Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 3 czerwca 2025 15:00
  • Data zakończenia: 3 czerwca 2025 15:07

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Domiary prostokątne
B. Numery obiektów budowlanych
C. Wysokości punktów terenu
D. Sytuacyjne szczegóły terenowe
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 2

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. starosta
B. wojewoda
C. główny geodeta kraju
D. geodeta uprawniony
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 3

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Biegunową oraz niwelacji geometrycznej
B. Biegunową oraz niwelacji trygonometrycznej
C. Ortogonalną oraz niwelacji trygonometrycznej
D. Ortogonalną oraz niwelacji geometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 4

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 100 m
B. 50 m
C. 150 m
D. 200 m
Wybierając odpowiedzi inne niż 100 m, można wprowadzić się w błąd co do podstawowych zasad pomiarowych w kontekście tras i punktów odniesienia. Odpowiedź wskazująca na 50 m nie tylko ignoruje fakt, że punkty hektometrowe są definiowane jako oddalone o 100 m, ale także sugeruje, że mogłyby być one stosowane w sytuacjach, gdzie precyzyjna lokalizacja nie jest kluczowa. To zaburza zrozumienie koncepcji dystansu w kontekście tras transportowych. Odpowiedź 150 m również jest myląca, ponieważ nie odzwierciedla rzeczywistych standardów pomiarowych, które uwzględniają jedynie jednostki metrów w wielokrotności setek. Natomiast 200 m wskazuje na znaczny błąd, gdyż wydłuża odległość między punktami, co może prowadzić do problemów w zarządzaniu ruchem i lokalizacji obiektów. W praktyce, używanie błędnych odległości może skutkować niewłaściwym planowaniem tras i zwiększoną nieefektywnością w operacjach logistycznych. Zrozumienie poprawnych jednostek miary i ich zastosowania jest niezbędne do prawidłowego funkcjonowania w branży transportowej, a także do unikania typowych błędów myślowych, które mogą zniekształcić rzeczywisty obraz sytuacji na trasie.

Pytanie 5

Z jaką precyzją podaje się wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych?

A. 0,01 m
B. 0,5 m
C. 0,05 m
D. 0,1 m
Wysokości elementów naziemnych uzbrojenia terenu na mapach zasadniczych podaje się z dokładnością do 0,01 m, co jest zgodne z wymaganiami standardów geodezyjnych. Taka precyzja jest niezbędna w kontekście planowania przestrzennego oraz inżynierii lądowej, gdzie drobne różnice w wysokości mogą mieć istotny wpływ na projektowane konstrukcje oraz zarządzanie wodami opadowymi. Na przykład, w przypadku budowy infrastruktury, jak drogi czy mosty, dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego spadku, co zapobiega gromadzeniu się wody na nawierzchni. W praktyce geodeci wykorzystują zaawansowane technologie, takie jak GPS o wysokiej precyzji oraz tachimetry, aby osiągnąć taką dokładność. Dobrą praktyką jest również stosowanie w terenie punktów osnowy geodezyjnej, które pozwalają na weryfikację pomiarów. Dodatkowo, precyzyjne pomiary wysokości są kluczowe w kontekście ochrony środowiska oraz projektowania obiektów w obszarach o skomplikowanej topografii, gdzie niewielkie różnice w wysokości mogą wpływać na ekosystemy.

Pytanie 6

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Geodeta uprawniony
B. Starosta
C. Marszałek Województwa
D. Geodeta Powiatowy
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 7

Godło mapy zasadniczej 6.115.27.4 w systemie współrzędnych PL-2000 wskazuje na mapę stworzoną w skali

A. 1:2000
B. 1:1000
C. 1:500
D. 1:5000
Odpowiedź 1:5000 jest poprawna, ponieważ w systemie oznaczeń map zasadniczych w Polsce, godło mapy 6.115.27.4 wskazuje na mapę opracowaną w skali 1:5000. Skala mapy to ważny aspekt, który wpływa na szczegółowość przedstawianych informacji geograficznych i ich zastosowanie w różnych dziedzinach, takich jak planowanie przestrzenne, budownictwo czy zarządzanie kryzysowe. W przypadku skali 1:5000, jeden centymetr na mapie odpowiada pięciu tysiącom centymetrów w rzeczywistości, co oznacza, że mapa jest stosunkowo szczegółowa i może być używana do analizy małych obszarów. Jest to standardowa skala dla map miejskich, co pozwala na dokładne odwzorowanie ulic, budynków oraz infrastruktury. W praktyce, takie mapy są wykorzystywane m.in. przez architektów, inżynierów oraz planistów, którzy potrzebują precyzyjnych danych do projektów budowlanych oraz rozwoju urbanistycznego. Rekomendacje dotyczące stosowania odpowiednich skal map są również zawarte w normach ISO dotyczących kartografii, co podkreśla ich znaczenie w profesjonalnym środowisku.

