Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 czerwca 2025 00:25
  • Data zakończenia: 10 czerwca 2025 00:42

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
B. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
C. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
Wszystkie zaproponowane odpowiedzi pomijają kluczowe aspekty bezpieczeństwa związane z wymianą zaworu elektropneumatycznego. Kluczowym elementem każdej procedury konserwacji jest zapewnienie, że system jest całkowicie wyłączony i nie może być przypadkowo uruchomiony. Odpowiedzi, które sugerują odłączenie przewodów zasilających lub pneumatycznych bez wcześniejszego wprowadzenia PLC w tryb STOP oraz wyłączenia zasilania, są niebezpieczne. Przykładowo, odłączenie przewodów zasilających bez wcześniejszego zablokowania programu sterującego może prowadzić do sytuacji, gdzie system się uruchomi, co stwarza ryzyko dla operatora. Ponadto, wiele z tych podejść nie uwzględnia konieczności całkowitego odcięcia zasilania pneumatycznego, co może prowadzić do niekontrolowanego wypływu sprężonego powietrza. Tego rodzaju pominięcia są typowe dla osób, które nie zaznajomiły się z obowiązującymi standardami bezpieczeństwa w automatyce przemysłowej, takimi jak normy ISO czy ANSI Z535, które mają na celu zapewnienie bezpiecznego środowiska pracy. Bezpośrednie podejście do serwisowania komponentów pneumatycznych powinno zatem zawsze zaczynać się od wyłączenia systemu i odpowiedniego zabezpieczenia przed jego przypadkowym włączeniem, co jest fundamentalne dla zachowania bezpieczeństwa w miejscu pracy.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. palnik gazowy
B. klucz dynamometryczny
C. ściągacz
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Bocznikowy
C. Krokowy
D. Asynchroniczny
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 9

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. umieścić poszkodowanego w bezpiecznej pozycji bocznej
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. założyć poszkodowanemu opatrunek uciskowy poniżej rany
D. założyć poszkodowanemu opatrunek uciskowy na ranę
Nieprawidłowe podejście do sytuacji, w której osoba została ranna w wyniku krwotoku, może prowadzić do poważnych konsekwencji zdrowotnych. Upewnienie się, czy w pobliżu są osoby przeszkolone w reanimacji, choć jest to istotny krok w sytuacjach kryzysowych, nie powinno być priorytetem w pierwszej kolejności, gdyż czas jest kluczowy. Opóźnienie w udzielaniu pomocy poprzez czekanie na obecność innych osób może prowadzić do pogłębienia obrażeń i zwiększenia ryzyka dla poszkodowanego. Ułożenie poszkodowanego w pozycji bocznej bezpiecznej jest techniką stosowaną w przypadku utraty przytomności, ale nie jest skuteczne w kontekście krwotoku, gdyż nie zatrzymuje krwawienia. Ponadto założenie opatrunku uciskowego poniżej rany jest błędne, ponieważ nie przyniesie ulgi w przypadku krwotoku z miejsca urazu. Opatrunek należy zakładać bezpośrednio na ranę, aby skutecznie uciskać miejsce krwawienia. Ignorowanie podstawowych zasad udzielania pierwszej pomocy, takich jak szybkie zatamowanie krwawienia, może prowadzić do zagrażających życiu sytuacji. Wiedza na temat udzielania pierwszej pomocy powinna być regularnie aktualizowana, aby zapewnić bezpieczeństwo w miejscu pracy i szybką reakcję w krytycznych momentach.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Zamieniając stycznikowy system sterowania silnikiem elektrycznym na system oparty na sterowniku PLC, należy

A. rozłączyć główny obwód i obwód sterujący silnikiem, a następnie podłączyć wszystkie elementy do sterownika
B. odłączyć stycznik z układu i w jego miejsce wstawić sterownik
C. usunąć przyciski sterujące i zastąpić je sterownikiem
D. rozłączyć jedynie obwód sterujący silnikiem i podłączyć jego elementy do sterownika PLC
Rozłączenie obwodu głównego i obwodu sterowania silnika oraz podłączenie wszystkich elementów do sterownika nie jest praktycznym rozwiązaniem. W przypadku układu sterowania silnika elektrycznego, obwód główny zazwyczaj obejmuje elementy takie jak styczniki, zabezpieczenia termiczne czy przekaźniki, które są odpowiedzialne za bezpośrednie zasilanie silnika. Całkowite przeniesienie tych elementów do sterownika PLC mogłoby prowadzić do problemów z bezpieczeństwem oraz stabilnością działania systemu. Podobnie, odłączenie stycznika i zastąpienie go sterownikiem nie jest zalecane, ponieważ stycznik pełni kluczową rolę w zarządzaniu przepływem prądu do silnika. W kontekście automatyki, istotne jest, aby zachować rozdział funkcji sterowania i zasilania, co sprzyja bezpieczeństwu i niezawodności systemu. Wymontowanie przycisków sterowniczych i zastąpienie ich sterownikiem również ignoruje ważne zasady ergonomii i łatwości obsługi, które są kluczowe w projektowaniu systemów sterowania. Praktyki te mogą prowadzić do błędnych wniosków i nieefektywnego zarządzania systemem, co jest sprzeczne z najlepszymi praktykami w dziedzinie automatyki i sterowania.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Osoba pracująca przy monitorze komputerowym ma prawo do

A. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
B. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
C. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
D. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Ile jednostek napędowych użyto w manipulatorze, którego diagram pokazano na rysunku?

