Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 czerwca 2025 14:44
  • Data zakończenia: 9 czerwca 2025 14:49

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 24
B. 75
C. 60
D. 30
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 2

Pasek zębaty przenosi moc pomiędzy kołami pasowymi. W trakcie rutynowej inspekcji paska należy ocenić jego poziom zużycia oraz

A. bicie osiowe.
B. nawilżenie.
C. temperaturę.
D. stan napięcia.
Wybór smarowania jako istotnego aspektu konserwacji paska zębatego jest mylny, ponieważ paski zębate nie wymagają smarowania, co odróżnia je od innych elementów napędowych, takich jak łańcuchy. W rzeczywistości smarowanie może nawet zaszkodzić, ponieważ może prowadzić do gromadzenia się brudu i zanieczyszczeń, co negatywnie wpłynie na działanie paska oraz kół pasowych. Bicie osiowe, będące innym błędnym wyborem, odnosi się do osi, na których zamontowane są elementy napędowe. Choć może mieć wpływ na działanie układów mechanicznych, to w kontekście paska zębatego kluczowe jest monitorowanie jego napięcia, a nie samego bicia. Temperatura, będąca kolejną nieprawidłową odpowiedzią, jest również istotnym czynnikiem, ale nie w kontekście konserwacji paska. Zbyt wysoka temperatura może prowadzić do degradacji materiału paska, jednak kontrola ta nie jest tak kluczowa jak monitorowanie napięcia, które bezpośrednio wpływa na wydajność przenoszenia napędu. Zrozumienie tych różnic jest kluczowe dla prawidłowego utrzymania i funkcjonowania systemów napędowych, a ignorowanie tych zasad może prowadzić do poważnych awarii oraz zwiększenia kosztów serwisowych.

Pytanie 3

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Falownik
C. Prostownik
D. Stycznik
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 4

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Silikon
B. Poliamid
C. Poliuretan
D. Lateks
Wybór nieodpowiednich tworzyw sztucznych do produkcji kół zębatych może prowadzić do znacznych problemów w funkcjonowaniu całego systemu. Poliuretan, choć elastyczny i odporny na ścieranie, ma ograniczone właściwości mechaniczne, które mogą prowadzić do deformacji pod wpływem obciążeń, co jest nieakceptowalne w przypadku kół zębatych wymagających precyzyjnego dopasowania. Silikon, z kolei, jest materiałem charakteryzującym się doskonałą odpornością na wysokie temperatury i chemikalia, ale jego niska wytrzymałość na rozciąganie i kruchość czynią go niewłaściwym wyborem dla elementów narażonych na intensywne obciążenia mechaniczne. Lateks, mimo że jest elastyczny, nie zapewnia odpowiedniej twardości i odporności na ścieranie, co czyni go mało praktycznym w zastosowaniach wymagających dużej precyzji i trwałości. Wybierając materiał do produkcji kół zębatych, kluczowe jest zrozumienie, że odpowiednie właściwości mechaniczne, takie jak wytrzymałość, odporność na ścieranie oraz niskie tarcie, są niezbędne dla zapewnienia ich długowieczności i efektywności, co w przypadku wymienionych materiałów nie jest spełnione.

Pytanie 5

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. rozdzielające
B. dławiące
C. zwrotne
D. regulacyjne
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 6

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. szybkiego spustu
B. regulacji ciśnienia
C. przełączania obiegu
D. podwójnego sygnału
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 7

Jakie jest medium robocze w systemie hydraulicznym?

A. powietrze sprężone
B. olej pod ciśnieniem
C. woda pod ciśnieniem
D. energia elektryczna
Prąd elektryczny jako medium robocze w układzie hydraulicznym jest koncepcją mylną, ponieważ nie pełni on roli nośnika energii w tym kontekście. Układy hydrauliczne opierają się na mechanice płynów, a prąd elektryczny jest związany z obwodami elektrycznymi. W rzeczywistości w układach hydraulicznych energia jest przekazywana przez ciecz, co wskazuje na fundamentalną różnicę między hydrauliką a elektrycznością. Sprężone powietrze również nie jest medium hydraulicznym; jest to medium pneumatyczne, które działa na zasadzie ciśnienia powietrza, a nie cieczy. Pneumatyka znajduje zastosowanie w systemach, gdzie wymagana jest szybka i lekka akcja, ale nie jest w stanie przenosić tak dużych sił jak hydraulika. Woda pod ciśnieniem, choć może być stosowana w niektórych aplikacjach (np. w systemach gaśniczych), nie jest typowym medium roboczym w hydraulice przemysłowej, gdzie preferowane są oleje z uwagi na ich lepsze właściwości smarne i stabilność temperaturową. Typowym błędem jest mylenie dwóch różnych systemów - hydrauliki i pneumatyki - co prowadzi do niewłaściwego doboru mediów roboczych oraz potencjalnych awarii systemów. Należy pamiętać, że wybór medium roboczego ma kluczowe znaczenie dla efektywności i bezpieczeństwa działania układów mechanicznych.