Pytanie 8

Aby ustanowić osnowę pomiarową, należy przeprowadzić terenowy wywiad na podstawie mapy

A. przeglądową
B. zasadniczą
C. topograficzną
D. klasyfikacyjną
Osnowa pomiarowa jest kluczowym elementem w geodezji, a jej zakładanie wymaga precyzyjnej dokumentacji i analizy terenu. Mapa zasadnicza, która jest szczegółowym opracowaniem graficznym terenu, zawiera niezbędne informacje dotyczące ukształtowania terenu, granic działek, istniejącej infrastruktury oraz innych istotnych elementów. Dzięki wykorzystaniu mapy zasadniczej, geodeta może dokładnie zidentyfikować miejsca, które będą wymagały szczegółowego pomiaru oraz ustalić odpowiednie punkty osnowy, które będą podstawą do dalszych prac pomiarowych. Przykładowo, w przypadku planowania budowy obiektu, analiza mapy zasadniczej pozwala na zlokalizowanie punktów referencyjnych oraz ustalenie granic działki. Dobre praktyki w zakresie zakładania osnowy pomiarowej podkreślają znaczenie dokładności i szczegółowości mapy zasadniczej, co ma kluczowe znaczenie dla jakości przeprowadzanych pomiarów oraz późniejszych analiz.

Pytanie 9

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. sprawozdanie techniczne
B. faktura za zrealizowane zlecenie
C. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
D. kopia zawodowych uprawnień geodety
W kontekście dokumentacji technicznej przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego, warto zauważyć, że faktura za wykonane zlecenie, oświadczenie o wykonaniu pracy zgodnie z aktualnymi przepisami oraz kopia uprawnień zawodowych geodety to dokumenty, które nie spełniają roli sprawozdania technicznego i nie zastępują go. Faktura jest dowodem dokonania płatności za usługi geodezyjne, ale nie zawiera szczegółowych informacji o samym procesie pomiarowym, co jest kluczowe dla zapewnienia jakości i transparentności prac geodezyjnych. Oświadczenie o wykonaniu pracy zgodnie z przepisami, chociaż istotne w kontekście zapewnienia zgodności z normami, również nie dostarcza szczegółowej dokumentacji technicznej, która jest niezbędna do analizy i oceny wykonanych pomiarów. Z kolei kopia uprawnień zawodowych geodety stanowi dowód na posiadane kwalifikacje, ale nie odnosi się do specyfiki zrealizowanej pracy geodezyjnej. Tego rodzaju pomyłki mogą wynikać z braku zrozumienia, jak ważne jest dokumentowanie każdego etapu pracy geodezyjnej i jakie informacje są kluczowe dla weryfikacji wykonanych usług. Rzetelna dokumentacja techniczna, taka jak sprawozdanie, jest niezbędna w kontekście odpowiedzialności zawodowej i jakości świadczonych usług geodezyjnych, a także dla przyszłych analiz i badań w tej dziedzinie.

Pytanie 10

Na jakiej długości od początku trasy usytuowany jest punkt oznaczony 2/3+57,00 m?

A. 2557,00 m
B. 557,00 m
C. 357,00 m
D. 2357,00 m
Prawidłowa odpowiedź to 2357,00 m, ponieważ oznaczenie 2/3+57,00 m wskazuje na sposób określania odległości na trasie. W kontekście geodezji i inżynierii lądowej, '2/3' oznacza dwa trzecie odcinka, które zostało już wyznaczone. Przyjmując, że '57,00 m' to dodatkowa odległość, którą należy dodać, obliczamy 2/3 z 3000 m (przykładowo, jeśli pełna długość trasy wynosi 3000 m), co daje 2000 m, a następnie dodajemy 57,00 m, co łącznie daje 2357,00 m. Takie podejście przydaje się w praktyce inżynieryjnej, gdyż pozwala na precyzyjne wyznaczanie punktów na trasach, co jest kluczowe dla prawidłowego prowadzenia robót budowlanych czy projektowania infrastruktury. W standardach geodezyjnych, takich jak PN-EN 1878, określone są metody pomiaru i oznaczania odległości, które są niezbędne w każdym projekcie budowlanym.

Pytanie 11

Jaki wzór powinien być użyty do obliczenia sumy kątów wewnętrznych w zamkniętym poligonie?

A. [β]t = (n + 2) · 200g
B. [β]t = Ak – Ap + n · 200g
C. [β]t = Ap – Ak + n · 200g
D. [β]t = (n - 2) · 200g
Wzór [β]t = (n - 2) · 200g jest kluczowy do obliczenia sumy kątów wewnętrznych w poligonie zamkniętym, gdzie n oznacza liczbę boków. W przypadku wielokątów, suma kątów wewnętrznych wynika z faktu, że każdy dodatkowy bok wprowadza dodatkowe kąty. W praktyce, dla trójkąta, który ma 3 boki, suma kątów wynosi 180°, co odpowiada wzorowi (3 - 2) · 180° = 180°. Dla czworokąta (4 boki) suma kątów wynosi 360° – (4 - 2) · 180° = 360°. Wzór ten jest szeroko stosowany w geometrii i architekturze, a także w inżynierii, gdzie dokładne obliczenia kątów są niezbędne do projektowania struktur. Zrozumienie tego wzoru pozwala na lepsze planowanie i realizację projektów, a także unikanie błędów konstrukcyjnych.

