Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 czerwca 2025 17:30
  • Data zakończenia: 21 czerwca 2025 17:39

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt mały przekrój użytego przewodu
B. Wzrost napięcia zasilającego spowodowany przepięciem
C. Zbyt wysoka wartość prądu długotrwałego
D. Poluzowanie śruby mocującej w puszce
Zbyt duża wartość prądu długotrwałego jest często mylnie postrzegana jako główna przyczyna uszkodzeń instalacji elektrycznych. W rzeczywistości, przewody są projektowane z odpowiednimi normami i tolerancjami, które uwzględniają różne wartości prądu, a ich nadmierne obciążenie występuje w przypadkach, gdy przewody są nieodpowiednio dobrane do zastosowania. Kolejnym błędnym wnioskiem jest za mały przekrój zastosowanego przewodu. W przypadku, gdy przewód jest zbyt cienki, nie jest to jedyna przyczyna uszkodzenia izolacji. W rzeczywistości, nawet przewody o odpowiednim przekroju mogą ulegać uszkodzeniom, jeśli nie są prawidłowo zamocowane lub jeżeli występują inne problemy techniczne. Wzrost napięcia zasilającego spowodowany przepięciem również jest rzadziej przyczyną zwęglenia, ponieważ większość instalacji jest wyposażona w odpowiednie zabezpieczenia, które mają na celu ochronę przed takimi sytuacjami. Zrozumienie właściwego kontekstu dla tych problemów jest kluczowe w zapobieganiu ich występowaniu. Często błędne wnioski opierają się na braku zrozumienia zasad działania instalacji elektrycznych oraz ich projektowania zgodnie z normami. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi były dobrze wykształcone i miały świadomość znaczenia odpowiednich praktyk w ich pracy.

Pytanie 2

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 3

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. instalacji odgromowej budynku.
C. linii kablowej zasilającej budynek.
D. linii napowietrznej niskiego napięcia.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 4

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
C. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
D. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 5

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 1,15 Ω
B. 0,56 Ω
C. 3,83 Ω
D. 2,30 Ω
Wybór błędnych wartości impedancji pętli zwarcia może wynikać z niewłaściwego zrozumienia zasad działania wyłączników nadprądowych oraz ich charakterystyk. Na przykład, 0,56 Ω i 1,15 Ω to wartości znacznie zbyt niskie, co może sugerować, że osoba odpowiedzialna za projektowanie lub pomiar nie uwzględniała wymaganych parametrów dla wyłącznika B20. Tego rodzaju wartości mogą prowadzić do nieefektywnej ochrony, gdyż w przypadku zwarcia obwód może zadziałać zbyt szybko, zanim układ zabezpieczeń zdąży dopełnić swojej funkcji. Wartości 3,83 Ω również są nieprawidłowe, ponieważ przekraczają dopuszczalny limit. W praktyce, zbyt wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być niewystarczający, aby wyzwolić zabezpieczenie. Należy zauważyć, że zgodnie z normami, takimi jak PN-IEC 60364, odpowiednie wartości impedancji są kluczowe dla działania systemów zabezpieczeń. Dlatego ważne jest, aby przy projektowaniu oraz ocenie instalacji elektrycznych przestrzegać wytycznych, by zapewnić odpowiedni poziom bezpieczeństwa, eliminując słabe punkty, które mogą prowadzić do niebezpiecznych sytuacji.

Pytanie 6

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zamiana wszystkich źródeł oświetlenia w oprawach
B. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
C. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
D. Sprawdzenie stanu izolacji oraz powłok przewodów
Wymiana wszystkich źródeł światła w oprawach nie jest bezpośrednio związana z konserwacją instalacji elektrycznej, lecz dotyczy czynności eksploatacyjnych. Choć wymiana żarówek jest konieczna, nie wpływa na ogólny stan instalacji ani nie zaspokaja wymogów przepisów dotyczących bezpieczeństwa. Z kolei sprawdzenie czasu zadziałania zabezpieczenia zwarciowego, mimo iż istotne, koncentruje się na aspektach ochronnych, a nie na konserwacji samej instalacji. Praktyka ta nie obejmuje analizy stanu izolacji przewodów, co jest fundamentalne dla długoterminowej funkcjonalności systemu. Wymiana wszystkich zacisków śrubowych w puszkach rozgałęźnych również nie stanowi konserwacji w rozumieniu stanu technicznego instalacji, a raczej działania prewencyjnego, które powinno być realizowane w odpowiednich interwałach czasowych. Konserwacja instalacji elektrycznej wymaga całościowego podejścia, które skupia się na ocenie i utrzymaniu integralności systemu, a nie tylko na pojedynczych elementach. Zrozumienie, że konserwacja to znacznie więcej niż proste działania eksploatacyjne, jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych w mieszkaniach.