Pytanie 8

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. omomierz
B. watomierz
C. amperomierz
D. woltomierz
Wybór watomierza, woltomierza lub amperomierza do sprawdzenia ciągłości połączeń elektrycznych wskazuje na nieporozumienie w podstawowych funkcjach tych instrumentów. Watomierz służy do pomiaru mocy elektrycznej, co jest istotne w analizie zużycia energii, ale nie ma zastosowania w diagnozowaniu ciągłości przewodów. Woltomierz mierzy napięcie w obwodzie, co również nie jest bezpośrednio związane z oceną ciągłości połączeń. Może on wskazywać, czy napięcie istnieje w danym punkcie obwodu, ale nie informuje o jakości połączeń ani o możliwych przerwach. Amperomierz, z kolei, mierzy natężenie prądu, a jego użycie do sprawdzania ciągłości połączeń jest równie niewłaściwe, ponieważ wymaga on przepływu prądu przez obwód. Aby sprawdzić ciągłość, potrzebny jest pomiar rezystancji, co można zrobić tylko za pomocą omomierza. Stosowanie niewłaściwych narzędzi wynika często z braku zrozumienia ich funkcji oraz błędnych założeń, że pomiar innych wielkości może dostarczyć podobnych informacji. Kluczowe jest zatem, aby każdy technik i elektryk znał odpowiednie metody i narzędzia do diagnostyki instalacji elektrycznych, co pozwoli na skuteczną i bezpieczną pracę.

Pytanie 9

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 30 V DC
B. 25 V DC
C. 20 V DC
D. 15 V DC
Napięcia 15 V DC, 30 V DC i 20 V DC nie mieszczą się w określonym zakresie zasilania dla sterownika PLC. Wybór zbyt niskiego napięcia, takiego jak 15 V DC, może prowadzić do niewłaściwego działania urządzenia. Sterownik PLC wymaga odpowiedniego napięcia, aby poprawnie funkcjonować i realizować zaprogramowane zadania. Zbyt niskie napięcie może skutkować niestabilnością pracy, co może prowadzić do błędów w przetwarzaniu sygnałów i w konsekwencji do awarii systemu. Z kolei napięcie 30 V DC przekracza dopuszczalny zakres zasilania, co stwarza ryzyko uszkodzenia komponentów, a nawet ich trwałego zniszczenia. W przypadku zasilania stosuje się zasady dotyczące tolerancji napięcia, które gwarantują bezpieczeństwo i efektywność działania urządzeń. Ponadto, 20 V DC, mimo że jest bliższe dolnej granicy, również nie spełnia wymogów określonych w dokumentacji, co może prowadzić do nieprzewidywalnych zachowań urządzenia oraz problemów z jego stabilnością. Wybór niewłaściwego napięcia zasilania jest częstym błędem, który może wynikać z niedostatecznej analizy specyfikacji technicznych i wymagań aplikacji. Kluczowe jest zrozumienie, że każde urządzenie ma swoje unikalne wymagania, które należy spełnić, aby zapewnić jego prawidłowe funkcjonowanie i bezpieczeństwo operacyjne.

Pytanie 10

Przedstawiony program sterowniczy to program napisany w języku

LI 0.00
OQ 0.00
AI 0.01
=Q 0.00
EP

A. IL
B. ST
C. LAD
D. FBD
Wybór niewłaściwego języka programowania może wynikać z niepełnego zrozumienia charakterystyk i zastosowań poszczególnych języków sterowników PLC. FBD (Function Block Diagram) jest językiem graficznym, który używa bloków funkcyjnych do modelowania systemów, co czyni go bardziej wizualnym, ale nie zawsze efektywnym w operacjach wymagających dużej precyzji, jak to ma miejsce w IL. Z kolei ST (Structured Text) to język tekstowy, ale bardziej przypominający tradycyjne języki programowania, co może wprowadzać w błąd użytkowników, którzy szukają prostoty i zwięzłości, jaką oferuje IL. LAD (Ladder Diagram) jest kolejnym językiem graficznym, który jest szczególnie przyjazny dla inżynierów przyzwyczajonych do schematów elektrycznych. Każdy z tych języków ma swoje mocne strony, ale nie można ich stosować zamiennie w sytuacjach, gdy precyzyjna manipulacja danymi jest kluczowa. Typowym błędem myślowym jest przekonanie, że język graficzny może zastąpić język tekstowy w kontekście programowania niskopoziomowego. W rzeczywistości, języki tekstowe, takie jak IL, oferują większą kontrolę nad procesem, co pozwala na optymalizację kodu i lepsze dostosowanie do specyficznych wymagań aplikacji. Dlatego istotne jest, aby inżynierowie automatyki dobrze rozumieli różnice między językami oraz ich zastosowania w praktyce, co pomoże uniknąć nieporozumień i błędnych wyborów w przyszłych projektach.

