Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 kwietnia 2025 19:56
  • Data zakończenia: 25 kwietnia 2025 20:10

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. niebieskim
B. jasnozielonym
C. czerwonym
D. żółtym
Butle gazowe zawierające wodór są oznaczane kolorem czerwonym zgodnie z międzynarodowymi standardami dotyczącymi oznakowania gazów. Kolor ten ma na celu poprawne identyfikowanie rodzaju gazu oraz zwiększenie bezpieczeństwa podczas jego transportu i przechowywania. W przypadku wodoru, który jest gazem łatwopalnym i wybuchowym, prawidłowe oznakowanie jest kluczowe dla minimalizacji ryzyka wypadków. Przykładem zastosowania tej wiedzy jest praca w przemyśle chemicznym oraz podczas transportu gazów, gdzie pracownicy muszą być w stanie szybko rozpoznać rodzaj gazu, z którym mają do czynienia. W praktyce, znajomość kolorów butli pozwala na skuteczne unikanie niebezpieczeństw, takich jak nieodpowiednie łączenie gazów lub ich niewłaściwe przechowywanie. Dobre praktyki w zakresie zarządzania gazami obejmują również regularne szkolenia dla pracowników oraz stosowanie systemów monitorowania, co zwiększa bezpieczeństwo operacji związanych z gazami niebezpiecznymi.

Pytanie 2

Sód powinien być przechowywany

A. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
B. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
C. w szczelnie zamkniętym pojemniku pod warstwą nafty
D. w pojemniku z dowolnym zamknięciem pod warstwą nafty
Sód jest metalem alkalicznym, który jest bardzo reaktywny, szczególnie w obecności wilgoci i powietrza. Dlatego kluczowe jest jego przechowywanie w odpowiednich warunkach. Odpowiedź, że sód powinien być przechowywany w szczelnie zamkniętym pojemniku pod warstwą nafty, jest poprawna, ponieważ nafta działa jako skuteczna bariera ochronna. Ogranicza dostęp powietrza i wilgoci, co zapobiega niepożądanym reakcjom chemicznym. W praktyce, wiele laboratoriów oraz zakładów przemysłowych stosuje naftę lub inne oleje mineralne w celu bezpiecznego magazynowania sodu, co jest zgodne z zaleceniami standardów bezpieczeństwa chemicznego. Przechowywanie w szczelnym pojemniku również minimalizuje ryzyko przypadkowego kontaktu z innymi substancjami chemicznymi, co jest istotne z punktu widzenia BHP. Zastosowanie odpowiednich praktyk w zakresie przechowywania substancji chemicznych, takich jak sód, jest nie tylko kwestią ochrony zdrowia, ale także przestrzegania norm i regulacji w zakresie ochrony środowiska.

Pytanie 3

Ogrzewanie organicznych substancji w atmosferze powietrza w otwartym naczyniu, mające na celu przemianę tych substancji w związki nieorganiczne, określa się jako mineralizacja?

A. UV
B. mikrofalową
C. na mokro
D. na sucho
Odpowiedzi "na mokro", "UV" oraz "mikrofalową" nie odpowiadają definicji mineralizacji substancji organicznej, ponieważ każda z nich odnosi się do innych procesów, które nie są zgodne z pojęciem mineralizacji. Metoda "na mokro" polega na rozkładzie substancji organicznych w obecności wody, co prowadzi do fermentacji, a nie mineralizacji. W tym przypadku, organiczne materiały ulegają biodegradacji, co skutkuje powstawaniem substancji organicznych i gazów, a nie związków nieorganicznych. Należy również zauważyć, że procesy takie jak "UV" oraz "mikrofalowa" nie są związane z mineralizacją, lecz z innymi formami obróbki materiałów. Promieniowanie UV, na przykład, znajduje zastosowanie w dezynfekcji wody i powierzchni poprzez niszczenie mikroorganizmów, ale nie prowadzi do mineralizacji. Z kolei metoda mikrofalowa polega na podgrzewaniu substancji za pomocą fal elektromagnetycznych, co może wywołać denaturację ich struktury, ale nie zapewnia przekształcenia ich w związki nieorganiczne. Typowym błędem myślowym jest mylenie różnych procesów chemicznych i fizycznych oraz nie uwzględnianie, że mineralizacja wymaga specyficznych warunków, w tym braku wody.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 181 °C - 185 °C
B. 178 °C - 182 °C
C. 175 °C - 179 °C
D. 185 °C - 190 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Rozpuszczalnik stosowany w procesie krystalizacji powinien

