Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 08:24
  • Data zakończenia: 10 czerwca 2025 08:43

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z wskaźników nie jest używany w alkacymetrii?

A. Oranż metylowy
B. Skrobia
C. Błękit tymolowy
D. Fenoloftaleina
Oranż metylowy, fenoloftaleina oraz błękit tymolowy to wskaźniki, które odgrywają kluczową rolę w alkacymetrii, a ich zastosowanie jest oparte na ich zdolności do zmiany koloru w odpowiedzi na zmiany pH roztworu. Oranż metylowy, zmieniający kolor przy pH 3,1 - 4,4, jest szczególnie użyteczny w reakcjach, gdzie dominują kwasy. Fenoloftaleina, zmieniająca barwę z bezbarwnej na różową w zakresie pH 8,2 - 10,0, znajduje zastosowanie w titracji zasadowej, gdzie istotne jest ustalenie momentu, w którym zasadowość roztworu jest wystarczająca do neutralizacji kwasu. Błękit tymolowy, zmieniający kolor w pH 6,0 - 7,6, jest często wykorzystywany w analizach, gdzie pH roztworu zbliża się do neutralności. W związku z tym, mylenie skrobi z tymi wskaźnikami może wynikać z nieporozumienia dotyczącego ich funkcji. Skrobia, będąca naturalnym polisacharydem, nie działa jako wskaźnik pH, lecz jest używana jako reagent do wykrywania jodu, co pokazuje różnice w ich zastosowaniach. Zrozumienie różnic w zastosowaniach tych substancji jest kluczowe, aby uniknąć błędnych wniosków w praktyce laboratoryjnej.

Pytanie 2

Na podstawie danych w tabeli określ, jaką masę próbki należy pobrać, jeżeli wielkość ziarna wynosi 1·10-5 m.

Wielkość ziaren lub kawałków [mm]Poniżej 11-1011-50Ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 200 g
B. 2500 g
C. 100 g
D. 1000 g
Wybór masy próbki wynoszącej 100 g jest zgodny z normami obowiązującymi dla wielkości ziaren poniżej 1 mm. W praktyce, przy analizach materiałów sypkich, takich jak proszki czy granulaty, istotne jest, aby masa próbki była dostosowana do rozmiaru cząstek, co wpływa na dokładność wyników. W przypadku cząstek o wielkości 1·10^-5 m, co odpowiada 0,01 mm, ich właściwości fizyczne i chemiczne są różne od większych ziaren, co wymaga odpowiedniego podejścia do pobierania próbek. Dla takich cząstek, minimalna masa próbki określona w normach branżowych wynosi 100 g, co zapewnia reprezentatywność oraz wystarczającą ilość materiału do przeprowadzenia analizy. Przykładowo, w laboratoriach zajmujących się analizą materiałów budowlanych lub farmaceutycznych, przestrzeganie takich wytycznych jest kluczowe dla uzyskania wiarygodnych wyników badań.

Pytanie 3

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
B. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
C. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
D. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
Pozostawianie otwartych pojemników z odczynnikami w laboratorium to poważne naruszenie zasad BHP. Może prowadzić do ulatniania się szkodliwych oparów, zwiększa ryzyko przypadkowego rozlania lub skażenia, a także utrudnia późniejszą identyfikację substancji – zwłaszcza jeśli opakowania się przestawią lub pomylą. Wylewanie pozostałości chemikaliów do zlewu jest nie tylko nieodpowiedzialne, ale często wręcz nielegalne. Związki chemiczne mogą zanieczyszczać środowisko wodne, niszczyć instalacje kanalizacyjne i stwarzać zagrożenie dla osób obsługujących systemy kanalizacyjne. To typowy błąd osób początkujących, które nie zdają sobie sprawy z długofalowych skutków takich działań. Zostawianie nieużytych odczynników na stole to kolejna niebezpieczna praktyka – grozi przypadkowym spożyciem, kontaktem skórnym lub nawet niekontrolowaną reakcją chemiczną, szczególnie gdy na stanowisku pojawi się inny pracownik. Z mojego doświadczenia wynika, że takie postępowanie wynika zwykle z pośpiechu lub niewiedzy, ale niestety może prowadzić do bardzo poważnych konsekwencji zdrowotnych i prawnych. W laboratorium wszystko musi być na swoim miejscu, a odpowiedzialność za utrzymanie porządku spoczywa na każdym użytkowniku. To nie są zasady „dla zasady” – one realnie chronią ludzi i środowisko. Dlatego zawsze trzeba pamiętać o właściwym zamykaniu, segregacji odpadów i czystości, nawet jeśli wydaje się to czasochłonne czy niepotrzebne.

Pytanie 4

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 0,05 g
B. 7,50 g
C. 5,00 g
D. 0,75 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 5

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 83,5%
B. 93,4%
C. 88,8%
D. 77,7%
Niepoprawne odpowiedzi mogą wynikać z nieprawidłowych założeń lub błędnych obliczeń. Wydajność reakcji nitrowania jest ściśle związana z ilością reagenta i teoretycznie uzyskanego produktu. Wiele osób może pomylić się w obliczeniach masy teoretycznej, co prowadzi do zawyżenia lub zaniżenia wartości wydajności. Na przykład, nie uwzględnienie molarności reakcji lub błędne przeliczenie mas molowych może prowadzić do nieprawidłowych wyników. Często również występuje błąd polegający na pomijaniu czynnika, jakim jest strata masy podczas reakcji, co wpływa na ostateczną wydajność. Należy pamiętać, że każda reakcja chemiczna jest obarczona pewnym stopniem nieefektywności, nie tylko związanym z odczynnikiem, ale również z warunkami reakcyjnymi jak temperatura, ciśnienie czy obecność katlizu. W praktyce przemysłowej istotne jest monitorowanie wszystkich tych parametrów, aby móc poprawić wydajność reakcji, a także minimalizować straty surowców. Zrozumienie tych aspektów jest kluczowe dla skutecznego zarządzania procesami chemicznymi i osiągania wysokiej wydajności produkcji.