Pytanie 7

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 1 000 V
B. 750 V
C. 500 V
D. 250 V
Wybór napięcia testowego 250 V, 1 000 V lub 750 V na przykład podczas pomiaru rezystancji izolacji maszyn elektrycznych o napięciu znamionowym 230/400 V jest niewłaściwy i może prowadzić do mylnych wniosków. Napięcie 250 V jest zbyt niskie, aby skutecznie ocenić stan izolacji w warunkach pracy. Pomiar przy zbyt niskim napięciu może nie wykryć ukrytych defektów, takich jak mikropęknięcia lub degradacja materiału izolacyjnego, co zwiększa ryzyko awarii w przyszłości. Z kolei napięcia 1 000 V lub 750 V są zbyt wysokie dla tych zastosowań, co stwarza ryzyko uszkodzenia elementów o niższej odporności na napięcie. Takie podejście może prowadzić do nadmiernego obciążenia izolacji, co z kolei może skutkować jej zniszczeniem i w konsekwencji zwiększać niebezpieczeństwo porażenia prądem elektrycznym. W praktyce, pomiary powinny być dostosowywane do rodzaju i napięcia znamionowego urządzenia, w oparciu o standardy takie jak IEC 60364, które określają odpowiednie procedury i napięcia testowe dla różnych klas sprzętu. Właściwe dobranie napięcia testowego jest kluczowe dla zapewnienia bezpieczeństwa oraz długowieczności sprzętu.

Pytanie 8

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 9

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Megawoltomierza
B. Megaomomierza
C. Watomierza
D. Omomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 10

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Zbyt mały przekrój przewodów zasilających pomieszczenie
B. Nadpalony styk wyłącznika światła
C. Uszkodzony obwód zasilający piekarnik
D. Słaby styk w lampie
Nadpalony styk wyłącznika oświetlenia, słaby styk w oprawie oświetleniowej oraz uszkodzony obwód zasilający piekarnik to potencjalne, ale mniej prawdopodobne przyczyny przygasania żarówki podczas pracy piekarnika. Nadpalony styk wyłącznika oświetlenia może rzeczywiście powodować problemy z przewodnictwem, co może prowadzić do spadków napięcia, ale zazwyczaj objawiają się one w sposób bardziej intensywny, np. poprzez migotanie światła lub całkowite wyłączenie oświetlenia. Słaby styk w oprawie oświetleniowej również może skutkować problemami, jednak najczęściej objawia się to w postaci niestabilnego działania konkretnej żarówki, a nie ogólnym przygasaniem. Uszkodzony obwód zasilający piekarnik może sprawiać, że urządzenie nie działa prawidłowo, ale w przypadku dobrze funkcjonujących piekarników, zjawisko przygasania żarówek jest bardziej powiązane z przeciążeniem obwodu. Typowe błędy myślowe prowadzące do błędnych wniosków obejmują skupienie się na problemach lokalnych, zamiast analizować cały obwód zasilający. W praktyce, diagnozując problemy z instalacją elektryczną, konieczne jest zrozumienie interakcji między urządzeniami i ich wpływu na infrastrukturę elektryczną, co z kolei wymaga znajomości przepisów i standardów dotyczących instalacji elektrycznych.

Pytanie 11

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 40 mA
B. IΔ = 10 mA
C. IΔ = 30 mA
D. IΔ = 20 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 12

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Przerwa w obwodzie wzbudzenia
B. Zerwanie połączenia wału silnika z maszyną napędzającą
C. Uszkodzenie łożysk silnika
D. Zwarcie międzyzwojowe w uzwojeniu twornika
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 13

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony podstawowej.
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony uzupełniającej.
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 14

