Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 20:38
  • Data zakończenia: 24 maja 2025 20:46

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4,06 cm3
B. 406,00 cm3
C. 4060,00 cm3
D. 40,60 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 2

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 1
B. 3
C. 2
D. 4
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 3

Negatywny wpływ intensywnych fal elektromagnetycznych emitowanych przez działające urządzenie mechatroniczne można zredukować, stosując osłonę w postaci obudowy

A. polwinitowej
B. metalowej
C. drewnianej
D. z żywicy epoksydowej
Ekranowanie urządzeń mechatronicznych ma kluczowe znaczenie w zarządzaniu wpływem silnych fal elektromagnetycznych. Obudowy metalowe są najskuteczniejszym rozwiązaniem, ponieważ metale wykazują właściwości pochłaniające oraz odbijające fale elektromagnetyczne, co skutecznie minimalizuje ich przenikanie do wnętrza obudowy. Przykładem zastosowania metalowych obudów są urządzenia telekomunikacyjne, które muszą spełniać normy EMC (electromagnetic compatibility), co zapewnia ich prawidłowe funkcjonowanie w środowiskach o wysokim poziomie zakłóceń elektromagnetycznych. Standardy takie jak EN 55032 określają wymagania dotyczące emisji elektromagnetycznej, a obudowy metalowe są kluczowym elementem w ich spełnianiu. Dodatkowo, metalowe ekranowanie jest stosowane w wielu aplikacjach przemysłowych, takich jak maszyny CNC, gdzie zakłócenia mogą prowadzić do błędów w obróbce. Warto również wspomnieć, że odpowiednia konstrukcja obudowy, uwzględniająca różne czynniki, takie jak grubość materiału czy typ metalu, ma znaczący wpływ na efektywność ekranowania. Dlatego wybór metalowej obudowy jest najlepszym rozwiązaniem w kontekście ochrony przed niekorzystnymi skutkami fal elektromagnetycznych.

Pytanie 4

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Stal niskowęglowa
C. Żeliwo białe
D. Stal wysokowęglowa
Żeliwo białe, żeliwo szare i stal wysokowęglowa to nie najlepsze opcje, jeśli mówimy o konstrukcjach spawanych. Żeliwo białe, przez dużą ilość węgla i krzemu, jest twarde i odporne na ścieranie, ale jego kruchość sprawia, że nie nadaje się za bardzo do spawania. Może występować dużo pęknięć, co sprawia, że trudno uzyskać solidne połączenia. Żeliwo szare jest trochę lepsze w kwestii spawania, ale wciąż nie ma wystarczającej plastyczności, więc nie nadaje się do konstrukcji, które potrzebują dużej wytrzymałości. Z kolei stal wysokowęglowa jest twardsza i bardziej wytrzymała, ale też łatwiej pęka podczas spawania. Duża ilość węgla sprawia, że nie zmienia kształtu podczas spawania, co może sprawiać problemy podczas montażu i późniejszego użytkowania konstrukcji. Dlatego ważne jest, aby dobierać materiał do spawania na podstawie jego właściwości, a stal niskowęglowa wydaje się tu najlepszym wyborem.

Pytanie 5

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 4,001 bar
B. 2,001 bar
C. 3,001 bar
D. 5,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 6

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. wkrętaka krzyżowego
C. klucza płaskiego
D. wkrętaka płaskiego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 7

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Sprężynę zaworu zwrotnego
B. Zawór bezpieczeństwa
C. Filtr oleju
D. Tłokowy pierścień uszczelniający
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 8