Pytanie 12

Miary określające lokalizację mierzonej pikiety nazywają się

A. domiarami biegunowymi
B. domiarami prostokątnymi
C. kątami wierzchołkowymi
D. przecięciami
Wybierając inne odpowiedzi, można napotkać na pewne nieporozumienia dotyczące terminologii geodezyjnej. Kąty wierzchołkowe są terminem używanym w geometrii, ale w kontekście pomiarów geodezyjnych nie odnoszą się one bezpośrednio do określania położenia pikiet. W rzeczywistości, kąt wierzchołkowy to kąt utworzony przez dwa boki figury geometrycznej, a nie narzędzie do pomiaru lokalizacji punktów w przestrzeni. Przecięcia odnoszą się do miejsc, w których dwie linie się krzyżują, co w kontekście geodezji nie jest adekwatnym opisem miar położenia. Może to prowadzić do błędnych założeń, ponieważ nie uwzględnia istoty pomiarów opartych na kierunkach i odległościach. Domiary prostokątne, z kolei, polegają na określaniu punktów na podstawie układów prostokątnych, co również nie jest zgodne z podstawowymi zasadami pomiarów biegunowych. Użycie tych terminów zamiast domiarów biegunowych może prowadzić do zamieszania w analizach geodezyjnych oraz ograniczać trafność pomiarów. Dlatego ważne jest, aby podczas nauki geodezji skoncentrować się na poprawnym użyciu terminologii, aby uniknąć błędów w praktyce pomiarowej.

Pytanie 13

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. szarym
B. czarnym
C. brązowym
D. żółtym
Wybór kolorów czarnego, szarego czy żółtego do przedstawiania naturalnych form rzeźby terenu nie jest zgodny z przyjętymi standardami kartograficznymi. Czarne barwy na mapie są zazwyczaj zarezerwowane dla elementów sztucznych, takich jak drogi, budynki czy granice administracyjne. Użycie czerni do reprezentacji rzeźby terenu może prowadzić do nieporozumień w interpretacji mapy, gdyż może sugerować znacznie bardziej płaskie lub zabudowane obszary. Podobnie, kolor szary, choć czasem stosowany do przedstawiania cieni lub obiektów nieczytelnych, nie nadaje się do rzeźby terenu, gdyż może wprowadzać w błąd, sugerując, że dany teren jest mniej istotny lub nieaktywny geologicznie. Żółty kolor z kolei jest często używany do oznaczania obszarów rolniczych lub pustynnych, co również nie jest odpowiednie dla przedstawienia form rzeźby terenu. Błędne przypisanie kolorów do form terenu na mapach może prowadzić do poważnych konsekwencji w analizach geograficznych czy przy planowaniu przestrzennym, dlatego ważne jest, aby stosować odpowiednią kolorystykę zgodną z uznanymi konwencjami i praktykami w kartografii.

Pytanie 14

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. trzpieni.
B. palików drewnianych.
C. bolców.
D. znaków z kamienia.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 15

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Ewidencyjnej
B. Topograficznej
C. Wysokościowej
D. Sytuacyjnej
Wybór błędnych nakładek tematycznych do przedstawienia włązu studzienki kanalizacyjnej na mapie zasadniczej może wynikać z niepełnego zrozumienia ich funkcji oraz przeznaczenia. Nakładka ewidencyjna, która jest często mylona z sytuacyjną, ma na celu dokumentowanie i ewidencjonowanie obiektów w kontekście prawnym oraz administracyjnym. Nie zawiera jednak szczegółowych informacji o lokalizacji i funkcjonowaniu infrastruktury technicznej, co czyni ją nieodpowiednią do przedstawienia elementów takich jak studzienki kanalizacyjne. Nakładka wysokościowa jest stworzona do przedstawiania poziomów terenu i obiektów w kontekście wysokościowym; nie dostarcza informacji dotyczących układu infrastruktury podziemnej. Z kolei nakładka topograficzna, koncentrująca się na ogólnych ukształtowaniach terenu, również nie uwzględnia szczegółowych informacji na temat obiektów, które są kluczowe dla zarządzania infrastrukturą, takich jak studzienki. Zastosowanie niewłaściwej nakładki może prowadzić do nieefektywnego zarządzania infrastrukturą oraz utrudnienia w przeprowadzaniu niezbędnych prac konserwacyjnych, co w dłuższej perspektywie może prowadzić do poważnych problemów związanych z funkcjonowaniem systemów kanalizacyjnych. Dlatego ważne jest, aby stosować odpowiednie nakładki tematyczne zgodnie z ich przeznaczeniem, co jest zgodne z najlepszymi praktykami w dziedzinie zarządzania danymi przestrzennymi.