Pytanie 11

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Miernik przepływu powietrza
B. Miernik punktu rosy
C. Detektor wycieków
D. Termomanometr bimetaliczny
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 12

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
B. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
C. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
D. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
Odpowiedzi, które sugerują tylko odłączenie przewodów zasilających lub pneumatycznych, nie uwzględniają kluczowych aspektów bezpieczeństwa i prawidłowego wykonywania procedur serwisowych. Samo odłączenie przewodów zasilających nie jest wystarczające, ponieważ może prowadzić do niekontrolowanego działania systemu, co stwarza poważne zagrożenie zarówno dla osób pracujących przy urządzeniu, jak i dla samego sprzętu. W sytuacji, gdy zawór elektropneumatyczny wymaga wymiany, istotne jest, aby system był całkowicie nieaktywny, co można osiągnąć jedynie poprzez wprowadzenie sterownika PLC w tryb STOP. Zdarza się, że osoby pracujące przy automatyzacji pomijają ten krok, co może prowadzić do nieprzewidzianych reakcji mechanizmów, powodując uszkodzenie sprzętu lub wypadki. Ponadto, wyłączając zasilanie pneumatyczne, zapewniamy, że nie ma ciśnienia w układzie, co jest szczególnie ważne w przypadku systemów, które mogą być pod dużym obciążeniem. Warto również podkreślić, że dobrym zwyczajem jest wizualna weryfikacja stanu maszyny przed przystąpieniem do prac, a nie tylko poleganie na odłączeniu przewodów. Wiele standardów branżowych podkreśla znaczenie stosowania procedur blokady (lockout/tagout), które zapewniają, że urządzenia są całkowicie unieruchomione i zabezpieczone przed przypadkowym uruchomieniem. Ignorowanie tych zasad może prowadzić do poważnych konsekwencji zdrowotnych oraz finansowych.

Pytanie 13

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. chromowych
B. krzemowo-manganowych
C. krzemowych
D. chromowo-krzemowych
Wybór stali chromowej, chromowo-krzemowej czy krzemowo-manganowej jako materiałów rdzeniowych dla maszyn elektrycznych świadczy o pewnym nieporozumieniu w kwestii zastosowania materiałów ferromagnetycznych. Stal chromowa, choć charakteryzująca się wysoką odpornością na korozję, nie jest optymalnym materiałem dla rdzeni magnetycznych ze względu na wysokie straty magnetyczne, które prowadzą do obniżenia efektywności energetycznej urządzeń. Z kolei stal chromowo-krzemowa, mimo że zawiera krzem, nie ma takich samych właściwości magnetycznych jak czysta stal krzemowa, co ogranicza jej zastosowanie w maszynach elektrycznych. Dodatkowo, stal krzemowo-manganowa również nie jest odpowiednia, gdyż mangan wpływa na właściwości magnetyczne w sposób negatywny, zwiększając straty energii. W praktyce, używanie tych rodzajów stali może prowadzić do problemów z wydajnością i przegrzewaniem się urządzeń, co jest sprzeczne z zasadami projektowania efektywnych maszyn elektrycznych. Kluczowe jest zrozumienie, że dobór odpowiednich materiałów w inżynierii elektrycznej nie jest przypadkowy, lecz oparty na szczegółowych badaniach właściwości fizycznych i chemicznych materiałów. Prawidłowe zrozumienie właściwości materiałów oraz ich zastosowania jest kluczowe dla projektowania nowoczesnych urządzeń elektrycznych, a wybór stali krzemowej jako materiału rdzeniowego jest potwierdzony przez liczne standardy branżowe.