Pytanie 6

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,001 mol/dm3
B. 1 mol/dm3
C. 0,1 mol/dm3
D. 0,01 mol/dm3
Wybór stężenia 0,01 mol/dm³ to efekt błędnego spojrzenia na obliczenia dotyczące ilości moli i objętości roztworu. Żeby dobrze określić stężenie, najpierw trzeba znać masę molową substancji i przeprowadzić odpowiednie obliczenia. Przy 4 g NaOH, wydaje mi się, że pomyliłeś się, myśląc, że stężenie wynosi 0,01 mol/dm³. To wynika z nieprzypadkowego dzielenia masy przez masę molową. Liczba moli to masa substancji podzielona przez jej masę molową, czyli 4 g / 40 g/mol to 0,1 mol. Jeszcze trzeba uważać z objętościami, bo jeżeli pomylisz decymetry sześcienne z mililitrami, to mogą wyjść naprawdę duże błędy. Stężenie 0,001 mol/dm³ też wskazuje na nieprawidłowe rozumienie związku między masą a objętością. Może to być przez złą konwersję jednostek albo popełnione błędy w obliczeniach, co w pracy z roztworami chemicznymi jest kluczowe. Dobrze jest przed obliczeniami upewnić się, że wszystkie jednostki są zrozumiane i poprawnie zastosowane. Dlatego w laboratoriach precyzja w obliczeniach i umiejętność dobrej interpretacji wyników to podstawa, żeby wyjść z wiarygodnymi i powtarzalnymi rezultatami.

Pytanie 7

Laboratoryjna apteczka powinna zawierać m.in.

A. adrenalinę, bandaż, wodę utlenioną
B. alkohol etylowy, perhydrol, płyn Lugola
C. bandaż, watę higroskopijną, gips
D. gazę opatrunkową, wodę utlenioną, plaster
Wybór adrenalinę, bandaż i wodę utlenioną nie jest w pełni odpowiedni do apteczki laboratoryjnej. Adrenalina jest lekiem stosowanym w sytuacjach anafilaktycznych i nie jest powszechnie konieczna w standardowej apteczce, chyba że laboratorium prowadzi prace związane z substancjami mogącymi wywołać reakcje alergiczne. Co więcej, bandaż, choć również może być użyty do zabezpieczania ran, nie jest kluczowym elementem w kontekście pracy laboratoryjnej, gdzie zazwyczaj stosuje się gazy i plastry jako bardziej odpowiednie rozwiązania. Wybór alkoholu etylowego, perhydrolu i płynu Lugola jest również problematyczny, ponieważ żaden z tych środków nie jest odpowiedni do standardowych zastosowań w pierwszej pomocy. Alkohol etylowy jest używany do dezynfekcji, ale nie powinien być stosowany do ran, które mogą krwawić, ponieważ może to wywołać podrażnienie. Perhydrol, mimo że jest silnym środkiem dezynfekującym, również nie jest przeznaczony do bezpośredniego stosowania na rany. Płyn Lugola, stosowany przede wszystkim do diagnostyki, nie ma zastosowania w kontekście pierwszej pomocy. Zatem, wybór tych elementów do apteczki laboratoryjnej nie spełnia standardów bezpieczeństwa i skuteczności w udzielaniu pomocy, co jest kluczowe w sytuacjach awaryjnych.

Pytanie 8

Roztwory o ściśle określonym stężeniu, używane w analizach miareczkowych, nazywamy

A. roztworami koloidowymi
B. roztworami niejednorodnymi
C. roztworami nasyconymi
D. roztworami mianowanymi
Roztwory mianowane, znane również jako roztwory o dokładnie znanym stężeniu, są kluczowym elementem w analizie miareczkowej, ponieważ umożliwiają precyzyjne pomiary, co jest niezbędne do określenia stężenia substancji w badanym roztworze. W praktyce laboratoryjnej roztwory mianowane są przygotowywane z wysoką starannością, często z wykorzystaniem substancji o czystości analitycznej. Na przykład, roztwór kwasu solnego o stężeniu 0,1 mol/l może być użyty do miareczkowania zasadowych roztworów, co pozwala na dokładne określenie ich stężenia. Stosowanie roztworów mianowanych jest zgodne z dobrymi praktykami laboratoryjnymi, które wymagają regularnego sprawdzania i kalibracji sprzętu. Warto również zauważyć, że roztwory te muszą być przechowywane w odpowiednich warunkach, aby uniknąć zmian stężenia spowodowanych parowaniem czy reakcjami chemicznymi. To podkreśla znaczenie precyzji i staranności w przygotowywaniu roztworów mianowanych, które są fundamentem wielu analiz chemicznych.

Pytanie 9

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. szarym
B. zielonym
C. niebieskim
D. żółtym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 10

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
B. 18,02 mol/dm3
C. 0,18 mol/dm3
D. 18,02 mol/cm3
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach oraz niepoprawnych założeń dotyczących stężenia molowego. Odpowiedzi 0,18 mol/dm3 i 1,80 mol/dm3 mogą sugerować, że obliczenia nie uwzględniają odpowiednio masy molowej kwasu siarkowego lub gęstości roztworu. W przypadku 0,18 mol/dm3 można zauważyć, że odpowiada ona zbyt niskiej wartości, co może sugerować, że założono zbyt małą masę kwasu w roztworze. Z kolei 1,80 mol/dm3 może być wynikiem nieprawidłowych obliczeń, w których pominięto dokładne określenie objętości roztworu. Odpowiedź 18,02 mol/dm3 jest znacznie wyższa, co wskazuje na to, że w obliczeniach użyto właściwych wartości masy molowej i stężenia. Typowym błędem myślowym jest mylenie jednostek objętości i masy oraz pomijanie gęstości roztworu, co prowadzi do niepoprawnych wyników. W kontekście chemii, niezwykle ważne jest zrozumienie, że stężenie molowe to stosunek moli substancji do objętości roztworu, a nie tylko masa kwasu w danym roztworze. Dlatego kluczowe jest stosowanie właściwych jednostek oraz umiejętność ich konwersji, co jest podstawą w obliczeniach chemicznych.