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Wiertarkę, lutownicę, wkrętak
B. Lutownicę, wiertarkę, ściągacz izolacji
C. Nóż monterski, wiertarkę, ściągacz izolacji
D. Ściągacz izolacji, nóż monterski, wkrętak
Wybór narzędzi w odpowiedziach niepoprawnych wskazuje na błędne zrozumienie podstawowych zasad związanych z instalacjami elektrycznymi i ich wykonaniem. Lutownica, mimo że jest narzędziem użytecznym w niektórych pracach elektrycznych, nie jest konieczna w tym przypadku, ponieważ przewody YDYp są zazwyczaj łączone poprzez skręcanie lub złączki, a nie lutowanie. Wiertarka również nie jest narzędziem niezbędnym do podłączenia plafonu, gdyż jej zastosowanie ogranicza się głównie do wiercenia otworów w sufitach, co nie jest wymagane, jeżeli montaż może odbyć się na gotowych mocowaniach. Wykorzystanie wkrętaka jest istotne, jednak w połączeniu z niewłaściwymi narzędziami, nie spełnia ono swojej funkcji w kontekście prawidłowego podłączenia. Błędy myślowe, które mogą prowadzić do takich wniosków, to m.in. mylenie funkcji narzędzi oraz niezrozumienie specyfikacji stosowanych kabli i ich użycia w praktyce. Dla zapewnienia bezpieczeństwa oraz efektywności pracy, ważne jest, aby używać odpowiednich narzędzi zgodnie z ich przeznaczeniem oraz z zachowaniem zasad bezpieczeństwa, co zwiększa jakość wykonanej instalacji.

Pytanie 15

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YLY 500 V 2,5 mm2
B. YDY 500 V 2,5 mm2
C. ALY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
No, niestety, nie wszystkie inne odpowiedzi są poprawne. Odpowiedź ALY 500 V 2,5 mm2 ma poważny błąd, bo 'L' sugeruje, że przewód wykonany jest z miedzi, a nie z aluminium. W przypadku YDY 500 V 2,5 mm2, 'Y' mówi, że to przewód jednożyłowy, ale 'D' jest tu problematyczne, bo powinno dotyczyć PVC przy żyłach aluminiowych. Co do YLY 500 V 2,5 mm2, to znowu 'L' sugeruje miedź, co jest sprzeczne z informacjami w pytaniu. Często ludzie popełniają błąd, ignorując materiał żyły, co może prowadzić do różnych problemów w instalacji. Mylimy symbole różnych typów przewodów, co może później skutkować ich niewłaściwym doborem i zwiększa ryzyko awarii. W inżynierii elektrycznej, ogarnięcie tych oznaczeń jest mega ważne, żeby wszystko działało bezpiecznie i sprawnie.

Pytanie 16

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do wzmacniaczy maszynowych
C. Do prądnic tachometrycznych
D. Do transformatorów
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 17

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rt
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K200,670,730,810,901,001,101,211,341,48
A. 8,20 MΩ
B. 8,11 MΩ
C. 6,40 MΩ
D. 6,57 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 18

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik znajdzie się w stanie jałowym.
B. wirnik silnika zostanie dogoniony.
C. wirnik silnika będzie w bezruchu.
D. silnik zostanie zasilony prądem przeciwnym.
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 19

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Tworzy nieruchome, stałe pole magnetyczne
B. Redukuje hałas podczas eksploatacji
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Generuje moment magnetyczny o stałym kierunku
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 20

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 2,3 Ω
C. 3,8 Ω
D. 6,6 Ω
Wybór wartości impedancji pętli zwarcia, który jest za wysoki, prowadzi do problemów z zapewnieniem skutecznej ochrony przed porażeniem prądem. W przypadku większych wartości impedancji, takich jak 6,6 Ω, 3,8 Ω czy 4,0 Ω, istnieje ryzyko, że prąd zwarciowy nie osiągnie wystarczającej wartości, aby aktywować wyłącznik nadprądowy B20 w odpowiednim czasie. Przykładowo, zgodnie z normą PN-IEC 60364-4-41, aby zapewnić skuteczne wyłączenie zasilania przy prądzie zwarciowym, impedancja powinna być poniżej 2,3 Ω. Przy wyższych wartościach impedancji, prąd zwarciowy może być zbyt niski, co skutkuje opóźnieniem lub brakiem wyłączenia zasilania, a to z kolei zwiększa ryzyko porażenia prądem użytkowników. Warto zauważyć, że typowym błędem jest mylenie impedancji z innymi parametrami elektrycznymi, co prowadzi do nieprawidłowych wniosków. Analizując te wartości, ważne jest zrozumienie, że każdy system zabezpieczeń w instalacji elektrycznej musi być zaprojektowany z uwzględnieniem minimalnych wartości impedancji, aby zapewnić bezpieczeństwo użytkowników i skuteczność ochrony przeciwporażeniowej.