Pytanie 14

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. temperaturę
B. smarowanie
C. naprężenie
D. bicie osiowe
Smarowanie nie jest kluczowym czynnikiem w przypadku pasków zębatych, ponieważ ich konstrukcja z reguły nie wymaga dodatkowego smarowania. Paski zębate często wykonane są z materiałów, które nie tylko eliminują potrzebę smarowania, ale także mogą być wrażliwe na substancje smarne, co może prowadzić do ich degradacji. Wycieki smaru mogą także zanieczyścić inne elementy układu napędowego, prowadząc do poważnych awarii. Podobnie bicie osiowe, czyli niepożądane przesunięcie osiowe wału, nie jest istotnym czynnikiem, który należy kontrolować w przypadku pasków zębatych. Tego typu wibracje mogą wprawdzie wpływać na efektywność przeniesienia napędu, jednakże kluczowym aspektem jest kontrola naprężenia, które odpowiada za właściwe zazębienie zębatki. Z kolei sprawdzanie temperatury, mimo że jest istotne w wielu zastosowaniach, w kontekście pasków zębatych nie jest najważniejsze, ponieważ temperatura sama w sobie nie jest wskaźnikiem stanu zużycia paska. Zrozumienie, jakie czynniki są kluczowe dla efektywności systemu napędowego, a które są mniej istotne, jest podstawą skutecznego zarządzania oraz utrzymania urządzeń mechatronicznych. Praktyczne podejście do konserwacji i monitorowania stanu elementów napędowych wymaga analizy rzeczywistych potrzeb aplikacji oraz standardów branżowych, co prowadzi do bardziej efektywnego eksploatowania maszyn.

Pytanie 15

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termopary K
B. Termistora NTC
C. Termistora PTC
D. Termopary J
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 16

W systemie przygotowania sprężonego powietrza elementy są instalowane w następującej kolejności:

A. reduktor, filtr powietrza, smarownica
B. filtr powietrza, reduktor, smarownica
C. smarownica, filtr powietrza, reduktor
D. reduktor, smarownica, filtr powietrza
Kolejność montażu elementów w systemie sprężonego powietrza jest krytyczna dla jego prawidłowego funkcjonowania. Odpowiedzi, które proponują instalację reduktora przed filtra powietrza, ignorują podstawową zasadę ochrony komponentów systemu przed zanieczyszczeniami. Reduktor powinien być umieszczony za filtrem, aby zapobiec osadzaniu się zanieczyszczeń w mechanizmach reduktora, co mogłoby prowadzić do jego uszkodzenia oraz niewłaściwej regulacji ciśnienia. Instalacja smarownicy przed filtrem powietrza wprowadza również ryzyko, że zanieczyszczenia dostaną się do układu smarowania, co z kolei może prowadzić do uszkodzenia narzędzi pneumatycznych. Odpowiedzi sugerujące montaż smarownicy przed innymi elementami nie uwzględniają także, iż smarownica musi operować na już oczyszczonym i odpowiednio uregulowanym ciśnieniu powietrza. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują brak zrozumienia funkcji poszczególnych elementów oraz ich interakcji w systemie. Dlatego tak ważne jest, aby przy projektowaniu i montażu systemów sprężonego powietrza przestrzegać odpowiednich norm i procedur, co pozwoli na efektywne i bezawaryjne działanie urządzeń.

Pytanie 17

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. poziomnicę
B. czujnik zegarowy
C. przymiar liniowy
D. kątomierz
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 18

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Prostowniki.
B. Generatory.
C. Stabilizatory.
D. Flip-flopy.
Przerzutniki, prostowniki i generatory to układy, które mają różne funkcje w elektronice i nie są przeznaczone do stabilizacji napięcia. Przerzutniki, na przykład, są układami pamięci, które przechowują stany logiczne i nie mają zdolności do regulacji napięcia. Używane są głównie w systemach cyfrowych do przechowywania informacji, ale ich działanie zależy od sygnałów wejściowych, co czyni je niewłaściwymi dla utrzymywania stabilnego napięcia wyjściowego. Prostowniki przekształcają prąd zmienny na prąd stały, ale ich wyjście może być obciążone tętnieniami i nie jest stałe; do tego celu wymagane są dodatkowe układy filtrujące oraz stabilizatory. Generatory z kolei produkują sygnały elektryczne, ale również nie mają mechanizmów do stabilizacji napięcia. Największym błędem w myśleniu jest założenie, że układ może utrzymać stałe napięcie, gdy w rzeczywistości pełni on zupełnie inną funkcję. Aby zrozumieć, jak ważne jest stosowanie właściwych układów do konkretnego zastosowania, należy zapoznać się ze specyfikacjami technicznymi oraz zasadami projektowania układów zasilania, które określają, kiedy i jak stosować stabilizatory w elektronice.

Pytanie 19

Jaką metodę łączenia materiałów należy wykorzystać do zestawienia stali nierdzewnej z mosiądzem?