A. rozpuszczać zanieczyszczenia w przeciętnym zakresie
B. doskonale rozpuszczać zanieczyszczenia lub w niewielkim stopniu
C. być substancją łatwopalną
D. wchodzić w reakcję z substancją krystalizowaną
Rozpuszczalnik używany do krystalizacji odgrywa kluczową rolę w procesie uzyskiwania czystych kryształów substancji chemicznych. Poprawna odpowiedź, dotycząca rozpuszczania zanieczyszczeń bardzo dobrze lub w nieznacznym stopniu, jest istotna, ponieważ umożliwia selektywne wydobycie pożądanej substancji. W idealnym scenariuszu, rozpuszczalnik powinien dobrze rozpuszczać czystą substancję, pozwalając na jej krystalizację podczas schładzania lub odparowania. Na przykład, podczas krystalizacji soli, rozpuszczalniki takie jak woda są wykorzystywane, ponieważ dobrze rozpuszczają NaCl, ale nie rozpuszczają innych zanieczyszczeń, jak np. siarczany. W praktyce, techniki jak recrystalizacja często wykorzystują różne temperatury i stężenia, aby maksymalizować czystość finalnego produktu. Zgodnie z dobrą praktyką laboratoryjną, wybór odpowiedniego rozpuszczalnika i jego właściwości fizykochemiczne mają istotny wpływ na efektywność procesu krystalizacji, dlatego ważne jest, aby stosować właściwe metody analizy przed wyborem rozpuszczalnika.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. sedymentacja
B. destylacja
C. dekantacja
D. filtracja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. zniszczyć poprzez zastosowanie odpowiednich procesów.
B. poddać recyklingowi w celu odzyskania rozpuszczalnika.
C. połączyć z ziemią okrzemkową i przekazać do utylizacji.
D. odprowadzać bezpośrednio do kanalizacji.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby uzyskać roztwór AgNO3 (masa molowa AgNO3 to 169,8 g/mol) o stężeniu 0,1 mol/dm3, należy rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski.

A. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
B. odważyć 16,98 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
C. odważyć 1,698 g AgNO3, przenieść do kolby miarowej o pojemności 100 cm3, rozpuścić w wodzie destylowanej i dopełnić kolbę wodą destylowaną do zaznaczonej kreski
D. odważyć 169,80 g AgNO3, przenieść do kolby miarowej o pojemności 1000 cm3, rozpuścić
Wielu uczniów może popełniać typowe błędy przy obliczaniu masy substancji niezbędnej do przygotowania roztworu o określonym stężeniu. Niektóre odpowiedzi opierają się na błędnym założeniu co do pojemności kolby miarowej lub ilości użytej substancji. Na przykład, odważenie 16,98 g AgNO₃ jest błędne, ponieważ odpowiada to stężeniu 1 mol/dm³, a nie 0,1 mol/dm³, co skutkuje znacznym nadmiarem substancji. Podobnie, przygotowanie roztworu w kolbie o pojemności 1000 cm³ przy użyciu 1,698 g AgNO₃ również prowadzi do niepoprawnego stężenia, ponieważ stężenie byłoby znacznie niższe niż zakładane. Również odważenie 169,80 g AgNO₃ jest niewłaściwe, jako że jest to masa potrzebna do przygotowania 1 mol/dm³ w 1000 cm³, co nie odpowiada wymaganym warunkom pytania. Te błędy znajdują się w nieporozumieniach dotyczących podstawowych zasad obliczeń chemicznych, a także niewłaściwego zrozumienia, jak stężenie jest związane z objętością roztworu. Ważne jest, aby przy wykonywaniu takich obliczeń zwracać uwagę na jednostki oraz upewnić się, że wszystkie dane są prawidłowo zinterpretowane, aby uniknąć błędów, które mogą prowadzić do niepoprawnych wyników eksperymentalnych.