Pytanie 11

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. mineralizacja sucha
B. roztworzenie
C. mineralizacja mokra
D. ekstrakcja do fazy stałej
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.

Pytanie 12

Do narzędzi pomiarowych zalicza się

A. kolbę stożkową
B. zlewkę
C. naczynko wagowe
D. cylinder
Kolba stożkowa i zlewka to narzędzia, które wiele osób zna z laboratoriach, ale nie są one sprzętem pomiarowym w takim sensie, jak cylinder miarowy. Kolba stożkowa jest super do mieszania czy podgrzewania, ale przez brak wyraźnych podziałek nie jest najlepsza do dokładnych pomiarów. Tak naprawdę to zlewka, mimo że czasem służy do szybkich pomiarów, to też nie daje pewności co do objętości. Ma szersze otwory i mniej precyzyjne podziałki, co może wprowadzać w błąd, szczególnie gdy liczysz na to, że musisz dokładnie odmierzyć jakieś substancje. Naczynko wagowe to następny przykład narzędzia, które nie jest do mierzenia cieczy. Warto dobrze rozumieć różnice między tymi narzędziami, bo to może uratować nas przed dużymi błędami w eksperymentach.

Pytanie 13

W trakcie określania miana roztworu NaOH, do zmiareczkowania 25,0 cm3 tego roztworu, użyto 30,0 cm3 roztworu HCl o stężeniu 0,1000 mol/dm3. Jakie miało miano zasady?

A. 0,2000 mol/dm3
B. 0,1000 mol/dm3
C. 0,1500 mol/dm3
D. 0,1200 mol/dm3
Wiele osób może nie dostrzegać, że poprawne obliczenia miana roztworu NaOH opierają się na znajomości stoichiometrii reakcji chemicznych oraz zrozumieniu, jak stosunki molowe wpływają na obliczenia. Wybrane odpowiedzi, takie jak 0,1000 mol/dm³, mogą sugerować błędne założenie, że miano NaOH odpowiada stężeniu HCl, co jest nieprawidłowe. Odpowiedzi wskazujące na miano 0,1500 mol/dm³ lub 0,2000 mol/dm³ mogą wynikać z błędnego przeliczenia objętości reagenta lub pomyłki w stosunku molowym. W praktyce, takie błędy są częste, gdy osoby nie biorą pod uwagę, że w reakcji neutralizacji między NaOH a HCl dochodzi do wymiany moli zgodnie z równaniem 1:1. Dlatego kluczowe jest, aby w obliczeniach uwzględniać zarówno objętości, jak i właściwe stężenia reagentów. Typowymi pułapkami są również błędy w jednostkach, gdzie pomijanie konwersji cm³ na dm³ prowadzi do nieprawidłowych wyników. Niewłaściwe zrozumienie reakcji chemicznych oraz ich stoichiometrii może skutkować fałszywymi wynikami, co w kontekście analitycznym jest niedopuszczalne. Rekomendacje branżowe sugerują regularne sprawdzanie obliczeń oraz stosowanie wzorców referencyjnych, aby zapewnić prawidłowość wyników, co jest niezwykle istotne w laboratoriach badawczych i przemysłowych.

Pytanie 14

Jakie środki ochronne należy zastosować podczas sporządzania 1M roztworu zasady sodowej ze stężonego roztworu NaOH, na opakowaniu którego widnieje oznaczenie S/36/37/39?

Numer zwrotu SWarunki bezpiecznego stosowania
S36Używać odpowiedniej odzieży ochronnej
S37Używać odpowiednich rękawic
S38W przypadku niewystarczającej wentylacji używać sprzętu do oddychania
S39Używać okularów lub maski ochronnej

A. Odzież ochronną, rękawice i okulary ochronne.
B. Gumowe rękawice i maskę ochronną.
C. Odzież ochronną i maskę tlenową.
D. Fartuch ochronny, rękawice i maskę tlenową.
Odpowiedź 'Odzież ochronną, rękawice i okulary ochronne.' jest poprawna, ponieważ zgodnie z oznaczeniami S/36/37/39 na opakowaniu NaOH, wymagane są wymienione środki ochrony osobistej. Oznaczenie S36 wskazuje na obowiązek noszenia odzieży ochronnej, co ma na celu minimalizację kontaktu skóry z substancją chemiczną, która może być silnie żrąca. S37 sugeruje stosowanie rękawic ochronnych, które chronią dłonie przed skutkami kontaktu z niebezpiecznymi substancjami, a S39 odnosi się do konieczności używania okularów ochronnych lub maski, aby zapobiec dostaniu się substancji do oczu. W praktyce, stosowanie tych środków ochrony jest kluczowe podczas pracy z chemikaliami, aby zminimalizować ryzyko urazów i zapewnić bezpieczeństwo w laboratorium. Przykładowo, w laboratoriach chemicznych zaleca się także regularne szkolenia z zakresu BHP, które podkreślają znaczenie odpowiednich środków ochrony osobistej.

Pytanie 15

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. destylacja
B. saturacja
C. dekantacja
D. ekstrakcja
Destylacja to proces separacji składników mieszaniny na podstawie różnic w ich temperaturach wrzenia. W przeciwieństwie do ekstrakcji, destylacja nie polega na rozpuszczaniu składników w rozpuszczalniku, lecz na ich fizycznym oddzieleniu za pomocą parowania i skraplania. To prowadzi do mylenia tych dwóch procesów, ponieważ oba służą do uzyskiwania czystszych substancji, jednak mają zupełnie różne mechanizmy działania. Saturacja oznacza osiągnięcie stanu, w którym rozpuszczalnik nie może już rozpuścić więcej substancji, co jest niewłaściwym terminem w kontekście wyodrębniania składników. Dekantacja to proces oddzielania cieczy od osadu poprzez powolne wylewanie cieczy, co również różni się od procesu ekstrakcji, ponieważ nie polega na rozpuszczaniu substancji. W praktyce, błędne interpretacje tych procesów mogą prowadzić do pomyłek w doborze metod separacji, co z kolei może wpływać na efektywność produkcji, jakość końcowego produktu oraz bezpieczeństwo procesów chemicznych. Aby uniknąć tych błędów, ważne jest zrozumienie zasad rządzących każdym z tych procesów oraz ich zastosowań w różnych branżach, co jest kluczowe w praktycznej chemii i inżynierii chemicznej.

