilacza buforowego zasilającego instalację alarmową, istotne jest, aby na wejściu sieciowym transformatora ustawić zakres 750 V AC, co odpowiada typowemu napięciu sieci energetycznej. Pomiar na wyjściu transformatora, gdzie napięcie wynosi nominalnie 18 V, powinien być przeprowadzony w zakresie 20 V AC, co jest zgodne z parametrami transformatora niskonapięciowego. W przypadku pomiaru napięcia na zaciskach akumulatora, które pracuje w systemie 12 V, należy ustawić zakres 20 V DC, co jest standardowym sposobem pomiaru napięć stałych w akumulatorach. Użycie właściwych zakresów zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo użytkownika oraz sprzętu, zgodnie z zasadami BHP oraz dobrą praktyką inżynierską.

Pytanie 40

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Chwilową
B. Średnią
C. Skuteczną
D. Maksymalną
Wybierając inne wartości, można wprowadzić się w błąd co do natury pomiarów napięcia przemiennego. W przypadku maksymalnej wartości napięcia, chodzi o wartość szczytową, która jest największa osiągana w cyklu napięcia sinusoidalnego, ale nie obrazuje rzeczywistego efektu, jaki napięcie wywiera na obciążenie. Chwilowa wartość napięcia to natomiast wartość zmieniająca się w czasie, co również nie oddaje rzeczywistego wpływu na wydajność energetyczną obwodu. Wartość średnia napięcia sinusoidalnego, która wynosi zero w przypadku pełnego cyklu, niewłaściwie przedstawia energię dostarczaną do obciążenia. W praktyce, błędne zrozumienie tych wartości może prowadzić do nieprawidłowego projektowania obwodów, co może skutkować nieefektywnym wykorzystaniem energii i problemami z bezpieczeństwem. Przykładem może być projektowanie systemów zasilania, gdzie użycie wartości szczytowej zamiast skutecznej może prowadzić do niedoszacowania wymagań dotyczących izolacji, a tym samym stwarzać ryzyko awarii. Dlatego tak istotne jest, aby w pomiarach napięcia przemiennego opierać się na wartościach skutecznych, aby uzyskać wiarygodne i użyteczne dane do analizy i projektowania systemów elektrycznych.