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z jednostronnym tłoczyskiem
B. Teleskopowa
C. Nurnikowa
D. Tłokowa z dwustronnym tłoczyskiem
Konstrukcje teleskopowe siłowników hydraulicznych charakteryzują się tym, że składają się z kilku cylindrów, które są wciągane jeden w drugi. Dzięki temu, nawet przy stosunkowo krótkiej długości całkowitej, teleskopowe siłowniki mogą osiągnąć znaczny skok. Jest to szczególnie przydatne w zastosowaniach, gdzie przestrzeń jest ograniczona, a wymagana jest duża ruchomość, na przykład w dźwigach, podnośnikach czy maszynach budowlanych. Teleskopowe siłowniki są często wykorzystywane w przemyśle, gdzie zaawansowane rozwiązania hydrauliczne są wymagane do efektywnej pracy. W standardach branżowych, takich jak ISO 6022, podkreśla się znaczenie teleskopowych siłowników w kontekście ich zdolności do pracy w ograniczonej przestrzeni, co czyni je niezastąpionymi w wielu zastosowaniach. W praktyce, przy odpowiednim doborze materiałów oraz technologii produkcji, teleskopowe siłowniki mogą pracować z dużymi obciążeniami i przy wysokich ciśnieniach, co zapewnia ich trwałość i niezawodność.

Pytanie 9

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. szczotek.
B. uzwojenia.
C. komutatora.
D. łożysk.
Odpowiedzi takie jak wymiana łożysk, komutatora czy szczotek mogą wydawać się logiczne, jednak nie rozwiązują problemu zwarć międzyzwojowych. Łożyska, choć istotne dla prawidłowego funkcjonowania silnika, dotyczą przede wszystkim mechanicznego aspektu pracy silnika. Ich wymiana nie wpłynie na problemy elektryczne wynikające z uszkodzenia uzwojenia. Komutator w silniku komutatorowym odpowiada za przełączanie prądu w uzwojeniu wirnika, jednak jego wymiana nie eliminuje problemów z samym uzwojeniem, które są źródłem zwarć. W przypadku szczotek, ich rola polega na przewodzeniu prądu do komutatora, ale uszkodzenie uzwojenia wymaga bardziej kompleksowego podejścia, które nie ogranicza się do wymiany elementów pośrednich. Typowym błędem myślowym jest niepełna diagnoza usterki, co prowadzi do nieefektywnych napraw. Należy zrozumieć, że każdy z tych elementów ma swoją specyfikę oraz funkcję, a ich wymiana nie usuwa przyczyny problemu. Aby skutecznie naprawić silnik, konieczne jest skupienie się na rdzeniu problemu, a więc na uzwojeniu, które jest kluczowe dla jego właściwego działania. W praktyce, zignorowanie tego aspektu może prowadzić do powtarzających się awarii i większych kosztów eksploatacji.

Pytanie 10

Czy panewka stanowi część składową?

A. sprzęgła sztywnego tulejowego
B. zaworu pneumatycznego
C. łożyska ślizgowego
D. łożyska kulkowego
Wybór łożyska kulkowego, zaworu pneumatycznego lub sprzęgła sztywnego tulejowego jako elementów składowych panewki jest niepoprawny i wynika z nieporozumień dotyczących funkcji i konstrukcji tych komponentów. Łożyska kulkowe, bazujące na kulkach jako elementach tocznych, działają na zasadzie redukcji tarcia dzięki rozdzieleniu powierzchni kontaktowych, co różni się od funkcji panewki w łożyskach ślizgowych, które polegają na bezpośrednim kontakcie między powierzchniami, ale przy zastosowaniu odpowiednich materiałów redukujących tarcie. Zawory pneumatyczne to zupełnie inna kategoria podzespołów, które służą do kontrolowania przepływu powietrza w systemach pneumatycznych, co nie ma związku z funkcją panewki. Sprzęgła sztywne, z kolei, są używane do łączenia wałów w taki sposób, że nie absorbują drgań, co również nie dotyczy panewki, która ma na celu umożliwienie ruchu wału w sposób kontrolowany. Te nieprawidłowe odpowiedzi pokazują typowe błędy myślowe wynikające z braku zrozumienia podstawowych zasad działania mechanizmów w maszynach oraz specyfiki poszczególnych komponentów. Kluczowe jest zrozumienie, że każdy element ma swoją unikalną funkcję i zastosowanie, a ich zrozumienie jest fundamentem inżynierii mechanicznej. W branży inżynieryjnej a także w codziennej praktyce technicznej, znajomość charakterystyki i zastosowania poszczególnych elementów jest niezbędna do prawidłowego projektowania i eksploatacji maszyn.