Pytanie 16

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 2500 g
B. 100 g
C. 1000 g
D. 200 g
Wybór masy próbki innej niż 1000 g może prowadzić do znacznych błędów w analizie sitowej. Odpowiedzi takie jak 2500 g, 200 g czy 100 g są nietrafione, a ich wybór może wynikać z kilku powszechnych nieporozumień dotyczących tego, jak przeprowadza się analizy prób. W przypadku 2500 g, chociaż jest to masa większa niż wymagana, może prowadzić do nieefektywności w badaniach, a także do niezgodności z wymaganiami dotyczącymi minimalnych i maksymalnych mas próbki. Odpowiedź 200 g i 100 g są zdecydowanie zbyt małe, co skutkuje tym, że próbka nie oddaje rzeczywistego obrazu badanej frakcji. Zbyt mała próbka nie jest w stanie uchwycić wszystkich właściwości materiału, co prowadzi do niewłaściwych wniosków o jego charakterystyce, takich jak zróżnicowanie wielkości ziaren czy ich rozkład. W konsekwencji, to może negatywnie wpłynąć na decyzje związane z wykorzystaniem danego materiału, na przykład w budownictwie czy przemyśle, gdzie właściwości fizyczne i mechaniczne surowców mają kluczowe znaczenie. Analiza sitowa wymaga ścisłego przestrzegania norm oraz dobrych praktyk, które obejmują odpowiednie ustalenie masy próbki, co jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 17

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
B. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
C. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
D. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.

Pytanie 18

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 100g
B. 250g
C. 150g
D. 200g
W odpowiedziach, które nie są prawidłowe, można dostrzec kilka powszechnych błędów myślowych. Jednym z typowych błędów jest niewłaściwe zrozumienie proporcji reagentów w reakcji chemicznej. Na przykład, wybór 100 g, 150 g lub 250 g jako masy wapienia może wynikać z błędnego założenia dotyczącego ilości wytworzonego dwutlenku węgla lub nieprawidłowego przeliczenia objętości gazu na moles. Warto pamiętać, że każda reakcja chemiczna ma swoje specyficzne współczynniki stechiometryczne, które powinny być dokładnie przestrzegane. Drugim problemem może być nieuwzględnienie, że w warunkach normalnych 1 mol gazu zajmuje 22,4 dm3, co jest kluczowym elementem w obliczeniach ilości gazu. Wiele osób pomija ten krok lub używa przybliżenia, co prowadzi do niepoprawnych wyników. Wreszcie, wybór 250 g może wynikać z mylnego założenia, że masa węglanu wapnia jest znacznie wyższa, niż ma to miejsce w rzeczywistości. Ważne jest, aby pamiętać, że precyzyjne obliczenia w chemii są kluczowe dla uzyskania właściwych wyników, a każdy błąd w tych obliczeniach może prowadzić do poważnych konsekwencji w praktyce przemysłowej i badawczej. Dlatego należy kłaść duży nacisk na dokładność i zrozumienie chemicznych zasad rządzących przeprowadzanymi reakcjami.

Pytanie 19

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z poparzeniem
B. z wybuchem
C. z pożarem
D. z lotnością
Wybór odpowiedzi związanej z lotnością, poparzeniem czy wybuchem nie uwzględnia kluczowego zagrożenia, jakim jest pożar, które jest szczególnie istotne w kontekście wielu reagentów chemicznych. Lotność substancji chemicznych, chociaż ważna, odnosi się głównie do ich zdolności do przechodzenia w stan gazowy. Substancje lotne mogą tworzyć łatwopalne mieszaniny z powietrzem, lecz to nie zawsze prowadzi do wybuchu. Z kolei poparzenia chemiczne są rzeczywiście zagrożeniem, jednak nie są one bezpośrednio związane z pożarem, a bardziej z reakcjami chemicznymi, które mogą wystąpić w kontakcie z reagentem. Odpowiedź związana z wybuchem odnosi się do specyficznych warunków, które są wymagane, by doszło do takiego zdarzenia, jak np. obecność silnie reaktywnych substancji czy niewłaściwe warunki przechowywania. Typowym błędem myślowym jest mylenie tych zagrożeń lub niewłaściwe ocenianie ich prawdopodobieństwa. Kluczowe jest zrozumienie, że wiele substancji chemicznych, które mogą wydawać się niegroźne, w rzeczywistości mają wysoką tendencję do zapłonu i muszą być przechowywane oraz używane zgodnie z obowiązującymi normami bezpieczeństwa, jak na przykład NFPA (National Fire Protection Association), które dostarczają wytycznych dotyczących ochrony przed pożarami w laboratoriach.

Pytanie 20

Jakim narzędziem dokonuje się poboru próbki wody?

A. odbieralnika.
B. pływaka.
C. czerpaka.
D. przelewki.
Pływak, jako narzędzie do pomiaru poziomu cieczy, nie jest odpowiedni do pobierania próbek wody. Jego główną funkcją jest monitorowanie poziomu wody, co może prowadzić do błędnych wniosków, jeśli użytkownik pomyli jego zastosowanie z pobieraniem prób. Przelewka to naczynie laboratoryjne, które służy do transportu i przechowywania cieczy, ale nie jest przeznaczone do pobierania próbek z określonego miejsca, co czyni ją nieodpowiednią w kontekście analizy wody. Odbieralnik również nie jest urządzeniem, które ma zastosowanie w pobieraniu próbek; jest to zazwyczaj element stosowany w systemach hydraulicznych lub automatyce, a jego rola ogranicza się do odbioru cieczy, a nie ich pobierania. W praktyce pomylenie tych urządzeń może prowadzić do zafałszowania wyników analiz, co jest nie do przyjęcia w kontekście standardów jakości. Dlatego ważne jest, aby zrozumieć specyfikę każdego narzędzia i jego właściwe zastosowanie w procesach związanych z badaniem wody, aby uniknąć błędnych założeń oraz zapewnić rzetelność wyników badań.