A. Klejenie
B. Zgrzewanie
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde jest techniką, która idealnie nadaje się do łączenia stali nierdzewnej i mosiądzu, dzięki właściwościom materiałów oraz temperaturze lutowania. Lutowanie twarde polega na stosowaniu stopów lutowniczych, które mają wyższą temperaturę topnienia niż w przypadku lutowania miękkiego, co pozwala na uzyskanie mocniejszych połączeń. Technika ta jest szczególnie cenna w zastosowaniach przemysłowych, gdzie wymagana jest wysoka wytrzymałość mechaniczna i odporność na korozję. Przykładem mogą być elementy w instalacjach hydraulicznych, gdzie połączenie stali nierdzewnej z mosiężnymi złączkami pozwala na zapewnienie długotrwałej i szczelnej pracy. Warto również zauważyć, że lutowanie twarde jest zgodne z normami przemysłowymi, takimi jak ISO 17672, które określają wymagania dotyczące materiałów stosowanych w procesie lutowania. Dzięki tym właściwościom, lutowanie twarde stanowi najlepszy wybór do tego typu zastosowań.

Pytanie 20

W barach są skalowane

A. manometry
B. prędkościomierze
C. przepływomierze
D. wiskozymetry
Przepływomierze, wiskozymetry i prędkościomierze to urządzenia, które pełnią różne funkcje pomiarowe, ale nie są wyskalowane w barach. Przepływomierze mierzą objętość lub masę cieczy lub gazu przepływającego przez system, co czyni je istotnymi w kontrolowaniu procesów, ale nie mają bezpośredniego związku z pomiarem ciśnienia. Wiskozymetry, z kolei, są używane do pomiaru lepkości płynów, co jest niezbędne w wielu zastosowaniach inżynieryjnych, jednak również nie odnoszą się do ciśnienia. Prędkościomierze mierzą prędkość poruszających się obiektów, na przykład w motoryzacji, i nie mają zastosowania w kontekście pomiarów ciśnienia. Użytkownicy mogą czasami mylić te urządzenia z manometrami, co prowadzi do błędnych wniosków. Typowym błędem jest założenie, że wszystkie urządzenia pomiarowe w kontekście procesów przemysłowych mają podobne zastosowanie, podczas gdy w rzeczywistości każde z nich ma specyficzną funkcję i obszar zastosowania. Wiedza na temat różnic między tymi urządzeniami jest kluczowa dla ich prawidłowego wykorzystania w praktyce.

Pytanie 21

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Zgrzewanie
C. Sklejanie
D. Lutowanie miękkie
Lutowanie miękkie, zgrzewanie oraz sklejanie to techniki, które nie są odpowiednie do łączenia stali nierdzewnej z mosiądzem, z powodów technicznych i materiałowych. Lutowanie miękkie, które wykorzystuje temperatury poniżej 450 °C, nie zapewnia wystarczającej wytrzymałości dla takich połączeń, ponieważ materiały te wymagają znacznie wyższych temperatur, aby osiągnąć odpowiednią integralność strukturalną. Zgrzewanie, z kolei, polega na połączeniu materiałów poprzez ich miejscowe stopienie przy użyciu ciepła generowanego w miejscu złącza, co może być trudne do zrealizowania w przypadku stali nierdzewnej i mosiądzu, ze względu na różnice w ich przewodnictwie cieplnym oraz topnieniu. Technika ta również nie daje możliwości wypełnienia szczelin, co jest kluczowe przy łączeniu tych dwóch materiałów. Sklejanie, chociaż może być użyteczne w niektórych zastosowaniach, nie jest odpowiednie dla połączeń wymagających dużej wytrzymałości, jak w przypadku stali nierdzewnej i mosiądzu. Kleje nie zawsze są w stanie wytrzymać warunki pracy, takie jak zmiany temperatury, wilgotność czy obciążenia mechaniczne. Dlatego dla prawidłowego łączenia stali nierdzewnej i mosiądzu należy stosować lutowanie twarde, co zapewnia nie tylko odpowiednią wytrzymałość, ale również trwałość połączenia.