Pytanie 16

Kontrolę tyczenia, polegającą na weryfikacji długości boków oraz przekątnych pojedynczych prostokątów, kwadratów lub ich zestawień, wykonuje się w trakcie prac niwelacyjnych

A. punktów rozproszonych
B. siatkową
C. tras
D. profili
Odpowiedzi wskazujące na kontrolę tyczenia profili, trasy oraz punktów rozproszonych opierają się na niepełnym zrozumieniu koncepcji niwelacji i jej zastosowań w praktyce inżynieryjnej. Kontrola profili dotyczy najczęściej określenia kształtu i wymiarów elementów konstrukcyjnych, co nie obejmuje szczegółowej weryfikacji geometrii siatki. W przypadku tras, chodzi głównie o wyznaczanie ścieżek dla dróg lub linii kolejowych, a więc kontrola tyczenia nie odnosi się bezpośrednio do geometrycznej dokładności prostokątów czy kwadratów. Z kolei punkty rozproszone są używane do pomiarów lokalizacji różnych obiektów, co również nie przekłada się na kontrolę kształtów i wymiarów prostokątów. Zrozumienie, że kontrola tyczenia w kontekście niwelacji powinno dotyczyć siatki geodezyjnej, a nie pojedynczych elementów, jest kluczowe. Często błędne odpowiedzi wynikają z mylnego interpretowania terminologii oraz niewłaściwego odniesienia do praktycznych zastosowań w geodezji. Właściwe podejście do kontroli tyczenia zapewnia jakość i bezpieczeństwo konstrukcji, dlatego ważne jest, aby stosować odpowiednie metody oraz standardy w tej dziedzinie.

Pytanie 17

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2742 m
B. 2472 m
C. 2427 m
D. 2724 m
Punkt na profilu podłużnym zapisany jako 2/4+27 oznacza, że znajduje się on 2427 metrów od początku trasy. Taki zapis jest standardem w dokumentacji inżynieryjnej i geodezyjnej, gdzie '2' to numer odcinka trasy, '4' to numer kilometra, a '+27' to dodatkowe metry. Zrozumienie tego formatu jest kluczowe w pracach związanych z projektowaniem infrastruktury drogowej oraz kolejowej. Na przykład, gdy inżynierowie planują prace remontowe, muszą precyzyjnie określić lokalizację, aby uniknąć błędów i zapewnić bezpieczeństwo. W praktyce, takie zapisy pomagają w identyfikacji miejsc, w których potrzebne są interwencje, a także w komunikacji między różnymi zespołami roboczymi. Dobre praktyki branżowe zalecają stosowanie jednoznacznego systemu numeracji, co ułatwia lokalizację punktów kontrolnych i zarządzanie projektem. Warto również zwrócić uwagę na znaczenie precyzyjnych zapisów w kontekście zarządzania projektem, co pozwala na dokładne planowanie zasobów i terminów realizacji zadań.

Pytanie 18

Jakiej czynności nie przeprowadza się na stanowisku przed pomiarem kątów poziomych?

A. Ustawienia ostrości krzyża kresek
B. Ustawienia ostrości obrazu
C. Centrowania teodolitu
D. Pomiaru wysokości teodolitu
Pomiar wysokości teodolitu nie jest czynnością wykonywaną przed pomiarem kątów poziomych, ponieważ jego celem jest ustalenie orientacji w przestrzeni, a nie określenie wysokości instrumentu. Przed przystąpieniem do pomiarów kątów poziomych kluczowe jest centrowanie teodolitu nad punktem pomiarowym, co zapewnia dokładność wyników. Ustawienie ostrości obrazu i krzyża kresek są również niezbędne do precyzyjnego odczytu, jednak pomiar wysokości teodolitu jest zadaniem, które zazwyczaj realizuje się w kontekście pomiaru kątów pionowych lub w celu określenia różnic wysokości między punktami. W praktyce inżynieryjnej i geodezyjnej, zgodnie z normami, przed każdym pomiarem kątów poziomych wykonuje się te czynności, aby zminimalizować błędy i uzyskać wiarygodne dane. Przykładem może być sytuacja, w której geodeta ustawia teodolit w punkcie A, centrowanie na znaku geodezyjnym, ustawienie ostrości na obiekt, który będzie mierzył, a następnie przystępuje do pomiaru kątów do punktów B i C, co pozwala na dokładne obliczenia na podstawie zmierzonych kątów.

Pytanie 19

Określ wysokość osi celowej danego instrumentu, jeżeli pomiar na łacie niwelacyjnej umieszczonej na punkcie o wysokości 109,50 m wynosi 1300.

A. 109,63 m
B. 110,80 m
C. 108,20 m
D. 109,37 m
Podczas rozwiązywania tego problemu, niektórzy mogą błędnie interpretować odczyt na łacie jako bezpośrednią wysokość osi celowej, co prowadzi do nieprawidłowych wniosków. Na przykład, niektórzy mogą sądzić, że odczyt na łacie, 1300 mm, oznacza, że wysokość osi celowej jest równa wysokości punktu, co jest dużym uproszczeniem i błędem. Należy pamiętać, że odczyt na łacie odnosi się do różnicy wysokości między punktem, na którym znajduje się łata, a linią widzenia instrumentu. Kolejnym częstym błędem jest stosowanie jednostek miary w sposób niezgodny z zasadami, co może prowadzić do nieporozumień. Warto zauważyć, że w niwelacji kluczowe jest zachowanie spójności jednostek, co pozwala uniknąć pomyłek w obliczeniach. Ponadto, pomijanie kroków obliczeniowych, takich jak dodawanie wysokości punktu i odczytu na łacie, prowadzi do niepełnego zrozumienia metody niwelacji. Aby uniknąć błędów, warto zawsze stosować się do ustalonych procedur i standardów, które zapewniają prawidłowe i wiarygodne wyniki pomiarów. Praktyczne podejście do niwelacji wymaga zrozumienia nie tylko matematyki, ale również zasad działania instrumentów pomiarowych oraz ich właściwego użycia.