Pytanie 21

Aby przygotować 250 cm3 roztworu wodorotlenku potasu o stężeniu 0,25 mola, potrzebne będzie

A. 35,0 g KOH
B. 3,5 g KOH
C. 0,35 g KOH
D. 14,0 g KOH (K — 39 g/mol, O — 16 g/mol, H — 1 g/mol)
Aby przygotować 0,25-molowy roztwór KOH o objętości 250 cm³, trzeba najpierw policzyć, ile tej substancji potrzebujemy. Wodorotlenek potasu ma masę molową 56 g/mol (liczymy K — 39 g/mol, O — 16 g/mol, H — 1 g/mol). Używając równania C = n/V, gdzie C to stężenie molowe, n to liczba moli, a V to objętość w litrach, możemy ustalić, ile moli potrzebujemy: n = C * V = 0,25 mol/dm³ * 0,250 dm³ = 0,0625 mol. Następnie, żeby obliczyć masę KOH, stosujemy wzór: m = n * M, czyli m = 0,0625 mol * 56 g/mol = 3,5 g. Te obliczenia są naprawdę istotne w chemii analitycznej, bo dokładne przygotowanie roztworów jest kluczowe, żeby wyniki były wiarygodne. Z własnego doświadczenia mogę powiedzieć, że umiejętność liczenia molowości i mas molowych jest podstawą w chemicznych reakcjach i analizach, co ma ogromne znaczenie w laboratorium.

Pytanie 22

Aby otrzymać 200 g roztworu siarczanu(VI) sodu o stężeniu 12%, należy wykorzystać

(Na – 23 g/mol; S – 32 g/mol; H – 1 g/mol; O – 16 g/mol)

A. 68,5 g Na2SO4·10H2O i 131,5 g H2O
B. 56,6 g Na2SO4·10H2O i 143,4 g H2O
C. 22,4 g Na2SO4·10H2O i 177,6 g H2O
D. 54,4 g Na2SO4·10H2O i 145,6 g H2O
Wiele osób ma problem z takimi obliczeniami, co może prowadzić do błędnych odpowiedzi. Często zdarza się, że mylą się w rozumieniu, że 12% to nie masa siarczanu(VI) sodu, tylko masa całego roztworu. Niektóre odpowiedzi, które podają inne masy Na2SO4·10H2O, mogą wynikać z nieprawidłowych wyliczeń lub błędnych założeń co do stężeń. Ważne, żeby pamiętać, że masa molowa Na2SO4·10H2O jest 322 g/mol – to bardzo ważne w tych kalkulacjach. Wiesz, czasem mały błąd przy liczeniu może zrujnować wyniki, więc warto być uważnym i nie spieszyć się. Z mojego doświadczenia, to proste rzeczy, a jednak łatwo je przeoczyć. Dlatego zrozumienie jak przygotować roztwór i umiejętność przeliczania mas molowych to klucz do sukcesu w naszej pracy laboratoryjnej.

Pytanie 23

Gdzie należy przechowywać cyjanek potasu KCN?

A. w szczelnie zamkniętym eksykatorze
B. w pojemniku, z dala od źródeł ciepła
C. w stalowej szafie, zamkniętej na klucz
D. w warunkach chłodniczych
Przechowywanie cyjanku potasu w szczelnym eksykatorze, w warunkach chłodniczych lub w pojemniku z dala od źródeł ciepła jest niewłaściwym podejściem, które nie uwzględnia kluczowych aspektów bezpieczeństwa. Eksykatory są zazwyczaj używane do przechowywania substancji higroskopijnych, a nie toksycznych, jak KCN. Umieszczanie go w eksykatorze może prowadzić do trudności w dostępie i kontroli nad substancją, co zwiększa ryzyko przypadkowego uwolnienia. Przechowywanie w warunkach chłodniczych może wydawać się racjonalne z perspektywy obniżenia reaktywności, jednak nie eliminuje ryzyka kontaktu z osobami nieuprawnionymi. Poza tym, substancje chemiczne powinny być przechowywane w odpowiednich warunkach, które są zgodne z zależnościami prawnymi i normami, jednak nie w warunkach, które mogą zmylić personel co do poziomu zagrożenia. Ostatnia koncepcja przechowywania KCN w pojemniku z dala od źródeł ciepła nie uwzględnia faktu, że nie jest to wystarczające zabezpieczenie. Każda substancja chemiczna wymaga odpowiedniego przechowywania, które zapewni nie tylko ochronę przed wysoką temperaturą, ale również przed dostępem osób nieuprawnionych. Prawidłowe podejście do przechowywania substancji niebezpiecznych wiąże się z zastosowaniem dedykowanych, zamykanych przestrzeni magazynowych, co stanowi najlepszą praktykę w zarządzaniu substancjami chemicznymi.

Pytanie 24

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 500 cm3
B. 2 dm3
C. 50 cm3
D. 1 dm3
Rozważając błędne odpowiedzi, warto zauważyć, że przygotowanie roztworu o stężeniu 0,0500 mol/dm3 z 0,1 mola NaOH wymaga precyzyjnego obliczenia objętości, a niektóre z zaproponowanych odpowiedzi nie uwzględniają zasad rozcieńczania. Na przykład, wybór 50 cm3 sugeruje, że osoba odpowiadająca nie dostrzega, że rozcieńczenie do takiej objętości prowadziłoby do stężenia znacznie wyższego niż docelowe 0,0500 mol/dm3. Podobnie, odpowiedź 500 cm3 również jest nieprawidłowa, ponieważ nie osiągnie wymaganej koncentracji. W laboratoriach chemicznych kluczowe jest zrozumienie, że stężenie roztworu można dokładnie obliczyć tylko wtedy, gdy wszystkie parametry są poprawnie uwzględnione. Typowym błędem myślowym jest pomijanie wpływu całkowitej objętości roztworu na końcowe stężenie, co prowadzi do niewłaściwego oszacowania potrzebnej objętości rozcieńczenia. Przygotowując roztwory, należy zawsze stosować wzory i metody obliczeniowe, aby zapewnić dokładność i zgodność z standardami laboratoryjnymi.