Pytanie 22

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 2 200 zł
B. 2 440 zł
C. 1 220 zł
D. 1 440 zł
Wielu uczestników testu może mieć trudności z poprawnym zrozumieniem sposobu obliczania całkowitego kosztu urządzenia elektronicznego, co prowadzi do błędnych odpowiedzi. Kluczowym błędem jest pominięcie całkowitych kosztów wykonania, które w tym przypadku są równe kosztowi materiałów. Niezrozumienie tego faktu skutkuje przyjęciem błędnych wartości dla kosztów całkowitych. Dodatkowo, niedokładne obliczenie podatku VAT może prowadzić do znacznego zaniżenia lub zawyżenia kosztu końcowego. Na przykład, jeśli ktoś nie dodałby kosztów wykonania do materiałów, mógłby błędnie założyć, że całkowity koszt wynosi 1 220 zł, co jest kwotą jedynie materiałów powiększoną o podatek. Ponadto, błędne podejście do obliczania VAT, takie jak błędne zastosowanie stawki lub niewłaściwe obliczenia, może prowadzić do nieprawidłowych rezultatów. Kluczowe jest zrozumienie, że wszelkie koszty powinny być sumowane przed naliczeniem podatku, co jest zgodne z zasadami rachunkowości i przepisami podatkowymi. Aby uniknąć takich błędów, warto stosować standardowe procedury kalkulacji kosztów, które pozwolą na dokładne i systematyczne podejście do wyceny projektów.

Pytanie 23

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Pastę
B. Towot
C. Olej
D. Silikon
Wybór odpowiedzi, która nie jest olejem, wynika chyba z niezrozumienia, jak działają smarownice sprężonego powietrza. Towot to gęsty smar, który w układach pneumatycznych w ogóle się nie sprawdza, bo się nie rozprowadza jak trzeba. Może to nawet zatykać przewody i zmniejszać efektywność urządzeń. Z kolei pasta, mimo że w niektórych sytuacjach się sprawdza, nie jest dobra do sprężonego powietrza, bo nie spełnia warunków smarowania w ruchu. Silikon, chociaż często używany jako uszczelniacz, też nie nadaje się, bo nie ma właściwości smarnych, a może dodatkowo uszkodzić gumowe uszczelki przy ciśnieniu. Często myślimy, że każdy smar pasuje do wszystkiego, a to nieprawda. Właściwe smarowanie sprężonego powietrza jest naprawdę ważne dla maszyn i narzędzi, więc lepiej używać olejów, które są do tego przystosowane, bo to zgodne z najlepszymi standardami przemysłowymi.

Pytanie 24

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Skrętki czteroparowej, ekranowanej
B. Przewodu koncentrycznego
C. Skrętki dwuprzewodowej
D. Przewodu dziewięciożyłowego
Wybór nieodpowiedniego przewodu do komunikacji w magistrali CAN może prowadzić do licznych problemów, takich jak zakłócenia sygnału, błędy w transmisji oraz obniżona wydajność całego systemu. Skrętka czteroparowa, mimo że jest popularna w sieciach Ethernet i innych systemach komunikacyjnych, nie jest zoptymalizowana pod kątem wymagań magistrali CAN. System ten wymaga przewodu o specyficznych właściwościach, takich jak niska impedancja i efektywna ochrona przed zakłóceniami, co skrętka czteroparowa nie zapewnia. Przewód koncentryczny stosowany jest w telekomunikacji i nie nadaje się do zastosowania w magistrali CAN, ponieważ jego konstrukcja nie wspiera metod różnicowych, które są kluczowe dla stabilnej komunikacji w tym standardzie. Ponadto, przewód dziewięciożyłowy jest zbyt skomplikowany i nieefektywny do implementacji w systemach CAN, które wykorzystują jedynie dwa przewody do komunikacji. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków często opierają się na mylnej interpretacji zastosowania różnych typów przewodów bez uwzględnienia specyfikacji technicznych i wymagań dotyczących sygnałów CAN. Rekomendacje branżowe jasno wskazują, że dla magistrali CAN najlepszym wyborem jest skrętka dwuprzewodowa, co zapewnia efektywność i niezawodność całego systemu.

Pytanie 25

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Napięciem przyłożonym do obwodu twornika
C. Rezystancją w obwodzie twornika
D. Rezystancją w obwodzie wzbudzenia
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do nn bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 26

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. wystąpienia zwarcia doziemnego
B. dotknięcia odizolowanych części będących pod napięciem
C. dotknięcia elementów urządzenia elektrycznego mających uziemienie
D. pojawu przerwy w obwodzie elektrycznym
Zagrożenie w przypadku dotyku uziemionych elementów urządzenia elektrycznego jest znikome, ponieważ uziemienie ma na celu odprowadzenie niebezpiecznego napięcia do ziemi, co chroni użytkowników przed porażeniem. W sytuacji, gdy elementy są uziemione, to ewentualny prąd upływowy zostanie skierowany do ziemi, a nie przez ciało człowieka. W praktyce oznacza to, że dobrze zaprojektowane i poprawnie uziemione urządzenia elektryczne są znacznie bezpieczniejsze. Z kolei wystąpienie zwarcia doziemnego dotyczy sytuacji, gdy prąd elektryczny przemieszcza się do ziemi, ale problem ten również został zaprojektowany z myślą o minimalizacji ryzyka, poprzez zastosowanie odpowiednich zabezpieczeń i wyłączników. Zdarzenie przerwy w obwodzie elektrycznym samo w sobie nie stwarza bezpośredniego zagrożenia; może prowadzić do braku zasilania, ale nie do porażenia. Generalnie, mylenie zagrożeń związanych z elektrycznością wynika często z braku zrozumienia zasady działania urządzeń elektrycznych oraz ich zabezpieczeń. Kluczowe jest, aby użytkownicy mieli świadomość, że najpoważniejsze zagrożenie pochodzi od elementów pod napięciem, a nie od właściwie uziemionych czy przerwanych obwodów.