Pytanie 20

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/100
B. 1/500
C. 1/5000
D. 1/50
Błąd względny to stosunek błędu pomiarowego do wartości rzeczywistej pomiaru, wyrażony najczęściej w procentach lub w postaci ułamka. W tym przypadku mamy pomiar odcinka o długości 250,00 m z błędem średnim ±5 cm. Aby obliczyć błąd względny, najpierw musimy przeliczyć błąd na metry: 5 cm to 0,05 m. Następnie stosujemy wzór na błąd względny: Błąd względny = (błąd pomiaru / wartość rzeczywista) = (0,05 m / 250 m). Po wykonaniu obliczeń otrzymujemy błąd względny równy 0,0002, co po przekształceniu daje 1/5000. Ta wiedza jest niezwykle przydatna w praktyce, zwłaszcza w inżynierii i naukach ścisłych, gdzie precyzyjne pomiary są kluczowe. Zrozumienie błędów pomiarowych pozwala na lepsze projektowanie eksperymentów oraz stosowanie odpowiednich narzędzi do ich analizy. Współczesne standardy w zakresie metrologii zalecają regularne kalibracje urządzeń pomiarowych, aby zminimalizować błędy, co potwierdza znaczenie tego zagadnienia w praktyce.

Pytanie 21

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 5000
B. 1 : 2000
C. 1 : 500
D. 1 : 1000
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 22

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 15 m
B. 30 m
C. 25 m
D. 20 m
Dopuszczalna długość rzędnej wynosząca 25 m w pomiarach sytuacyjnych konturów budynków przy zastosowaniu metody domiarów prostokątnych jest zgodna z zaleceniami norm i standardów pomiarowych. Taka długość pozwala na efektywne wykonywanie pomiarów, minimalizując jednocześnie błędy związane z nieprawidłowym przenoszeniem wymiarów. Przykładowo, przy pomiarach na większych dystansach, błędy kumulacyjne mogą znacząco wpłynąć na dokładność wyników. Dlatego stosowanie rzędnych o długości 25 m jest praktycznym rozwiązaniem, które zapewnia równocześnie wysoką precyzję i efektywność pracy. W praktyce, taki wymiar pozwala na zastosowanie odpowiednich narzędzi pomiarowych, takich jak dalmierze optyczne, które są zoptymalizowane do pracy w takich odległościach. Dobrą praktyką jest także regularne kalibrowanie sprzętu, co dodatkowo zwiększa dokładność pomiarów. W kontekście przepisów budowlanych oraz norm geodezyjnych, długość rzędnej powinna być dostosowana do specyfiki terenu oraz rodzaju budowli, co czyni znajomość tego zagadnienia niezwykle istotnym elementem pracy geodety.

Pytanie 23

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 27g12c35cc
B. 527g12c35cc
C. 227g12c35cc
D. 127g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 24

Wyznacz wysokość punktu 10, jeśli wysokość punktu RpA wynosi HRpA = 125,500 m. Odczyt na łacie tylniej to t = 1500, a z przodu p = 0500.

A. H10 = 123,500 m
B. H10 = 142,500 m
C. H10 = 126,500 m
D. H10 = 124,500 m
Poprawna odpowiedź to H10 = 126,500 m. Aby obliczyć wysokość punktu 10, musimy uwzględnić wysokość punktu RpA oraz odczyty dokonane na łacie. Wysokość punktu RpA wynosi 125,500 m. Odczyt wsteczny na łacie wynosi 1500, co oznacza, że musimy dodać tę wartość do wysokości RpA, ponieważ jest to odczyt z laty umieszczonej w wyższej pozycji. Następnie odczyt w przód na łacie wynosi 0500, co oznacza, że musimy odjąć tę wartość od wcześniejszego wyniku. Obliczenia przedstawiają się następująco: H10 = HRpA + t - p = 125,500 m + 1500 - 0500 = 126,500 m. Tego rodzaju obliczenia są powszechnie stosowane w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych oraz do pomiarów terenowych. Warto wiedzieć, że stosowanie łaty jest standardową praktyką w pomiarach geodezyjnych, co pozwala na uzyskiwanie dokładnych wyników. Zrozumienie tych zasad jest niezbędne dla każdego geodety.