Pytanie 25

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 3:2
B. 5:3
C. 3:5
D. 2:3
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 26

Aby w badanej próbie w trakcie zmiany pH nastąpiła zmiana barwy na malinową, należy użyć

Zmiany barw najważniejszych wskaźników kwasowo-zasadowych
WskaźnikBarwa w środowiskuZakres pH zmiany barwy
KwasowymObojętnymZasadowym
oranż metylowyczerwonażółtażółta3,2÷4,4
lakmus
(mieszanina substancji)
czerwonafioletowaniebieska4,5÷8,2
fenoloftaleinabezbarwnabezbarwnamalinowa8,2÷10,0
wskaźnik uniwersalny
(mieszanina substancji)
czerwona
(silnie kwaśne)
pomarańczowa
(słabo kwaśne)
żółtaniebieska
(silnie zasadowe)
zielona
(słabo zasadowe)
co jeden stopień skali
herbatażółtaczerwona-brunatnabrązowa
sok z czerwonej kapustyfioletowaniebieskazielona

A. wskaźnika uniwersalnego.
B. lakmusu.
C. fenoloftaleiny.
D. oranżu metylowego.
Fenoloftaleina to naprawdę fajny wskaźnik pH, który zmienia kolor z bezbarwnego na malinowy, gdy pH jest w granicach od 8,2 do 10,0. Więc jeśli pH jest niższe niż 8,2, to zostaje bezbarwna. To sprawia, że jest super do wykrywania zasadowego środowiska. Używamy jej w laboratoriach chemicznych, szczególnie przy titracji, bo tam zmiany pH są kluczowe. Zauważyłem też, że fenoloftaleina jest przydatna w różnych branżach, na przykład w farmacji i w analizach wody, bo pomaga ocenić, czy próbki są zasadowe. Z moich doświadczeń wynika, że przed wyborem wskaźnika warto dokładnie obliczyć pH próbki, żeby dobrze zrozumieć wyniki. No i trzeba ostrożnie podchodzić do fenoloftaleiny, bo w większych stężeniach może być szkodliwa dla organizmów wodnych.

Pytanie 27

Przeprowadzono reakcję 13 g cynku z kwasem solnym zgodnie z równaniem: Zn + 2 HCl → ZnCl2 + H2↑. Otrzymano 1,12 dm3 wodoru (w warunkach normalnych). Masy molowe to: MZn = 65 g/mol, MH = 1g/mol, MCl = 35,5g/mol. Jaka jest wydajność tego procesu?

A. 60%
B. 75%
C. 25%
D. 50%
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka powszechnych błędów myślowych. Na przykład, niektóre odpowiedzi mogą wynikać z pomyłki w obliczeniach moli wodoru, co prowadzi do błędnego oszacowania wydajności reakcji. Jeśli ktoś przyjąłby, że 1,12 dm³ wodoru to 50% wydajności, to musiałby założyć, że teoretycznie wyprodukowano 2,24 dm³ wodoru. To z kolei sugerowałoby, że 0,1 mola cynku mogłoby wyprodukować taką ilość, co jest niezgodne z obliczeniami opartymi na masach molowych. Możliwe, że inna odpowiedź, np. 60% lub 75%, wynika z błędnego założenia co do ilości cynku lub zastosowania niewłaściwego przelicznika, co jest typowe w analizach chemicznych. W przemyśle chemicznym zrozumienie procesu produkcji i jej wydajności jest kluczowe, ponieważ wpływa na ekonomiczność operacji. Wydajność może być również analizowana w kontekście optymalizacji procesów, gdzie dokładne kalkulacje i analiza stanu wyjściowego są konieczne do doskonalenia procesów produkcyjnych. Kluczowe jest, aby wziąć pod uwagę zarówno czynniki teoretyczne, jak i praktyczne, aby móc skutecznie zarządzać procesami i osiągać oczekiwane wyniki.

Pytanie 28

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15

A. 7
B. 20
C. 5,5
D. 10
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 29

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 0,56 g
B. 5,60 g
C. 56,00 g
D. 0,28 g
Wiele osób może pomylić się w obliczeniach związanych z przygotowaniem roztworów, co często wynika z błędnego zrozumienia zależności między stężeniem, objętością a masą substancji. Przykładowo, niektórzy mogą nieprawidłowo zastosować jednostki miary, co prowadzi do błędnych wyników. Przy obliczeniach niezbędne jest zawsze przeliczenie objętości roztworu z centymetrów sześciennych na litry, ponieważ stężenie molowe (C) zwykle wyrażane jest w molach na litr. Inny typowy błąd polega na pomylonej masie molowej związku; w tym przypadku, błędne wyliczenie masy molowej KOH przez nieuwzględnienie wszystkich składników chemicznych, takich jak wodór, może prowadzić do zbyt niskiej lub zbyt wysokiej wartości masy, co w efekcie skutkuje niewłaściwym stężeniem roztworu. Ponadto, nieprawidłowe zaokrąglenia lub zbytnia ufność w wyniki kalkulatorów może prowadzić do dalszych nieścisłości. Kluczowym elementem praktyki laboratoryjnej jest dokładność i precyzja, dlatego zaleca się stosowanie wag analitycznych, które mogą zapewnić większą dokładność przy odważaniu substancji. Prawidłowe przygotowanie roztworu jest niezbędne w zastosowaniach takich jak titracje, w których dokładność stężenia roztworu ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Zrozumienie tych zasad jest ważne dla każdego chemika, aby uniknąć błędów, które mogą prowadzić do fałszywych wniosków w badaniach naukowych.