Pytanie 21

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
B. Użycie wyłącznika o zbyt długim czasie reakcji
C. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
D. Wykorzystywanie urządzeń o zbyt dużej mocy
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 22

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Phillips.
B. Kluczem imbusowym.
C. Kluczem nasadowym.
D. Wkrętakiem z nacięciem Torx.
Wybór niewłaściwego narzędzia do wkręcania śruby może prowadzić do wielu problemów, w tym uszkodzenia elementów oraz opóźnień w pracy. Klucz nasadowy, chociaż używany w wielu zastosowaniach, nie jest odpowiedni do śrub z sześciokątnym nacięciem wewnętrznym. Narzędzia te są projektowane z myślą o śrubach z zewnętrznymi nacięciami, co sprawia, że ich zastosowanie w tym przypadku jest nieefektywne. Klucze imbusowe zapewniają lepszą stabilność i moc przy wkręcaniu śrub, co jest szczególnie ważne w sytuacjach wymagających wysokiego momentu obrotowego. Z kolei wkrętaki z nacięciem Torx i Phillips są przeznaczone do innych typów nacięć, co również sprawia, że ich użycie w tym przypadku jest niewłaściwe. Wkrętaki te są idealne do śrub o krzyżowych nacięciach, ale nie przystosowane są do śrub sześciokątnych. Często zdarza się, że błędny dobór narzędzi wynika z braku zrozumienia specyfiki nacięć śrub. Właściwe narzędzie powinno być dostosowane do charakterystyki śruby, co podkreśla znaczenie znajomości różnych rodzajów narzędzi oraz ich zastosowania w praktyce. Dlatego ważne jest, aby przed przystąpieniem do pracy dokładnie ocenić rodzaj nacięcia i dobrać odpowiedni klucz, aby uniknąć uszkodzeń i niepotrzebnych trudności w montażu lub demontażu.

Pytanie 23

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. uszkodzenia podłączonego urządzenia elektrycznego
C. przeciążenia obwodu elektrycznego
D. zwarcia w obwodzie elektrycznym
Wielu ludzi myśli, że zamontowanie gniazda bez styku ochronnego może prowadzić do zwarcia w instalacji elektrycznej, co jest błędnym rozumowaniem. Zwarcie występuje, gdy następuje niezamierzony kontakt między przewodami o różnym potencjale, co prowadzi do nadmiernego przepływu prądu. W przypadku gniazda bez styku ochronnego nie dochodzi do sytuacji zwarcia, ale raczej do braku bezpiecznego uziemienia dla urządzenia. Kolejnym mylnym przekonaniem jest to, że brak styku ochronnego może prowadzić do przeciążenia instalacji elektrycznej. Przeciążenie ma miejsce, gdy zbyt wiele urządzeń pobiera prąd jednocześnie, co nie jest bezpośrednio związane z uziemieniem. Również uszkodzenie urządzenia elektrycznego nie jest bezpośrednim skutkiem braku styku ochronnego. Uszkodzenia mogą powstać w wyniku innych czynników, takich jak zbyt wysokie napięcie czy awaria wewnętrzna. W rzeczywistości, najważniejszym zagrożeniem wynikającym z zastosowania gniazda bez styku ochronnego jest możliwość porażenia prądem elektrycznym, co jest powszechnie bagatelizowane. Wynika to z braku zrozumienia zasad działania urządzeń elektrycznych i standardów bezpieczeństwa, takich jak PN-IEC 60439, które podkreślają znaczenie odpowiedniej ochrony w instalacjach elektrycznych. Edukacja na temat właściwego użytkowania i ochrony w instalacjach elektrycznych jest kluczowa dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 24

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. płaskie
B. jednodrutowe
C. wielodrutowe
D. sektorowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.