Pytanie 11

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór redukcyjny, manometr, smarownica
B. filtr, zawór dławiący, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 12

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Krokowy
B. Asynchroniczny
C. Bocznikowy
D. Szeregowy
Silnik krokowy, mimo że ma swoje zastosowania w precyzyjnych systemach sterowania położeniem, nie jest optymalnym rozwiązaniem do aplikacji wymagających wysokiego momentu rozruchowego. Jego działanie opiera się na sekwencyjnym wzbudzaniu uzwojeń, co ogranicza jego zdolność do generowania dużych momentów na starcie. Silnik asynchroniczny, pomimo że jest powszechnie stosowany w przemyśle, nie charakteryzuje się odpowiednim momentem rozruchowym, ponieważ jego moment rozruchowy jest zazwyczaj mniejszy od momentu znamionowego. W silnikach asynchronicznych występuje zjawisko poślizgu, co powoduje, że przy rozruchu mogą mieć problemy z osiągnięciem wymaganej wydajności w ciężkich aplikacjach. Silnik bocznikowy, choć jest w stanie dostarczyć wyższy moment obrotowy niż silnik asynchroniczny, nie jest tak skuteczny jak silnik szeregowy w kontekście generowania dużego momentu przy rozruchu. W praktyce, wybór silnika do zadania powinien opierać się na szczegółowej analizie wymagań aplikacji, a nie tylko na ogólnych zaletach poszczególnych typów silników. Kluczowe jest zrozumienie, że silniki szeregowe mają unikalną konstrukcję, która czyni je bardziej odpowiednimi w specyficznych warunkach wymagających dużego momentu rozruchowego.

Pytanie 13

Rurka Bourdona stanowi część

A. filtru powietrza
B. smarownicy
C. manometru
D. reduktora ciśnienia
Wybór elementów takich jak smarowniczki, filtry powietrza czy reduktory ciśnienia, wskazuje na pewne nieporozumienia dotyczące funkcji i budowy tych urządzeń. Smarowniczki są używane do dostarczania smaru do różnych mechanizmów, co jest całkowicie odmienną funkcją niż pomiar ciśnienia, który realizuje manometr. Filtry powietrza mają na celu oczyszczanie powietrza z zanieczyszczeń, co również nie ma związku z pomiarem ciśnienia. Z kolei reduktory ciśnienia służą do obniżania ciśnienia gazu do pożądanego poziomu, a ich działanie opiera się na innych zasadach niż te stosowane w manometrach. Typowym błędem myślowym przy wyborze nieprawidłowej odpowiedzi jest mylenie funkcji pomiarowych i regulacyjnych. Warto zauważyć, że każda z tych urządzeń ma swoje specyficzne zastosowanie, ale nie pełni funkcji pomiaru ciśnienia, co jest kluczowe dla zrozumienia roli rurki Bourdona w manometrach. Ostatecznie, zrozumienie różnic pomiędzy tymi elementami jest niezbędne dla właściwego doboru urządzeń w procesach technologicznych i industrialnych.

Pytanie 14

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Olej w postaci płynnej
B. Smar o stałej konsystencji
C. Olej w postaci mgły olejowej
D. Półciekły smar plastyczny
Olej w postaci mgły olejowej jest optymalnym środkiem smarnym do zastosowania w siłownikach pneumatycznych, ponieważ skutecznie obniża tarcie i zużycie elementów ruchomych, co przekłada się na ich dłuższą żywotność. Typowa mgła olejowa jest wytwarzana poprzez rozpylanie oleju, co pozwala na równomierne pokrycie powierzchni roboczych. Dzięki temu olej penetruje w najtrudniej dostępne miejsca w mechanizmach, co zwiększa efektywność smarowania. W praktyce, olej w postaci mgły jest często używany w zautomatyzowanych systemach, gdzie precyzja i efektywność smarowania są kluczowe. Zgodnie z normami ISO 6743-99, oleje do smarowania pneumatycznego powinny spełniać określone wymagania dotyczące lepkości i stabilności. Wybór odpowiedniego środka smarnego jest kluczowy nie tylko dla wydajności, ale i dla bezpieczeństwa operacji, dlatego dobór oleju w postaci mgły jest zgodny z najlepszymi praktykami branżowymi.