Pytanie 27

Jaki instrument pomiarowy powinno się użyć do określenia amplitudy, częstotliwości oraz kształtu sygnałów w instalowanych urządzeniach mechatronicznych?

A. Mostek RLC
B. Multimetr
C. Oscyloskop
D. Częstościomierz
Mostek RLC, multimetr i częstościomierz to urządzenia pomiarowe, jednak nie odpowiadają one w pełni na potrzeby analizy sygnałów w kontekście pomiaru amplitudy, częstotliwości i kształtu sygnałów. Mostek RLC jest narzędziem stosowanym przede wszystkim do pomiaru impedancji elementów pasywnych w obwodach elektronicznych. Choć może dostarczać informacji o częstotliwości rezonansowej, nie umożliwia wizualizacji sygnału, co jest kluczowe w analizie sygnałów. Multimetr to wszechstronne urządzenie pomiarowe, które pozwala na pomiar napięcia, prądu i oporu, ale jego możliwości analizy sygnałów czasowych są ograniczone. Multimetry, szczególnie te analogowe, nie oferują wizualizacji kształtu sygnału, co ogranicza ich użyteczność w bardziej skomplikowanych układach. Częstościomierz z kolei jest narzędziem skupionym wyłącznie na pomiarze częstotliwości sygnału, a nie na jego kształcie czy amplitudzie. Pomiar częstotliwości jest ważny, ale nie wystarczy do pełnej analizy sygnałów w montowanych urządzeniach mechatronicznych. Użytkownicy mogą więc błędnie zakładać, że te urządzenia są wystarczające do analizy sygnałów, co prowadzi do niedoszacowania potrzeby oscyloskopu w kontekście diagnozowania problemów i testowania systemów. Znajomość różnic między tymi narzędziami jest kluczowa dla prawidłowego wyboru sprzętu pomiarowego w praktyce inżynieryjnej.

Pytanie 28

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. spadku obrotów silnika
B. obniżenia wartości napięcia zasilania
C. zmniejszenia reaktancji uzwojeń silnika
D. wzrostu obrotów silnika
W odpowiedziach, które nie są zgodne z właściwym rozumieniem działania silników prądu przemiennego, pojawiają się merytoryczne nieścisłości. Spadek reaktancji uzwojeń silnika nie jest bezpośrednio związany z wzrostem częstotliwości napięcia zasilania. Reaktancja uzwojeń silnika, która wynika z indukcyjności, może zmieniać się w zależności od konstrukcji silnika, ale nie jest to czynnik decydujący o prędkości obrotowej. Ponadto, spadek obrotów silnika jest sprzeczny z zasadą działania falowników, które zaprojektowane są do zwiększania obrotów w odpowiedzi na wzrost częstotliwości. Silnik zasilany napięciem o niższej częstotliwości rzeczywiście zwolni, co może być mylnie zrozumiane jako normalne zachowanie. Spadek wartości napięcia zasilania również nie skutkuje wzrostem obrotów, ponieważ silnik wymaga odpowiedniego napięcia do osiągnięcia wymaganej mocy i wydajności. W praktyce, gdy napięcie spada, silnik może działać z mniejszą efektywnością, a w skrajnych przypadkach może dojść do jego zastoju. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania i eksploatacji systemów napędowych, a także dla unikania typowych błędów myślowych prowadzących do nieefektywnego działania układów zasilania.