Pytanie 25

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. zamiana jednej fazy z przewodem neutralnym
C. zamiana dwóch faz miejscami
D. brak podłączenia jednej fazy
Analizując pozostałe odpowiedzi, można zauważyć, że brak podłączenia dwóch faz nie jest przyczyną zmiany kierunku obrotów silnika, lecz prowadzi do jego nieprawidłowego działania lub całkowitego braku pracy. Silnik trójfazowy wymaga wszystkich trzech faz do uzyskania pełnej mocy i momentu obrotowego. Brak jednej fazy spowoduje, że silnik nie będzie pracował w optymalnych warunkach, a jego działanie może być niestabilne. Z kolei zamiana jednej fazy z przewodem neutralnym nie prowadzi do zmiany kierunku obrotów, lecz może spowodować uszkodzenie silnika lub innych elementów instalacji. Często zdarza się, że osoby zajmujące się instalacjami elektrycznymi nie uwzględniają specyfikacji dotyczących konfiguracji połączeń fazowych, co może prowadzić do nieprawidłowego działania całego systemu. W praktyce, przy każdej zmianie instalacji, należy przeprowadzić dokładną kontrolę schematów połączeń oraz zapewnić zgodność z normami branżowymi, takimi jak PN-EN 60204-1, które regulują bezpieczeństwo maszyn i ich zasilania. Bez znajomości zasad działania silników trójfazowych oraz konsekwencji błędnych podłączeń, istnieje ryzyko nie tylko uszkodzenia sprzętu, ale także zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 26

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Schodowy
C. Świecznikowy
D. Dwubiegunowy
Krzyżowy łącznik instalacyjny, mimo iż jest powszechnie stosowany w instalacjach elektrycznych, nie posiada dwóch klawiszy i trzech zacisków, lecz jest używany w połączeniu z innymi łącznikami, aby umożliwić sterowanie oświetleniem z więcej niż dwóch miejsc. W praktyce, krzyżowy łącznik jest wykorzystywany w układach, gdzie już istnieją dwa lub więcej łączników schodowych, co pozwala na bardziej skomplikowane sterowanie oświetleniem, a nie jako samodzielne rozwiązanie. Schodowy łącznik, z drugiej strony, również nie odpowiada opisowi, ponieważ jego funkcją jest kontrolowanie jednego obwodu z dwóch miejsc, ale posiada tylko dwa zaciski. Użytkownicy często mylą ten typ łącznika ze świecznikowym w kontekście aplikacji, co może prowadzić do błędnych decyzji przy projektowaniu instalacji. Dwubiegunowy łącznik jest przeznaczony do kontroli obwodów elektrycznych, które wymagają rozłączania dwóch przewodów fazowych, ale także nie spełnia kryteriów podanych w pytaniu. Typowe błędy myślowe w tym przypadku polegają na utożsamianiu różnych typów łączników z ich funkcjonalnościami, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu w konkretnej sytuacji.

Pytanie 27

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Spadku napięcia.
B. Częstotliwości.
C. Współczynnika mocy.
D. Odkształceń przebiegu napięcia.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 28

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 1000 V
B. 500 V
C. 250 V
D. 750 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 29

Minimalny czas działania oświetlenia ewakuacyjnego powinien wynosić przynajmniej

A. 2 godziny
B. 1 godzinę
C. 3 godziny
D. 4 godziny
Chociaż krótszy czas działania oświetlenia ewakuacyjnego, jak 1 godzina, może wydawać się w porządku w niektórych sytuacjach, to jednak nie spełnia norm i nie bierze pod uwagę różnych zagrożeń, które mogą się zdarzyć w krytycznych momentach. Gdy ewakuacja zajmie więcej czasu, może być naprawdę niebezpiecznie, zwłaszcza w dużych obiektach, gdzie ludzie mogą być rozproszeni na różnych piętrach. Z kolei, wydłużenie tego czasu do 3 czy 4 godzin, mimo że brzmi lepiej, nie jest wymagane przepisami i może prowadzić do marnotrawienia zasobów i wyższych kosztów związanych z utrzymywaniem oświetlenia ewakuacyjnego. Czasami można spotkać się z błędnym myśleniem, że wystarczy jedynie zaświecić drogę ewakuacyjną. Kluczowe jest, by system oświetlenia dawał stabilne i jasne światło przez cały czas ewakuacji. To można osiągnąć tylko dzięki dobrym rozwiązaniom technicznym i regularnemu serwisowi, żeby mieć pewność, że wszystko działa. Bezpieczeństwo osób opuszczających budynek w kryzysowych sytuacjach jest absolutnie priorytetowe, a czas działania oświetlenia ewakuacyjnego jest jednym z kluczowych elementów, które to bezpieczeństwo zapewniają.