A. 3 jednostki napędowe
B. 5 jednostek napędowych
C. 6 jednostek napędowych
D. 4 jednostki napędowe
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 19

Stal używana do wytwarzania zbiorników ciśnieniowych oznaczana jest w symbolu głównym literą

A. P
B. S
C. L
D. E
Wybór litery 'P' jako symbolu głównego dla stali przeznaczonej do produkcji zbiorników ciśnieniowych jest zgodny z normą PN-EN 10028. Ta norma klasyfikuje materiały do zastosowania w konstrukcjach ciśnieniowych, gdzie stal musi spełniać określone wymagania wytrzymałościowe i odporności na korozję. Stal oznaczona literą 'P' jest stosowana w aplikacjach, gdzie występuje wysokie ciśnienie, jak w zbiornikach gazów i cieczy. Przykładem zastosowania stali 'P' mogą być zbiorniki używane w przemyśle petrochemicznym, które muszą wytrzymać ekstremalne warunki operacyjne. Dodatkowo, procesy produkcyjne i kontrola jakości tych materiałów są ściśle regulowane, aby zapewnić ich bezpieczeństwo i niezawodność. W praktyce, wybór odpowiedniej stali jest kluczowy dla zapewnienia trwałości i wydajności zbiorników ciśnieniowych, co ma bezpośredni wpływ na bezpieczeństwo operacyjne oraz efektywność procesów przemysłowych.

Pytanie 20

Jaki aparat elektryczny jest wykorzystywany do ochrony silnika indukcyjnego przed przeciążeniem?

A. Wyłącznik różnicowoprądowy
B. Przekaźnik termobimetalowy
C. Stycznik elektromagnetyczny
D. Wyłącznik nadmiarowy
Przekaźnik termobimetalowy jest urządzeniem, które działa na zasadzie różnicy temperatur pomiędzy dwoma metalami o różnych współczynnikach rozszerzalności. Jego głównym zastosowaniem jest ochrona silników indukcyjnych przed przeciążeniem i przegrzaniem. W momencie, gdy prąd płynący przez silnik przekracza ustaloną wartość, przekaźnik odcina zasilanie, co zapobiega uszkodzeniu silnika. Przekaźniki termobimetalowe są często stosowane w obwodach napędowych, gdzie silniki są narażone na zmienne warunki pracy. Dobrą praktyką jest ich instalacja w połączeniu z wyłącznikami automatycznymi, co zapewnia dodatkową ochronę. Zgodnie z normami IEC 60947-4-1, przekaźniki te muszą spełniać określone wymagania zabezpieczeń przeciążeniowych, co czyni je wiarygodnym rozwiązaniem w aplikacjach przemysłowych.

Pytanie 21

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Klejenia
B. Lutowania twardego
C. Zgrzewania
D. Lutowania miękkiego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakie jest właściwe podłączenie dla przyłącza oznaczonego literą 'T' w zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P i T?

A. Do siłownika dwustronnego działania
B. Do zbiornika sprężonego powietrza
C. Do siłownika jednostronnego działania
D. Do zbiornika oleju hydraulicznego
Odpowiedź "Do zbiornika oleju hydraulicznego" jest jak najbardziej trafna. Przyłącze oznaczone literą "T" w układzie hydrauliki siłowej faktycznie działa jako odpływ. W standardowych zaworach hydraulicznych 4/2 to właśnie tam kierowany jest olej, którego nie wykorzystujemy w danym momencie do pracy siłownika. Moim zdaniem, świetnym przykładem jest hydraulika w maszynach budowlanych - po prostu musimy odprowadzać nadmiar oleju, żeby nie było problemów z przegrzewaniem się układu. Dobrze jest też regularnie sprawdzać poziom oleju w zbiorniku, bo jak będzie zbyt niski, to może się zdarzyć, że pompa zacznie zassysać powietrze, a to już poważnie obniża efektywność całego systemu.

Pytanie 28

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Warystor.
B. Gaussotron.
C. Termistor.
D. Tensometr.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 29

Którą z poniższych czynności należy regularnie przeprowadzać podczas serwisowania układu pneumatycznego?

A. Dostosowywać ciśnienie powietrza
B. Wymieniać szybkozłączki
C. Usuwać kondensat
D. Zastępować przewody pneumatyczne
Usuwanie kondensatu z układu pneumatycznego jest kluczowym elementem konserwacji, ponieważ nadmiar wilgoci może prowadzić do wielu problemów, w tym korozji, uszkodzenia komponentów oraz obniżenia wydajności systemu. Kondensat jest efektem skraplania się pary wodnej zawartej w powietrzu sprężonym, a jego obecność w układzie może mieć negatywny wpływ na działanie zarówno zaworów, jak i siłowników pneumatycznych. Regularne usuwanie kondensatu, na przykład poprzez stosowanie separatorów kondensatu lub automatycznych zaworów odpływowych, jest zgodne z dobrymi praktykami w branży pneumatycznej. Przykładem zastosowania jest przemysł motoryzacyjny, gdzie układy pneumatyczne są powszechnie wykorzystywane w narzędziach i maszynach. W takim przypadku niewłaściwe zarządzanie kondensatem może prowadzić do zacięć narzędzi oraz nieefektywnego działania linii produkcyjnej. Właściwa konserwacja nie tylko wydłuża żywotność układu, ale także zapewnia bezpieczeństwo i efektywność pracy.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Nitowanie
C. Zgrzewanie
D. Spawanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.