Pytanie 15

Który z procesów jest endotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. rozcieńczanie stężonego kwasu siarkowego(VI)
C. rozpuszczanie wodorotlenku sodu w wodzie
D. roztwarzanie magnezu w kwasie solnym
Rozpuszczanie wodorotlenku sodu w wodzie, rozcieńczanie stężonego kwasu siarkowego(VI) oraz roztwarzanie magnezu w kwasie solnym nie są procesami endotermicznymi. W rzeczywistości, rozpuszczanie wodorotlenku sodu w wodzie jest procesem egzoenergetycznym, co oznacza, że wydziela energię w postaci ciepła. Podczas tego procesu temperatura roztworu wzrasta, co jest efektem uwolnienia energii, a nie jej absorpcji. Podobnie, rozcieńczanie stężonego kwasu siarkowego(VI) z wodą generuje dużą ilość ciepła, co może prowadzić do niebezpiecznych reakcjach, jeśli nie jest przeprowadzane ostrożnie. Roztwarzanie magnezu w kwasie solnym również jest reakcją egzoenergetyczną, ponieważ podczas tego procesu wydzielają się gazy (w tym wodór), a reakcja ta jest silnie egzotermiczna, co oznacza, że wydziela dużo ciepła. Typowym błędem myślowym, który prowadzi do błędnych wniosków, jest utożsamianie wszystkich procesów rozpuszczania z absorpcją ciepła, podczas gdy wpływ na temperaturę roztworu zależy od rodzaju reagentu oraz jego interakcji z rozpuszczalnikiem. Kluczowe jest zrozumienie, jakie procesy są egzotermiczne, a jakie endotermiczne, aby prawidłowo przewidywać zmiany temperatury w różnych reakcjach chemicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 20%
B. 75%
C. 25%
D. 2,5%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. czerwonym
B. niebieskim
C. zielonym
D. żółtym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Użycie płuczek jest konieczne w trakcie procesu

A. destylacji
B. krystalizacji
C. flotacji
D. oczyszczania gazów
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Ekstrakcję w trybie ciągłym przeprowadza się

A. w aparacie Soxhleta
B. w zestawie do ogrzewania
C. w kolbie płaskodennej
D. w rozdzielaczu z korkiem
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 28

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. topnienia próbki
B. wyprażenia próbki do stałej masy
C. mineralizacji próbki na sucho
D. mineralizacji próbki na mokro
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 29

Aspirator jest urządzeniem wykorzystywanym do pobierania próbek

A. ścieków
B. wody
C. powietrza
D. gleby
Aspirator powietrza to urządzenie wykorzystywane do pobierania próbek gazów i powietrza w różnych zastosowaniach, w tym w monitorowaniu jakości powietrza, badaniach środowiskowych oraz analizach przemysłowych. Dzięki aspiratorom można uzyskać reprezentatywne próbki powietrza, co jest kluczowe w ocenie zanieczyszczeń atmosferycznych, takich jak pyły, gazy i toksyczne substancje chemiczne. Przykładowo, w branży ochrony środowiska aspiratory służą do oceny stężenia substancji lotnych w powietrzu, co jest istotne dla przestrzegania norm emisji określonych przez przepisy prawa, w tym standardy Unii Europejskiej. Dobre praktyki w używaniu aspiratorów obejmują regularne kalibracje urządzeń oraz stosowanie filtrów, które zwiększają dokładność pobierania próbek. Dodatkowo, aspiratory są często wykorzystywane w laboratoriach do badania powietrza w pomieszczeniach, co ma na celu ochronę zdrowia ludzi oraz zapewnienie odpowiednich warunków pracy.