Pytanie 30

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TT
B. IT
C. TN-C
D. TN-S
Wybór innych układów sieciowych, takich jak IT, TN-S i TT, jest nietrafiony z kilku powodów. W układzie IT, który charakteryzuje się izolowanym systemem zasilania, nie występuje przewód PEN, ponieważ nie ma potrzeby łączenia funkcji ochronnych i neutralnych. Ten system jest często stosowany w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale, ponieważ w przypadku awarii jednego z fazowych przewodów, pozostałe mogą dalej funkcjonować bez przerwy. Układ TN-S natomiast odseparowuje przewody ochronne (PE) od przewodów neutralnych (N), co zwiększa bezpieczeństwo, ale wymaga większej liczby przewodów, co może być mniej efektywne kosztowo. Z kolei układ TT to inny system, w którym przewód ochronny jest oddzielony od systemu neutralnego, co oznacza, że w przypadku uszkodzenia nie jest możliwe skorzystanie z przewodu PEN. Takie rozwiązanie może być stosowane w sytuacjach, gdzie występują wysokie wymagania dotyczące bezpieczeństwa, ale wiąże się z większym ryzykiem porażenia elektrycznego. W praktyce, wybór odpowiedniego układu sieciowego powinien być uzależniony od specyficznych potrzeb oraz warunków, w jakich będzie funkcjonować instalacja elektryczna. Warto zatem zrozumieć różnice pomiędzy tymi układami, aby skutecznie dobierać rozwiązania odpowiednie dla konkretnego zastosowania.

Pytanie 31

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, lutownica, tester
B. Tester, wkrętak, lutownica
C. Ściągacz izolacji, wkrętak, próbnik
D. Szczypce, wkrętak, lutownica
Wybór narzędzi do podłączenia gniazda wtyczkowego jest kluczowy dla bezpieczeństwa i efektywności instalacji. Wiele osób może pomylić, jakie narzędzia są rzeczywiście konieczne, co prowadzi do nieprawidłowych wyborów. Na przykład, lutownica, choć może być użyteczna w niektórych kontekstach, nie jest niezbędna do podłączenia gniazda wtyczkowego w standardowej instalacji elektrycznej. Lutowanie jest techniką stosowaną głównie w połączeniach, które wymagają trwałego i przewodzącego połączenia, ale nie jest powszechnie zalecane w przypadku gniazd i wtyczek, gdzie stosuje się konektory i zaciski. Ponadto, brak ściągacza izolacji w odpowiedzi, która go nie uwzględnia, może prowadzić do uszkodzenia przewodów podczas ich przygotowywania. Zastosowanie szczypiec zamiast ściągacza izolacji może być niewłaściwe, ponieważ szczypce nie są zaprojektowane do precyzyjnego usuwania izolacji. Wkrętak jest oczywiście niezbędny, ale bez pozostałych narzędzi nie zapewni się prawidłowego kontaktu elektrycznego, co może prowadzić do awarii instalacji. Zrozumienie właściwego doboru narzędzi i ich zastosowania w kontekście standardów instalacji elektrycznych jest kluczowe dla wykonania bezpiecznej i funkcjonalnej instalacji.

Pytanie 32

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Rezystancję izolacji.
C. Chwilową moc obciążenia.
D. Prąd upływu.
Pomiar prądu upływu, impedancji pętli zwarcia oraz chwilowej mocy obciążenia opiera się na innych zasadach pomiarowych i wymaga odmiennych przyrządów. Prąd upływu dotyczy prądów, które uciekają z instalacji do ziemi lub do obudowy urządzeń, co jest istotne z punktu widzenia bezpieczeństwa, ale nie jest bezpośrednio związane z pomiarem rezystancji izolacji. Z kolei impedancja pętli zwarcia jest mierzona w celu oceny skuteczności ochrony przeciwporażeniowej i nie może być określona przy użyciu miernika izolacji. Mierniki do pomiaru impedancji pętli zwarcia wykorzystują inną metodologię pomiarową i zazwyczaj są dostosowane do pracy w obwodach z obciążeniem. Chwilowa moc obciążenia również nie jest zależna od wartości rezystancji izolacji, gdyż odnosi się do momentalnego zużycia energii przez urządzenie, co jest mierzono za pomocą liczników energii elektrycznej. Typowe nieporozumienie polega na myleniu różnych parametrów elektrycznych, co może prowadzić do niewłaściwych pomiarów i, w konsekwencji, do nieprawidłowych ocen stanu instalacji. Dlatego ważne jest, aby przed przystąpieniem do pomiarów dobrze zrozumieć zastosowanie konkretnego narzędzia pomiarowego oraz jego możliwości.