Pytanie 25

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 200°
B. 0° – 300°
C. 0° – 400°
D. 0° – 100°
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 26

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Biegunowa
B. Wcięć kątowych
C. Domiarów prostokątnych
D. Ortogonalna
Wybór innych metod pomiarowych, takich jak ortogonalna czy domiary prostokątne, pokazuje, że nie do końca rozumiesz zasady geodezyjne. Metoda ortogonalna, opierająca się na pomiarze prostokątnych współrzędnych, może prowadzić do błędów, szczególnie w trudnym terenie, bo nie bierze pod uwagę zmienności kątów i odległości. Domiary prostokątne są może przydatne w niektórych sytuacjach, ale nie są tak elastyczne i precyzyjne jak metoda biegunowa, zwłaszcza w przypadku pomiarów w różnych płaszczyznach. Wcięcia kątowe? Również nie są najlepszym wyborem do pomiarów terenowych, bo skupiają się głównie na kątach wewnętrznych obiektów, co w geodezji mało się przydaje. W praktyce, trzeba wybierać metodę pomiarową w zależności od terenu i wymagań co do dokładności. Źle dobrane metody mogą prowadzić do poważnych błędów pomiarowych i problemów z danymi geodezyjnymi.

Pytanie 27

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [β] = AP + AK - n × 200g
B. [α] = AK + AP - n × 200g
C. [α] = AK – AP + n × 200g
D. [β] = AP – AK + n × 200g
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 28

W regionalnej części zbioru geodezyjnego i kartograficznego przechowywane są mapy topograficzne w skali

A. 1 : 20 000
B. 1 : 10 000
C. 1 : 500 000
D. 1 : 300 000
Odpowiedź 1: 1 : 10 000 jest poprawna, gdyż w wojewódzkiej części zasobu geodezyjnego i kartograficznego gromadzone są przede wszystkim mapy topograficzne w tej skali. Mapy w skali 1 : 10 000 są szczegółowymi przedstawieniami terenu, co pozwala na precyzyjne odwzorowanie obiektów oraz ich wzajemnych relacji. Tego typu mapy są wykorzystywane w planowaniu przestrzennym, urbanistyce oraz w działalności inwestycyjnej, gdzie niezbędna jest dokładna wiedza o infrastrukturze oraz ukształtowaniu terenu. W polskim prawodawstwie oraz normach geodezyjnych, takich jak „Rozporządzenie w sprawie szczegółowych zasad i trybu prowadzenia państwowego zasobu geodezyjnego i kartograficznego”, jasno określono, że skala 1 : 10 000 jest standardem, który pozwala na efektywne zarządzanie danymi geodezyjnymi. Dodatkowo, mapy te są kluczowe w sytuacjach kryzysowych, takich jak planowanie akcji ratunkowych czy zarządzanie katastrofami naturalnymi, dzięki czemu można szybko ocenić sytuację i podjąć odpowiednie działania.

Pytanie 29

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. datę zakończenia pracy
B. dane dotyczące wykonawcy
C. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
D. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 30

Co należy zrobić, jeśli na poprawnie sporządzonym szkicu polowym błędnie zapisano odległość między dwoma punktami osnowy poziomej?

A. zamalować błędny zapis korektorem i wpisać na nowo właściwą odległość
B. przekreślić nieprawidłowy zapis i wpisać poprawną odległość
C. przerysować cały szkic od nowa
D. napisać obok błędnego wpisu 'źle' i podać właściwą odległość
Przekreślenie błędnego zapisu i wpisanie właściwej odległości jest najwłaściwszym podejściem w przypadku korekty szkicu polowego. Taka praktyka jest zgodna z zasadami prowadzenia dokumentacji geodezyjnej, gdzie kluczowe jest zachowanie przejrzystości i czytelności zapisów. Przekreślenie błędnego zapisu umożliwia zachowanie oryginalnych danych, co jest istotne w przypadku weryfikacji lub audytu realizacji prac geodezyjnych. Poprawny zapis powinien być wyraźnie zaznaczony, co minimalizuje ryzyko pomyłek w dalszych etapach analizy danych. Dobrą praktyką jest także stosowanie jasnych kolorów i odpowiednich narzędzi do korekty, aby każdy, kto będzie korzystał ze szkicu, mógł szybko zidentyfikować dokonane zmiany. Przykładem może być sytuacja, w której geodeta przyjmuje nowe pomiary w terenie, a korekta zapisu odległości między punktami osnowy nie tylko zwiększa precyzję, ale także wspiera zachowanie rzetelności dokumentacji. Zastosowanie takiej metody korekty jest zgodne z normami branżowymi, które zalecają, aby wszelkie zmiany były dokonywane w sposób przejrzysty, co jest kluczowe dla zachowania wysokich standardów pracy w geodezji.

Pytanie 31

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. IV
B. III
C. II
D. I
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 32

Jakim symbolem oznaczane są rury kanalizacyjne sanitarne na mapach zasadniczych?

A. ko
B. ks
C. kd
D. kp
Odpowiedź "ks" jest poprawna, ponieważ w systemach oznaczeń stosowanych na mapach zasadniczych przewody kanalizacyjne sanitarne są właśnie oznaczane tym symbolem. Oznaczenie to jest zgodne z obowiązującymi normami, które zapewniają jednolitość w interpretacji danych na mapach. W praktyce, wiedza na temat symboli wykorzystywanych do oznaczania różnych rodzajów przewodów jest kluczowa dla inżynierów budowlanych, architektów oraz projektantów instalacji sanitarnych, ponieważ pozwala na prawidłowe planowanie i wykonawstwo. Właściwe oznaczenie kanałów sanitarnych ma również znaczenie w kontekście późniejszego serwisowania i konserwacji systemów odwadniających budynków, co jest normą w dobrych praktykach budowlanych. Na przykład, w przypadku awarii lub potrzeby modernizacji, zrozumienie systemu oznaczeń pozwala na szybszą lokalizację i identyfikację poszczególnych elementów instalacji, co znacząco przyspiesza czas reakcji i zmniejsza koszty napraw. Ponadto, znajomość obowiązujących standardów, takich jak PN-EN 12056 dotyczących systemów odprowadzania wód, podkreśla wagę poprawnego stosowania symboliki na mapach zasadniczych, co jest niezbędne do zapewnienia bezpieczeństwa i funkcjonalności infrastruktury sanitarnej.