Pytanie 30

Urządzenie pokazane na ilustracji jest przeznaczone do

A. sedymentacji
B. ługowania
C. dekantacji
D. ekstrakcji ciecz-ciecz
Aparat do ługowania jest kluczowym narzędziem w chemii analitycznej i przemysłowej, wykorzystywanym do rozdzielania substancji, które są rozpuszczalne w różnych rozpuszczalnikach. Proces ługowania polega na wydobywaniu substancji z materiału stałego poprzez ich rozpuszczenie w cieczy. Przykładem zastosowania ługowania jest proces oczyszczania metali ciężkich z odpadów, gdzie stosuje się odpowiednie chemikalia do rozpuszczenia metalu, który następnie można dalej przetwarzać. W kontekście standardów branżowych, procedury ługowania są ściśle regulowane przez normy środowiskowe, takie jak REACH, które mają na celu minimalizację wpływu chemikaliów na środowisko. Ponadto, w laboratoriach często stosuje się różne techniki ługowania, takie jak ługowanie kwasowe lub alkaliczne, w zależności od rodzaju substancji, która ma być wydobyta oraz jej toksyczności. Zrozumienie procesu ługowania jest kluczowe nie tylko dla chemików, ale także dla inżynierów zajmujących się technologią oczyszczania oraz ochroną środowiska.

Pytanie 31

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. Al(NO3)3
B. Cu(NO3)2
C. AgNO3
D. KNO3
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 32

Podstawowy zestaw do filtracji, oprócz statywu i sączka, obejmuje

A. lejka, 2 zlewki, bagietki
B. lejka, zlewki, 2 bagietek
C. lejka, kolby stożkowej, zlewki
D. lejka, 2 kolb stożkowych, bagietki
Odpowiedź 'z lejka, 2 zlewek, bagietki' jest prawidłowa, ponieważ podstawowy zestaw do sączenia rzeczywiście obejmuje te elementy. Lejek jest niezbędny do precyzyjnego kierowania cieczy do naczynia, co zapobiega rozlaniu i zapewnia czystość eksperymentu. Zlewki są kluczowe, gdyż jedna jest używana do przechwytywania cieczy podczas sączenia, a druga do gromadzenia płynów, które mogą być użyte w dalszym etapie analizy. Bagietki, znane również jako pipety, są używane do precyzyjnego przenoszenia niewielkich objętości substancji, co jest niezwykle ważne w laboratoriach chemicznych i biologicznych. Poprawne wykorzystanie tego zestawu zapewnia zgodność z dobrymi praktykami laboratoryjnymi, a także ułatwia zrozumienie procesów chemicznych i biologicznych. Przykładem może być ich zastosowanie w filtracji, gdzie odpady są usuwane, a czysta ciecz zbierana do zlewki, co jest kluczowe w wielu procedurach analitycznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. rozpuszczalników do chromatografii
B. wskaźników
C. wodnych roztworów kwasów
D. wzorców
Wybór wzorców, wskaźników czy rozpuszczalników do chromatografii jako odczynników o specjalnym przeznaczeniu opiera się na niepełnym zrozumieniu ich funkcji w kontekście analizy chemicznej. Wzorce chemiczne są niezbędne do kalibracji instrumentów oraz zapewnienia dokładności pomiarów, co jest podstawą każdej analizy. Użycie wzorców o odpowiedniej czystości i znanym składzie jest kluczowe dla uzyskania wiarygodnych wyników. Wskaźniki, takie jak fenoloftaleina czy oranż metylowy, mają kluczowe znaczenie w reakcjach titracyjnych, gdzie zmiana koloru sygnalizuje osiągnięcie punktu końcowego i umożliwia precyzyjne określenie stężenia substancji. Rozpuszczalniki do chromatografii są istotne, jako że ich właściwości wpływają na skuteczność separacji składników w próbce. Wybierając niewłaściwą odpowiedź, można przeoczyć rolę, jaką odczynniki o specjalnym przeznaczeniu odgrywają w osiąganiu wysokiej jakości wyników eksperymentalnych. W praktyce laboratoryjnej kluczowe jest zrozumienie, które substancje są stosowane do konkretnych celów, co może wpłynąć na jakość i powtarzalność wyników analizy. Dlatego ważne jest, aby nie mylić ogólnych roztworów z substancjami o specjalistycznym zastosowaniu, co może prowadzić do błędów w analizie i interpretacji danych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. pierwotnej
B. średniej laboratoryjnej
C. analitycznej
D. ogólnej
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego terminologii używanej w analizach prób. Odpowiedź 'ogólnej' sugeruje, że próbka jest reprezentatywna dla całej partii, ale nie odnosi się do konkretnego kontekstu pobierania próbek. W rzeczywistości próbki ogólne są zbierane z różnych miejsc w partii, co może prowadzić do niejednorodności wyników, co jest niezgodne z praktykami pobierania próbek. Z kolei 'średnia laboratoryjna' odnosi się do próbek, które są mieszane z różnych prób pierwotnych, co nie jest właściwym terminem dla pojedynczej próbki pobranej z jednego miejsca. W praktyce średnia laboratoryjna jest używana do uzyskiwania wyników z kilku próbek, co znacznie różni się od pojęcia próbki pierwotnej. Odpowiedź 'analitycznej' może prowadzić do mylnego przekonania, że próbka odnosi się do etapu analizy, kiedy w rzeczywistości próbka analityczna odnosi się do materiału, który jest wykorzystywany do przeprowadzenia analizy, ale może być przygotowywany na podstawie prób pierwotnych. Te błędne koncepcje mogą prowadzić do niewłaściwej interpretacji wyników badań oraz do niskiej jakości danych, co jest istotnym zagrożeniem w kontekście akredytacji laboratoriów i zapewnienia jakości w przemyśle.