Pytanie 15

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 3600 Ω
B. 36 Ω
C. 360 Ω
D. 36 000 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 16

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 3 A
B. 1 A
C. 0 A
D. 2 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 17

W procesie TIG stosuje się technikę spawania

A. elektrodą wolframową w osłonie argonowej
B. strumieniem elektronów
C. elektrodą topliwą w osłonie dwutlenku węgla
D. łukiem plazmowym
W metodzie TIG kluczowym elementem jest użycie elektrod wolframowych, co odróżnia ją od innych technik spawalniczych. Odpowiedź wskazująca na strumień elektronów odnosi się do spawania elektronowego, które działa na zupełnie innej zasadzie, gdzie wiązka elektronów jest kierowana na spawany materiał w próżni, co nie ma zastosowania w metodzie TIG. Ponadto, spawanie elektrodą topliwą w osłonie dwutlenku węgla odnosi się do metody MAG (Metal Active Gas), która również różni się zasadniczo od TIG, gdyż wykorzystuje elektrodę, która topnieje podczas procesu spawania. Łuk plazmowy to inna forma spawania, która stosuje plazmę do generowania wysokiej temperatury, ale również nie jest tożsama z metodą TIG. Wiele osób myli te metody ze względu na ich podobieństwa w użyciu gazu ochronnego, jednak różnice w zastosowaniu elektrod i mechanizmach spawania są kluczowe dla zrozumienia, która technika jest odpowiednia w danym kontekście. Niezrozumienie tych różnic prowadzi do błędnych wniosków i wyborów technologicznych, co może skutkować problemami z jakością spoin oraz efektywnością produkcji.

Pytanie 18

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 1,2 A
B. 0,6 A
C. 3,6 A
D. 15,0 A
Odpowiedź 1,2 A jest poprawna, ponieważ prąd jałowy transformatora związany jest z jego mocą znamionową. W przypadku transformatora o mocy S_N = 2300 VA, prąd znamionowy można obliczyć, korzystając ze wzoru: I_N = S_N / U_1N, co daje I_N = 2300 VA / 230 V = 10 A. Prąd jałowy wynosi około 10% wartości prądu znamionowego, co w tym przypadku daje I_0 = 0,1 * 10 A = 1 A. Aby dokładnie zmierzyć prąd jałowy, należy wziąć pod uwagę, że amperomierz powinien mieć zakres pomiarowy, który pozwoli na uchwycenie tej wartości z odpowiednim marginesem. Wybór amperomierza o zakresie 1,2 A jest trafny, ponieważ zapewnia wystarczającą precyzję pomiaru oraz minimalizuje ryzyko uszkodzenia urządzenia. W praktyce, pomiar prądu jałowego jest kluczowy w diagnostyce i utrzymaniu transformatorów, ponieważ nadmierny prąd jałowy może wskazywać na problemy z izolacją lub innymi komponentami urządzenia.

Pytanie 19

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. T
B. R
C. I
D. Q
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia standardów oznaczania zmiennych w kontekście programowania PLC. Symbol 'I' oznacza wejścia, co jest mylące, ponieważ skupia się na sygnałach, które są wprowadzane do systemu, a nie na sygnałach wyjściowych. Z kolei 'R' odnosi się do rejestrów, które są używane do przechowywania stanu lub wartości, ale nie są bezpośrednio związane z wyjściami. 'T' symbolizuje timery, czyli zmienne używane do rejestrowania czasu, co również nie ma związku z sygnałami wyjściowymi. Nieprawidłowe odpowiedzi mogą sugerować brak wiedzy na temat podstawowych konwencji oznaczania i funkcji w systemach automatyki. W praktyce, zrozumienie i umiejętność odróżniania tych symboli jest niezbędne do skutecznego projektowania i programowania aplikacji PLC. W kontekście pracy z PLC, kluczowe jest nie tylko poznawanie funkcji i oznaczeń, ale również umiejętność ich zastosowania w praktyce inżynieryjnej. Właściwe definiowanie zmiennych wyjściowych, takich jak 'Q', pozwala na skuteczną kontrolę procesów oraz interakcję z urządzeniami wykonawczymi, co jest fundamentem każdego projektu automatyzacyjnego.