Pytanie 29

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i przeprowadzić sztuczne oddychanie
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 30

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Silnika jednofazowego o napięciu 230 V
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 31

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 986 Nm
C. 10 Nm
D. 1 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 32

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 2 000 mm2
C. 1 500 mm2
D. 3 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 33

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. podciśnienia
B. temperatury
C. prędkości
D. nadciśnienia
Sensor radarowy działający na zasadzie efektu Dopplera jest wykorzystywany przede wszystkim do pomiaru prędkości obiektów. Efekt Dopplera polega na zmianie częstotliwości fali elektromagnetycznej w zależności od ruchu źródła fali oraz obserwatora. W kontekście radaru, gdy obiekt porusza się w kierunku sensora, fale radarowe są przesuwane ku wyższej częstotliwości, a gdy się oddala, dochodzi do obniżenia częstotliwości. Ta zmiana częstotliwości jest bezpośrednio związana z prędkością obiektu. Przykładem zastosowania tej technologii jest pomiar prędkości pojazdów w systemach monitorowania ruchu drogowego oraz w radarach meteorologicznych do analizy prędkości wiatru. W praktyce, radary oparte na efekcie Dopplera są standardem w wielu dziedzinach, takich jak lotnictwo, motoryzacja czy meteorologia, co czyni je nieocenionym narzędziem w nowoczesnej technologii pomiarowej.

Pytanie 34

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. śruby mikrometrycznej
B. mikroskopu technicznego
C. przymiaru średnicowego
D. przymiaru kreskowego
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 35

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik mętności
B. czujnik poziomu
C. miernik prędkości
D. przepływomierz
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 36

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 1 A
B. 2 A
C. 0 A
D. 3 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 37

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. okularów ochronnych
B. bawełnianego fartucha ochronnego
C. butów z izolowaną podeszwą
D. opaski uziemiającej
Stosowanie okularów ochronnych, butów z izolowaną podeszwą lub bawełnianego fartucha ochronnego w kontekście wymiany tranzystora wyjściowego CMOS sterownika PLC może wydawać się na pierwszy rzut oka odpowiednie, jednak nie adresuje kluczowego zagadnienia ochrony przed elektrostatycznymi wyładowaniami. Okulary ochronne, choć istotne w kontekście ochrony wzroku przed przypadkowymi zanieczyszczeniami czy odpryskami, nie mają wpływu na zapobieganie uszkodzeniom komponentów elektronicznych spowodowanym przez ESD. Z kolei buty z izolowaną podeszwą, mimo że mogą chronić przed porażeniem prądem w niektórych sytuacjach, nie eliminują ryzyka gromadzenia się ładunków elektrostatycznych, co jest kluczowym zagadnieniem podczas pracy z układami CMOS. Bawełniany fartuch ochronny również nie ma zastosowania w kontekście ochrony przed ESD, a jego główną rolą jest ochrona przed zanieczyszczeniami i rozpryskami materiałów chemicznych. W praktyce, błędne podejście do ochrony przed ESD prowadzi do niepotrzebnych uszkodzeń sprzętu, zwiększając koszty napraw i przestojów. Kluczowe jest zrozumienie, że wrażliwość układów CMOS na ESD wymaga stosowania wyspecjalizowanych metod ochrony, a nie standardowych środków ochrony osobistej, które nie odpowiadają na specyfikę zagrożeń związanych z elektrostatycznymi wyładowaniami.

Pytanie 38

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 2
B. 1
C. 3
D. 4
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 39

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu regulacji automatycznej
B. sterowania sekwencyjnego
C. układu sterowania programowalnego
D. sterowania w układzie otwartym
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 40

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Spawanie
B. Docieranie
C. Skrobanie
D. Rozwiercanie
Ważne jest, aby zrozumieć, że procesy takie jak skrobanie, rozwiercanie i docieranie są istotnymi operacjami w zakresie dopasowywania elementów w montażu urządzeń mechatronicznych. Skrobanie jest techniką, która polega na ręcznym lub mechanicznym usuwaniu materiału z powierzchni elementów w celu uzyskania precyzyjnego dopasowania. Często stosowane jest w przypadku, gdy tolerancje montażowe są krytyczne, a standardowe procesy obróbcze nie zapewniają wymaganej dokładności. Rozwiercanie z kolei polega na powiększaniu średnicy otworów, co również umożliwia lepsze dopasowanie elementów, zwłaszcza w przypadku osadzania tulei czy łożysk. Docieranie to proces, który ma na celu wygładzenie powierzchni i osiągnięcie wysokiej precyzji wymiarowej, co jest szczególnie istotne w kontekście współpracy ruchomych elementów w maszynach. Nieprawidłowe zrozumienie tych procesów może prowadzić do błędnych wniosków. Na przykład, można błędnie założyć, że spawanie, jako proces łączenia, także wpływa na dopasowanie, jednak w rzeczywistości jest to operacja, która skutkuje zmianą stanu materiałów i ich lokalizacją, co może wprowadzać błędy w precyzyjnym montażu. Wiedza o tym, jakie operacje są wykorzystywane do dopasowywania w mechatronice, jest kluczowa dla projektowania niezawodnych i funkcjonalnych systemów.