Pytanie 38

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. Na2C2O4
C. NaOH
D. Na2B4O7·10H2O
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 39

Zestaw do filtracji pod obniżonym ciśnieniem powinien obejmować między innymi

A. kolbę okrągłodenną, lejek szklany z sączkiem, płuczkę bezpieczeństwa
B. kolbę miarową, lejek Büchnera, pompę próżniową
C. kolbę ssawkową, lejek Büchnera, płuczkę bezpieczeństwa
D. kolbę stożkową, lejek szklany z sączkiem, pompę próżniową
Odpowiedź wskazująca na kolbę ssawkową, lejek Büchnera oraz płuczkę bezpieczeństwa jest prawidłowa, ponieważ wszystkie te elementy są kluczowe w procesie sączenia pod zmniejszonym ciśnieniem. Kolba ssawkowa, znana również jako kolba próżniowa, jest specjalnie zaprojektowana do przechowywania cieczy pod ciśnieniem niższym niż ciśnienie atmosferyczne, co pozwala na efektywne sączenie. Lejek Büchnera, zbudowany z porcelany lub szkła, umożliwia szybkie i efektywne oddzielanie ciał stałych od cieczy, wykorzystując siłę próżni generowaną przez pompę. Płuczka bezpieczeństwa jest istotnym elementem, który chroni zarówno sprzęt, jak i użytkownika przed niebezpiecznymi substancjami chemicznymi, zapobiegając ich zassaniu do systemu próżniowego. Dobór tych elementów odpowiada standardom laboratoryjnym, gdzie bezpieczeństwo i efektywność są priorytetami. Przygotowując się do procedur laboratoryjnych związanych z filtracją, zawsze należy uwzględnić te trzy składniki, aby zapewnić prawidłowe i bezpieczne przeprowadzenie eksperymentów.

Pytanie 40

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. ogólną
B. pierwotną
C. średnią
D. śladową
Wybór odpowiedzi 'pierwotna', 'ogólna' czy 'śladowa' opiera się na nieporozumieniach dotyczących podstawowych pojęć związanych z przygotowaniem próbek. Odpowiedź 'pierwotna' sugeruje, że próbka jest reprezentatywna dla całej populacji, co jednak nie jest prawdą. W rzeczywistości, pierwotna próbka to ta, która została zebrana bez jakiejkolwiek obróbki, co nie odzwierciedla rzeczywistych właściwości populacji. Odpowiedź 'ogólna' jest myląca, ponieważ termin ten w kontekście próbek mógłby oznaczać całą zbieraną populację, a nie jej analizowaną reprezentację. Z kolei odpowiedź 'śladowa' odnosi się do próbek, które są w tak małej ilości, że mogą nie być użyteczne do rzetelnej analizy statystycznej lub chemicznej. Przygotowanie śladowej próbki może prowadzić do błędnych wniosków, gdyż nie przedstawia ona wiarygodnego obrazu całości, co może być szczególnie niebezpieczne w zastosowaniach przemysłowych czy medycznych. W teorii próbkowania istotne jest zrozumienie, że każda z tych błędnych odpowiedzi nie uwzględnia faktu, iż średnia próbka jest niezbędna do zapewnienia reprezentatywności i dokładności w pomiarach, co jest kluczowe w kontekście analizy danych i podejmowania decyzji.