Pytanie 33

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Reperów
B. Punktów rozproszonych
C. Trygonometryczna
D. Geometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 34

Na mapach terenowych nie uwzględnia się obiektów budowlanych

A. drewnianych przeznaczonych do wyburzenia
B. murowanych gospodarczych w stanie surowym
C. murowanych mieszkalnych w etapie projektowania
D. drewnianych, które nie są zamieszkałe
Odpowiedź 'murowanych mieszkalnych w fazie projektu' jest poprawna, ponieważ na szkicach polowych, które służą do przedstawiania istniejących warunków i elementów zagospodarowania przestrzennego, nie zaznacza się budynków, które są jedynie na etapie planowania. Budynki znajdujące się w fazie projektu nie mają jeszcze fizycznej obecności, co oznacza, że nie powinny być uwzględniane w dokumentacji przedstawiającej aktualny stan terenu. W praktyce architektonicznej i urbanistycznej, zgodnie z wytycznymi i standardami dotyczącymi prowadzenia dokumentacji, należy odzwierciedlać jedynie te obiekty, które są już zrealizowane lub w trakcie realizacji. Taka zasada pozwala na zachowanie przejrzystości i wiarygodności dokumentów, co jest kluczowe w procesie planowania przestrzennego oraz w analizach dotyczących zagospodarowania terenu. Przykładem zastosowania tej zasady jest przygotowanie raportów dotyczących uwarunkowań środowiskowych, gdzie zazwyczaj ujmuje się jedynie obiekty istniejące oraz infrastrukturę, a nie plany przyszłych inwestycji.

Pytanie 35

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Do II i III grupy
B. Do I i II grupy
C. Tylko do II grupy
D. Tylko do I grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 36

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 50 cm
B. 5 cm
C. 2,5 cm
D. 25 cm
Wybór innych odpowiedzi, takich jak 5 cm, 2,5 cm czy 50 cm, wynika z nieporozumienia dotyczącego relacji między długościami na mapie a rzeczywistymi odległościami, które te długości reprezentują. Odpowiedź 5 cm sugeruje, że skala 1:40 000 znacząco zmniejsza długość odcinka, co z jednej strony jest prawdą, ponieważ większa skala prowadzi do mniejszej reprezentacji, ale na poziomie praktycznym konwersja jest znacznie bardziej skomplikowana. Odpowiedź 2,5 cm jest zbyt drastycznym zmniejszeniem; wynika to z błędnego wyliczenia, które nie uwzględnia proporcji pomiędzy dwiema skalami. Natomiast wybór 50 cm jest zupełnie mylny, ponieważ sugeruje brak zmiany długości w kontekście zmiany skali, co jest logicznie i matematycznie błędne. Kluczowym błędem myślowym w tych odpowiedziach jest niezrozumienie zasady działania skal mapy – im większa skala, tym mniej rzeczywistej przestrzeni jest reprezentowanej na mapie. Proporcjonalność w odniesieniu do skali jest fundamentalnym aspektem w nawigacji i geodezji. Dlatego ważne jest, aby podczas analizy długości odcinków zawsze uwzględniać, jak przeliczenie na inną skalę wpływa na długość i przedstawianie rzeczywistości.

Pytanie 37

Na czym polega metoda niwelacji trygonometrycznej?

A. Na obliczaniu różnic wysokości na podstawie pomiarów kątów i odległości.
B. Na bezpośrednim pomiarze długości przy użyciu miarki, co nie ma związku z pomiarami wysokościowymi.
C. Na tworzeniu profili terenu za pomocą modelowania 3D, co nie dotyczy bezpośrednio pomiarów wysokościowych.
D. Na określaniu współrzędnych punktów za pomocą GPS, co nie jest związane z niwelacją trygonometryczną.
Pozostałe odpowiedzi wskazują na nieporozumienia dotyczące metod pomiarowych w geodezji. Bezpośredni pomiar długości przy użyciu miarki jest techniką podstawową, ale nie ma zastosowania w niwelacji trygonometrycznej, która koncentruje się na pomiarze różnic wysokości, a nie odległości poziomych. Z kolei wykorzystanie GPS do określania współrzędnych punktów to inna, bardziej nowoczesna technika, która stosuje się do pomiarów sytuacyjnych, ale nie angażuje obliczania różnic wysokości w taki sposób, jak to czyni niwelacja trygonometryczna. GPS dostarcza współrzędnych XYZ, ale nie opiera się na trygonometrii w kontekście pomiarów wysokościowych. Odpowiedź dotycząca tworzenia profili terenu za pomocą modelowania 3D to kolejny przykład nieporozumienia. Chociaż modelowanie 3D jest użyteczne w wizualizacji i analizie terenu, nie jest to metoda pomiaru wysokościowego per se, a raczej narzędzie do dalszej obróbki danych już zebranych, w tym za pomocą niwelacji trygonometrycznej. Wspomniane błędne odpowiedzi często wynikają z niezrozumienia specyfiki i zastosowań różnych metod geodezyjnych. W praktyce, dobór odpowiedniej metody pomiarowej zależy od kontekstu projektu, wymagań dokładnościowych oraz dostępności technologii. Każda z tych metod ma swoje miejsce w szerokim spektrum geodezyjnych prac terenowych i projektowych.