Pytanie 20

Jaką funkcję pełnią diody Zenera w elektronice?

A. Prostują napięcie
B. Modulują częstotliwość
C. Stabilizują napięcie
D. Ograniczają prąd
Diody Zenera pełnią kluczową rolę w stabilizacji napięcia w układach elektronicznych. Działają w trybie odwrotnym, co oznacza, że kiedy napięcie na diodzie przekracza jej wartość Zenera, zaczyna ona przewodzić prąd w kierunku przeciwnym. Dzięki temu, dioda Zenera pozwala na utrzymanie stabilnego napięcia, nawet przy dużych zmianach w obciążeniu lub napięciu zasilającym. Jest to szczególnie istotne w aplikacjach, gdzie precyzyjne napięcie zasilania jest kluczowe, na przykład w układach z mikroprocesorami, które wymagają stabilnego zasilania dla poprawnego działania. W praktyce, diody Zenera często stosuje się w zasilaczach liniowych oraz jako komponenty w filtrach, gdzie stabilizacja napięcia jest niezbędna. W branżowych standardach, takich jak IEC 60747, diody Zenera są klasyfikowane jako elementy ochronne, co podkreśla ich znaczenie w zapewnieniu niezawodności układów elektronicznych. Dobra praktyka inżynieryjna zaleca zastosowanie diod Zenera o odpowiednich parametrach, aby zapewnić ich skuteczność w stabilizacji napięcia w określonym przedziale temperatury i obciążenia.

Pytanie 21

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. objętości cieczy
B. temperatury powietrza
C. napięcia elektrycznego
D. ciśnienia cieczy
Czujnik Pt 100, znany jako czujnik rezystancyjny, jest powszechnie stosowany do pomiaru temperatury. Jego działanie opiera się na zasadzie, że oporność platyny zmienia się wraz z temperaturą. W przypadku Pt 100, oporność wynosi 100 Ω w temperaturze 0°C, a zmiana ta jest liniowa w szerokim zakresie temperatur. Czujniki te są wykorzystywane w różnych zastosowaniach przemysłowych, takich jak systemy HVAC, procesy chemiczne, a także w urządzeniach medycznych, gdzie dokładny pomiar temperatury jest kluczowy. Standardy takie jak IEC 60751 definiują charakterystyki czujników Pt 100, co zapewnia ich wymienność i precyzję. Dzięki swojej stabilności i odporności na korozję, czujniki te są preferowanym wyborem w wielu aplikacjach, gdzie wymagana jest wysoka dokładność i niezawodność pomiaru temperatury. Przykładem zastosowania Pt 100 może być monitorowanie temperatury w piecach przemysłowych, gdzie ekstremalne warunki pracy wymagają niezawodnych rozwiązań pomiarowych.

Pytanie 22

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fototranzystorze
B. Fotoogniwie
C. Fotodiodzie
D. Fotorezystorze
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 23

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. okulary ochronne
B. kask ochronny
C. maskę przeciwpyłową
D. buty ochronne
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 24

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAM
B. CAE
C. SCADA
D. CAD
Odpowiedzi CAM (Computer-Aided Manufacturing), CAD (Computer-Aided Design) oraz CAE (Computer-Aided Engineering) odnoszą się do różnych aspektów procesów inżynieryjnych, które nie są przeznaczone do nadzorowania procesów przemysłowych. CAM skupia się na automatyzacji procesów produkcyjnych, umożliwiając konwersję projektów CAD na instrukcje maszynowe, co jest kluczowe w produkcji, ale nie w samym monitorowaniu. CAD zajmuje się projektowaniem, dostarczając narzędzia do tworzenia precyzyjnych rysunków i modeli 3D, co również nie obejmuje funkcji nadzoru. CAE koncentruje się na analizach inżynieryjnych, wspierając procesy projektowania przez symulacje i analizy wydajności, jednak nie ma na celu monitorowania rzeczywistych procesów w czasie rzeczywistym. Wybór tych opcji może wynikać z mylnego przekonania, że wszystkie te technologie obejmują aspekty zarządzania procesami, co jest nieprawidłowe. Kluczowym błędem jest nieodróżnianie funkcji projektowania i produkcji od nadzoru i kontroli. Zrozumienie różnic między tymi systemami jest kluczowe, aby skutecznie je stosować w odpowiednich kontekstach przemysłowych, i pomoże uniknąć nieefektywnego wykorzystania narzędzi inżynieryjnych w procesach, które wymagają monitorowania i kontroli.