Pytanie 30

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
B. Kwas solny, gliceryna, tlenek siarki(VI)
C. Glukoza, kwas azotowy(V), wodorotlenek wapnia
D. Cukier, sól stołowa, ocet
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 31

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. ultraśladem
B. matrycą
C. śladem
D. domieszką
Termin 'ślad' odnosi się do składników, których stężenie w próbce jest bardzo niskie, wynoszące mniej niż 0,01%. W praktyce oznacza to, że substancje te mogą być trudne do wykrycia, ale mimo to mogą mieć istotny wpływ na właściwości analityczne próbki. Przykładem mogą być zanieczyszczenia w próbkach chemicznych, gdzie obecność nawet śladowych ilości metali ciężkich, takich jak ołów czy kadm, może prowadzić do poważnych konsekwencji zdrowotnych. W standardach takich jak ISO 17025, które dotyczą kompetencji laboratoriów badawczych, uwzględnia się konieczność analizy i raportowania takich śladowych składników, aby zapewnić pełną zgodność z normami jakości. W związku z tym, zrozumienie, co oznacza 'ślad', jest kluczowe dla analityków, którzy muszą być świadomi wpływu tych substancji na wyniki badań oraz jakość produktów końcowych. Warto także zwrócić uwagę, że w niektórych dziedzinach, takich jak toksykologia czy chemia środowiskowa, detekcja śladowych substancji jest kluczowa dla monitorowania zanieczyszczeń i ochrony zdrowia publicznego.

Pytanie 32

Na rysunku przedstawiono wagę

Ilustracja do pytania
A. mikroanalityczną.
B. hydrostatyczną.
C. automatyczną.
D. precyzyjną.
Waga precyzyjna to urządzenie laboratoryjne, które charakteryzuje się wysoką dokładnością i precyzją pomiarów masy. Na zdjęciu widoczna jest waga, która posiada cyfrowy wyświetlacz oraz przyciski kalibracji i tarowania, co jest typowe dla wag precyzyjnych. Tego rodzaju wagi znajdują zastosowanie w wielu dziedzinach, takich jak chemia, biotechnologia czy farmacja, gdzie dokładne ważenie substancji jest kluczowe dla uzyskania wiarygodnych wyników eksperymentów. Wagi precyzyjne są często wykorzystywane do ważenia małych ilości reagentów, co jest istotne w procesach analitycznych. W branży laboratoryjnej stosuje się standardy, takie jak ISO/IEC 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych i wzorcujących, co podkreśla znaczenie precyzyjnego ważenia. Dzięki zastosowaniu technologii cyfrowej, wagi te oferują również możliwość podłączenia do komputerów oraz oprogramowania, co ułatwia dokumentację i analizę danych.

Pytanie 33

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. w kwietniu 2017 roku
B. 13 maja 2017 roku
C. 5 maja 2017 roku
D. w czerwcu 2017 roku
Odpowiedź 'w czerwcu 2017 roku' jest prawidłowa, ponieważ wskazuje na termin, w którym niezużyty odczynnik powinien być zutylizowany zgodnie z zaleceniami przedstawionymi na etykiecie. Niezbędne jest przestrzeganie dat ważności i instrukcji dotyczących utylizacji odczynników chemicznych, aby zapewnić bezpieczeństwo oraz minimalizować negatywny wpływ na środowisko. Na przykład, jeśli odczynnik został dopuszczony do użycia do czerwca 2017 roku, oznacza to, że jego skuteczność może być już obniżona, a stosowanie go po tym terminie może prowadzić do nieprzewidywalnych rezultatów w badaniach. W praktyce, laboratoria chemiczne, zgodnie z normą ISO 14001, powinny mieć wdrożone procedury zarządzania odpadami niebezpiecznymi, co obejmuje odpowiednią klasyfikację, przechowywanie oraz utylizację odczynników. Dokładne przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa pracowników oraz ochrony środowiska. Warto również pamiętać o odpowiednim dokumentowaniu wszystkich procesów związanych z utylizacją, co wspiera transparentność oraz zgodność z regulacjami prawnymi.

Pytanie 34

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. techniczny
B. chemicznie czysty
C. czysty do analizy
D. czysty
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.

Pytanie 35

W laboratorium chemicznym systemy wodne zazwyczaj oznacza się kolorem zielonym

A. parową
B. wodną
C. ściekową
D. przeciwpożarową
W laboratoriach chemicznych, zgodnie z międzynarodowymi standardami oznakowania instalacji, kolor zielony jest przypisany do systemów wodnych. Wszystkie rurociągi i instalacje, które transportują wodę, powinny być oznakowane tym kolorem, co zwiększa bezpieczeństwo i efektywność operacyjną. Oznaczenie wodnych instalacji jest szczególnie istotne w kontekście wypadków i awarii, gdzie szybka identyfikacja systemu może uratować życie. Na przykład, w przypadku pożaru, personel musi wiedzieć, które rurociągi prowadzą do źródeł wody, aby skutecznie przeprowadzić akcję gaśniczą. W praktyce oznakowanie to opiera się na normach takich jak ISO 7010 oraz ANSI Z535, które definiują kolorystykę i sposób oznaczania systemów w różnych środowiskach. W związku z tym, rozumienie i przestrzeganie tych standardów jest kluczowe dla zapewnienia bezpieczeństwa w laboratoriach chemicznych oraz minimalizacji ryzyka związanego z niewłaściwym podłączeniem lub pomyleniem instalacji.