Pytanie 38

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
B. Stabilizacji znaków punktów osnowy geodezyjnej
C. Uzyskania informacji o terenie, który ma być poddany pomiarom
D. Rozpoznania w terenie punktów osnowy geodezyjnej
Zgłoszone odpowiedzi dotyczące działań podejmowanych w czasie wywiadu terenowego, takie jak identyfikacja punktów osnowy geodezyjnej, porównanie treści materiałów PZG i K ze stanem faktycznym oraz pozyskiwanie informacji o terenie, są poprawne i zgodne z zakresem prac, które wykonuje się podczas takiego wywiadu. Identyfikacja punktów osnowy geodezyjnej jest niezbędna, aby upewnić się, że pomiary będą odnosiły się do precyzyjnych i aktualnych danych, które są kluczowe w geodezji. Porównanie treści materiałów PZG i K z rzeczywistością terenową pozwala na weryfikację poprawności wcześniejszych pomiarów i dokumentacji, co jest zwłaszcza istotne przy planowaniu nowych inwestycji budowlanych. Pozyskiwanie informacji o terenie, który ma być objęty pomiarem, jest kluczowym krokiem, aby zrozumieć kontekst geograficzny i prawny obszaru badań. Wszelkie te czynności są zgodne z najlepszymi praktykami branżowymi, które nakładają na geodetów obowiązek dokładnej analizy terenu przed przystąpieniem do bardziej technicznych działań, takich jak stabilizacja znaków. Ignorowanie tych procesów prowadzi do nieprawidłowego wykonywania prac geodezyjnych, co może skutkować błędami w pomiarach i w konsekwencji niewłaściwą dokumentacją, co z kolei stanowi naruszenie standardów jakości w geodezji.

Pytanie 39

Niwelator to narzędzie służące do dokonania pomiaru

A. kątów nachylenia
B. wysokości punktów
C. kątów zenitalnych
D. różnic wysokości
Niwelator to dosyć specyficzne urządzenie, które służy głównie do mierzenia różnic wysokości pomiędzy punktami w terenie. Jak to działa? Wykorzystuje coś w rodzaju poziomicy, by dokładnie określić te różnice. To bardzo ważne w różnych dziedzinach, takich jak budownictwo czy geodezja, bo dobrze wykonane pomiary wysokości są kluczowe. Na przykład, kiedy budujemy fundamenty, musimy być pewni, że wszystko jest na właściwej wysokości, żeby budowla była stabilna. Niwelatory są też wykorzystywane do tworzenia map topograficznych, gdzie precyzyjne różnice w wysokościach terenu mają ogromne znaczenie. W branży mamy różne normy, jak ISO, które przypominają, jak ważne są dokładne pomiary. A co ciekawe, teraz mamy również niwelatory elektroniczne, które jeszcze bardziej podnoszą jakość pomiarów, co naprawdę ma znaczenie w dzisiejszych projektach budowlanych.

Pytanie 40

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. +0,0010g
B. -0,0020g
C. +0,0020g
D. -0,0010g
Wybór odpowiedzi innych niż -0,0010g często wynika z nieporozumienia dotyczącego właściwego obliczania różnicy kątów, a także z niewłaściwego zrozumienia konwencji stosowanych w geodezji. Często błędne podejścia opierają się na pomyłkach przy odejmowaniu wartości kątowych, gdzie zamiast prawidłowego obliczenia różnicy, użytkownicy mogą mylnie utożsamiać wartości bez uwzględnienia ich kontekstu. Na przykład, obliczenia takie jak -0,0020g lub +0,0010g pojawiają się, gdy ktoś niepoprawnie interpretuje wzory lub wprowadza nieprawidłowe założenia dotyczące kierunku pomiaru. Dodatkowo, w geodezyjnych odczytach, ważne jest, aby pamiętać o kierunku pomiaru i standardowych korekcjach, które mogą wpłynąć na ostateczne wyniki. Użytkownicy mogą również nie dostrzegać, że pomiary kątowe są relatywne, a ich interpretacja wymaga uwzględnienia pełnego obiegu kątowego, co prowadzi do typowych błędów przy zliczaniu kątów przekraczających 360 stopni. Ostatecznie, kluczowe jest, aby przy obliczeniach kątów stosować zasady obowiązujące w danym kontekście geodezyjnym, co pozwala na dokładne i zgodne z normami wyniki.