Pytanie 25

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. przepływomierz
B. tensometr
C. zawór nadążny
D. manometr
Chociaż tensometry, zawory nadążne i przepływomierze pełnią ważne funkcje w systemach hydraulicznych, nie są one odpowiednie do bezpośredniego pomiaru ciśnienia. Tensometry służą do mierzenia odkształceń materiałów, co ma zastosowanie w kontrolach strukturalnych, ale nie dostarczają bezpośrednich informacji o ciśnieniu w układzie hydraulicznym. Z kolei zawory nadążne są mechanizmami regulacyjnymi, które kontrolują przepływ płynów, ale nie są urządzeniami pomiarowymi i nie mogą samodzielnie dostarczać danych o ciśnieniu. Przepływomierze natomiast mierzą przepływ cieczy lub gazu i dostarczają informacji o ilości medium przechodzącego przez dany punkt, ale nie informują o ciśnieniu, które jest kluczowym aspektem w monitorowaniu stanu układów hydraulicznych. Zrozumienie, jakie urządzenia służą do konkretnego zastosowania, jest kluczowe dla efektywności i bezpieczeństwa operacji w inżynierii hydraulicznej. Typowym błędem jest mylenie funkcji tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu oraz potencjalnych awarii systemów hydraulicznych.

Pytanie 26

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. reduktor, smarownica, filtr powietrza
B. smarownica, filtr powietrza, reduktor
C. filtr powietrza, reduktor, smarownica
D. reduktor, filtr powietrza, smarownica
Odpowiedź "filtr powietrza, reduktor, smarownica" jest poprawna, ponieważ kolejność montażu tych elementów ma kluczowe znaczenie dla efektywności oraz żywotności układu sprężonego powietrza. Filtr powietrza jest pierwszym elementem, który powinien być zainstalowany, ponieważ jego zadaniem jest usunięcie zanieczyszczeń i wilgoci z powietrza atmosferycznego, co zapobiega uszkodzeniom pozostałych komponentów systemu. Następnie montowany jest reduktor ciśnienia, który reguluje ciśnienie powietrza dostarczanego do urządzeń roboczych, zapewniając optymalne warunki pracy. Na końcu montowana jest smarownica, która dostarcza odpowiednią ilość oleju do narzędzi pneumatycznych, co wpływa na ich skuteczność oraz wydajność. Zgodnie z normami branżowymi, takimi jak ISO 8573, zachowanie tej kolejności pozwala na utrzymanie wysokiej jakości powietrza oraz minimalizację kosztów eksploatacji, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 27

Interfejs komunikacyjny umożliwia połączenie

A. modułu rozszerzającego z grupą siłowników
B. sterownika z programatorem
C. siłownika z programatorem
D. pompy hydraulicznej z silnikiem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 28

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
B. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
C. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
D. założyć opaskę uciskową powyżej miejsca urazu
Założenie opaski uciskowej powyżej rany jest kluczowym działaniem w przypadku krwotoku tętniczego. Krwotok tętniczy charakteryzuje się intensywnym krwawieniem, które może prowadzić do szybkiej utraty krwi i wstrząsu hipowolemicznego. Opaska uciskowa działa poprzez wywieranie stałego ucisku na naczynia krwionośne, co ogranicza przepływ krwi do miejsca rany, a tym samym zmniejsza utratę krwi. Ważne jest, aby opaskę założyć powyżej rany, aby skutecznie zablokować krwawienie. Należy również pamiętać, że opaska uciskowa powinna być stosowana tylko w sytuacjach, gdy inne metody, takie jak bezpośredni ucisk na ranę, nie przynoszą efektu. W praktyce, opaskę należy założyć jak najszybciej, a następnie jak najszybciej wezwać pomoc medyczną. W przypadku urazów kończyn, opaska powinna być umieszczona jak najwyżej, aby odpowiednio ograniczyć przepływ krwi. Zachowanie tej procedury jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi standardami w zakresie pierwszej pomocy.