Pytanie 36

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000

A. 1000 g/m3
B. 10 g/dm3
C. 1000 g/dm3
D. 107 mg/m3
Wybierając odpowiedzi, takie jak 1000 g/dm3 czy 10 g/dm3, można zauważyć pewne nieporozumienia dotyczące jednostek i norm. Odpowiedź 1000 g/dm3 jest zdecydowanie zbyt wysoka, ponieważ oznaczałaby, że woda zawiera 1000 gramów chlorków na każdy litr, co jest równoważne stężeniu 1 kg/dm3. Tego rodzaju stężenie jest nierealistyczne w kontekście wody pitnej czy technologicznej, a także przekracza wszelkie normy dotyczące jakości wody. Z kolei 10 g/dm3, chociaż teoretycznie dopuszczalne, również jest niewłaściwe, ponieważ w kontekście normy PN-EN 1008, odpowiednia wartość wynosi 1000 mg/dm3, co odpowiada 1 g/dm3. W tym przypadku istnieje nieporozumienie związane z konwersją jednostek, które są kluczowe w inżynierii budowlanej. Wybór 107 mg/m3 również wykazuje zrozumienie problemu, ale nie odnosi się do normy, w której wartość dla chlorków jest znacznie wyższa. Stąd wynika, że często błędy w odpowiedziach są efektem niepewności co do prawidłowego przeliczenia jednostek oraz niezrozumienia znaczenia norm, które mają na celu zapewnienie bezpieczeństwa i trwałości konstrukcji. Każdy inżynier budowlany powinien być dobrze zaznajomiony z odpowiednimi normami oraz umieć prawidłowo interpretować wyniki badań, co jest niezbędne do podejmowania właściwych decyzji technologicznych.

Pytanie 37

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. zielonym
B. niebieskim
C. czerwonym
D. żółtym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 38

Zgłębniki o konstrukcji przypominającej świder są wykorzystywane do pobierania próbek różnych materiałów

A. ciastowatych
B. półpłynnych
C. płynnych
D. sypkich
Wybór innych odpowiedzi, takich jak sypkie, płynne czy półpłynne, wynika z niepełnego zrozumienia właściwości materiałów oraz zastosowania zgłębnika w kształcie świdra. Materiały sypkie, takie jak piasek czy żwir, są najczęściej pobierane poprzez metody bardziej odpowiednie do ich struktury, na przykład za pomocą zgłębnika cylindrycznego. Zgłębniki te są przystosowane do uzyskiwania próbek z luźnych i sypkich materiałów, gdzie nie jest wymagane wwiercanie się w substancje o większej lepkości. W przypadku materiałów płynnych, takich jak woda czy oleje, stosuje się zupełnie inne metody, na przykład pompy lub próbniki ciśnieniowe, które są bardziej efektywne w pozyskiwaniu próbek z płynnych mediów. Natomiast materiały półpłynne, takie jak niektóre rodzaje osadów, mogą wymagać zastosowania innych narzędzi, które są bardziej odpowiednie do ich specyfiki. Typowym błędem myślowym jest założenie, że jeden typ zgłębnika może być użyty do różnych typów materiałów bez uwzględnienia ich właściwości fizycznych. Dlatego ważne jest zrozumienie, że zgłębniki w kształcie świdra są zoptymalizowane do pracy z substancjami ciastowatymi, co czyni je nieodpowiednimi do innych materiałów.

Pytanie 39

Jakie urządzenie służy do pomiaru temperatury topnienia substancji chemicznych?

A. Engler.
B. Soxleth.
C. Thiel.
D. Kipp.
Aparat Thielego jest specjalistycznym urządzeniem używanym do oznaczania temperatury topnienia związków chemicznych. Jego działanie opiera się na precyzyjnym pomiarze temperatury w kontrolowanym środowisku, co pozwala na uzyskanie dokładnych wyników. W praktyce, aparat Thielego wykorzystuje się w laboratoriach chemicznych oraz w przemyśle farmaceutycznym do określenia charakterystyki substancji stałych, co jest kluczowe dla ich dalszych zastosowań. Zgodnie z dobrą praktyką laboratoryjną, proces oznaczania temperatury topnienia powinien odbywać się w atmosferze wolnej od zanieczyszczeń, co zapewnia dokładność wyników. Dodatkowo, znajomość temperatury topnienia jest istotna nie tylko dla identyfikacji substancji, ale także dla oceny ich czystości. Substancje czyste mają wyraźnie określoną temperaturę topnienia, podczas gdy zanieczyszczenia powodują obniżenie tej wartości. Dlatego aparaty Thielego są powszechnie stosowane w standardowych procedurach analitycznych, co świadczy o ich znaczeniu w chemii analitycznej.

Pytanie 40

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. polietylenu wysokiej gęstości (HDPE)
B. szkła sodowego
C. aluminium
D. ceramiki
Wybór szkła sodowego jako materiału na butelki do pobierania próbek wody przeznaczonej do oznaczania metali ciężkich to dość częsty błąd, wynikający z przekonania, że szkło jest zupełnie obojętne chemicznie. Niestety, szkło sodowe może uwalniać do badanej próbki niektóre pierwiastki, jak sód, wapń czy ołów, zwłaszcza jeśli próbka jest lekko kwaśna lub przechowywana przez dłuższy czas. Może też dochodzić do adsorpcji jonów metali na ściankach butelki, co skutkuje fałszywie zaniżonymi wynikami. Aluminium z kolei jest materiałem wysoce reaktywnym – nawet cienka warstwa tlenków nie gwarantuje pełnej ochrony próbki. Aluminium potrafi ulegać korozji w kontakcie z wodą, a już zwłaszcza z próbkami zakwaszonymi (co często się stosuje, by ustabilizować metale). Przez to do próbki mogą przedostawać się dodatkowe jony aluminium, a inne metale mogą też być adsorbowane przez ścianki. Butelki ceramiczne to raczej ciekawostka niż praktyka laboratoryjna. Ceramika jest porowata, trudna do sterylizacji, a jej powierzchnia może adsorbować jony metali lub je wymieniać z próbką, co zupełnie dyskwalifikuje ją w precyzyjnych analizach śladowych. W praktyce najlepsze efekty daje stosowanie tworzyw sztucznych odpornych chemicznie, takich jak HDPE – wszystkie inne materiały niosą spore ryzyko zafałszowania próbki na etapie pobierania lub transportu. To właśnie te niuanse decydują o wiarygodności wyników, a nie tylko wygoda czy dostępność pojemników.