Pytanie 29

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Zawór dławiąco-zwrotny
B. Regulator przepływu
C. Rozdzielacz suwakowy
D. Zawór przelewowy
Wybór rozdzielacza suwakowego jako elementu regulacyjnego w układzie hydraulicznym nie jest właściwy w kontekście utrzymania stałej prędkości obrotowej silnika hydraulicznego. Rozdzielacze suwakowe służą głównie do kierunkowego sterowania przepływem cieczy i umożliwiają zmianę kierunku pracy siłowników. Ich funkcjonalność koncentruje się na rozdzielaniu strumienia cieczy do różnych odbiorników, co nie pozwala na stabilizację prędkości w warunkach zmiennego obciążenia. Z kolei zawór dławiąco-zwrotny, mimo że może regulować przepływ, nie zapewnia stałej prędkości obrotowej, ponieważ jego działanie opiera się na dławieniu przepływu, co może prowadzić do wahań prędkości w zależności od obciążenia. Warto również zauważyć, że zawór przelewowy, który służy do ochrony układu przed nadmiernym ciśnieniem, nie ma wpływu na stabilizację prędkości obrotowej silnika, a jego głównym zadaniem jest odprowadzanie nadmiaru cieczy do zbiornika. Takie myślenie prowadzi do typowego błędu, w którym myli się funkcję regulacyjną z zabezpieczającą lub kierunkową, co może skutkować nieefektywnym działaniem układu hydraulicznego oraz zwiększonym ryzykiem uszkodzeń. Aby zrozumieć istotę regulacji przepływu w systemach hydraulicznych, ważne jest, aby analizować każdy z elementów pod kątem ich przeznaczenia i wpływu na funkcjonowanie całego układu.

Pytanie 30

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w wykonaniu elementu mechanicznego?

A. Jednostronne
B. Nominalne
C. Rzeczywiste
D. Graniczne
Odpowiedź 'Graniczne' jest prawidłowa, ponieważ wymiary graniczne definiują dopuszczalne zakresy odchyleń od wymiarów nominalnych, które są kluczowe w inżynierii mechanicznej. Wymiary te określają maksymalne i minimalne wartości, w ramach których element mechaniczny może być wykonany, aby zapewnić jego funkcjonalność i interoperacyjność z innymi komponentami. Przykładowo, w produkcji wałów, wymiary graniczne pozwalają na określenie, jak blisko rzeczywiste wymiary mogą być do wartości nominalnych, a jednocześnie nie wpłyną na działanie maszyny. W praktyce, normy takie jak ISO 286 określają zasady tolerancji wymiarowych, co jest niezbędne do zapewnienia odpowiedniej jakości i wymienności części. Wiedza na temat wymiarów granicznych jest kluczowa, ponieważ niewłaściwe ich zdefiniowanie może prowadzić do wadliwego działania całego układu mechanicznego lub nawet do jego awarii. Dlatego inżynierowie muszą dokładnie analizować te parametry podczas projektowania i produkcji.

Pytanie 31

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. awarii stojana silnika
B. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
C. przeciążenia instalacji elektrycznej, co może skutkować pożarem
D. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 32

Licznik impulsów rewersyjnych to urządzenie

A. które wykonuje dodawanie i odejmowanie impulsów
B. które dokonuje odejmowania impulsów
C. które zapisuje w pamięci określoną liczbę impulsów
D. które zajmuje się dodawaniem impulsów
Wybór odpowiedzi, która ogranicza się do dodawania impulsów, nie oddaje pełnego zakresu funkcji rewersyjnego licznika impulsów. Liczniki te, jak sama nazwa wskazuje, mają zdolność do rewersji, co oznacza, że mogą nie tylko akumulować impulsy, ale także je odejmować. Podejście, które koncentruje się wyłącznie na dodawaniu, pomija kluczowy aspekt ich wszechstronności, co jest niezwykle istotne w zastosowaniach przemysłowych. W kontekście pomiarów, na przykład w systemach automatyki, często potrzebne jest nie tylko zliczanie, ale także korekta błędów, co wymaga funkcji odejmowania. Zrozumienie zasady działania rewersyjnych liczników impulsów jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania. Próba wyboru opcji, która mówi tylko o zliczaniu impulsów w pamięci, również jest myląca, ponieważ nie oddaje ona dynamiki działania takich urządzeń. W praktyce, liczniki te muszą reagować na zmieniające się warunki operacyjne, co wymaga zarówno dodawania, jak i odejmowania impulsów. Ignorowanie tej funkcji prowadzi do uproszczonego postrzegania złożonych systemów automatyki, co może skutkować błędnymi decyzjami w inżynierii i projektowaniu układów sterujących.

Pytanie 33

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Poziomnica
B. Mikrometr
C. Kątomierz
D. Klepsydra
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 34

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
B. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
C. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
D. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 35

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. gęstość
B. smarność
C. lepkość
D. utlenianie
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 36

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 1 220 zł
B. 1 440 zł
C. 2 440 zł
D. 2 200 zł
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 37

Który z zaworów powinno się zastosować w układzie pneumatycznym, aby przyspieszyć wysuw tłoczyska w siłowniku dwustronnego działania?

A. Szybkiego spustu
B. Przełącznika obiegu
C. Podwójnego sygnału
D. Dławiąco zwrotnego
Zastosowanie zaworu szybkiego spustu w układzie pneumatycznym ma na celu przyspieszenie procesu wysuwu tłoczyska siłownika dwustronnego działania poprzez umożliwienie szybkiego uwolnienia sprężonego powietrza. Zawór ten działa na zasadzie minimalizacji oporu w drodze powietrza, co pozwala na zwiększenie prędkości ruchu tłoczyska. Przykładem zastosowania może być automatyka przemysłowa, gdzie szybkie ruchy elementów roboczych są kluczowe dla wydajności linii produkcyjnych. Wybierając zawór szybkiego spustu, warto kierować się normami takimi jak ISO 4414, które definiują wymagania dotyczące systemów pneumatycznych. Dodatkowo, prawidłowy dobór i montaż tego typu zaworu może zmniejszyć zużycie energii, ponieważ ogranicza straty ciśnienia. W praktyce wykorzystywanie zaworu szybkiego spustu w aplikacjach, gdzie czas cyklu ma znaczenie, przynosi wymierne korzyści, poprawiając ogólną efektywność operacyjną systemu.

Pytanie 38

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. chłodziarko-zamrażarka z cyfrowym sterowaniem
C. odtwarzacz płyt CD oraz DVD
D. drukarka laserowa
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 39

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Warystor.
B. Termistor.
C. Gaussotron.
D. Tensometr.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 40

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Rezystancji
B. Pojemności
C. Indukcyjności
D. Indukcji
Indukcja, pojemność i indukcyjność to wielkości fizyczne, które nie są bezpośrednio związane z działaniem tensometrów foliowych. Indukcja odnosi się do zjawisk elektromagnetycznych, takich jak wytwarzanie siły elektromotorycznej w przewodnikach, co ma zastosowanie w czujnikach indukcyjnych, ale nie w tensometrach. Pojemność opisuje zdolność do przechowywania ładunku elektrycznego w kondensatorach, co nie ma związku z mechanicznymi właściwościami materiałów używanych w tensometrach. Indukcyjność dotyczy zjawisk związanych z przepływem prądu w obwodach, ale również nie ma zastosowania w kontekście pomiaru deformacji. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędów w doborze czujników do konkretnych zastosowań. Wybierając odpowiednie technologie pomiarowe, należy opierać się na zrozumieniu, jak różne właściwości fizyczne materiałów wpływają na ich zastosowanie. Pomocne jest również zapoznanie się z normami branżowymi oraz standardowymi metodami pomiaru, aby zapewnić dokładność i niezawodność wyników, co jest istotne w wielu dziedzinach inżynieryjnych.