Pytanie 33

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Izolowanie miejsca pracy
C. Ochronne obniżenie napięcia
D. Podwójna lub wzmocniona izolacja
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 34

Jakie oznaczenie literowe odnosi się do przewodu przeznaczonego do zasilania mobilnych odbiorników?

A. LY
B. YDY
C. OMY
D. YAKY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 35

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 2 lata
B. rok
C. kwartał
D. 4 lata
Wybór nieodpowiedniego okresu pomiędzy kontrolami instalacji elektrycznych może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa użytkowników, jak i dla stanu technicznego budynku. Decydując się na kontrolę co kwartał, można błędnie zakładać, że tak częste inspekcje są niezbędne dla zapewnienia bezpieczeństwa. Takie podejście może prowadzić do niepotrzebnych kosztów i obciążenia dla właścicieli budynków, które mogą być nadmierne w porównaniu do rzeczywistych potrzeb. Z drugiej strony, wybierając okres dwóch lub czterech lat, użytkownicy mogą nie dostrzegać, że instalacje elektryczne, szczególnie te narażone na działanie czynników atmosferycznych, mogą ulegać szybkiemu zużyciu. Statystyki pokazują, że awarie elektryczne często występują w wyniku zaniedbania regularnych kontroli, co może skutkować nie tylko stratami materialnymi, ale i zagrożeniem dla życia ludzi. Dlatego istotne jest, aby nie opierać się na subiektywnych odczuciach co do stanu technicznego instalacji, lecz kierować się zaleceniami norm branżowych, które wskazują na konieczność przeprowadzania kontroli co roku. Umożliwia to nie tylko zachowanie bezpieczeństwa, ale również utrzymanie instalacji w odpowiednim stanie technicznym przez długi czas.

Pytanie 36

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Niewłaściwe napięcie zasilania
B. Zbyt wysoka moc zasilanego odbiornika
C. Słabo dokręcone złącza wyłącznika
D. Zbyt niski prąd znamionowy wyłącznika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 37

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
D. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
Analizując podane odpowiedzi, można zauważyć, że wiele z nich zawiera nieprawidłowe założenia dotyczące funkcji wyłączników różnicowoprądowych i nadprądowych. Na przykład, niektóre z odpowiedzi mylnie klasyfikują wyłącznik nadprądowy jako odłącznik, co jest istotnym błędem w zrozumieniu ich funkcji. Odłącznik instalacyjny nie zabezpiecza przed przeciążeniem ani zwarciem, a jedynie służy do rozłączania obwodu w celach serwisowych. W praktyce, w przypadku awarii, wyłącznik różnicowoprądowy jest kluczowy, ponieważ jego zadaniem jest zapobieganie porażeniom prądem elektrycznym. Dodatkowo, wyłączniki nadprądowe i różnicowoprądowe mają różne mechanizmy działania. Wyłącznik nadprądowy reaguje na nadmierny prąd, natomiast wyłącznik różnicowoprądowy monitoruje równowagę prądów w obwodzie. Te różnice są fundamentalne do prawidłowego doboru i zastosowania tych urządzeń w instalacjach elektrycznych. W związku z tym, zrozumienie tych koncepcji jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności instalacji elektrycznych, a także dla unikania zagrożeń związanych z ich niewłaściwym stosowaniem.

Pytanie 38

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 6 mm2
C. 2,5 mm2
D. 4 mm2
Wybór niewłaściwego przekroju żyły może wynikać z kilku błędnych założeń dotyczących obciążalności przewodów. Odpowiedzi takie jak 4 mm², 1,5 mm² lub 6 mm² mogą wydawać się atrakcyjne, ale każda z nich ma swoje mankamenty. W przypadku 4 mm², chociaż teoretycznie jest to wystarczający przekrój, to w praktyce jest to zbyt duża wartość w odniesieniu do obliczonego minimum, co prowadzi do zbędnych kosztów materiałowych. Z kolei przekrój 1,5 mm² jest niewystarczający, ponieważ jego maksymalna obciążalność nie osiąga wymaganego poziomu, co stwarza ryzyko przegrzewania się przewodów oraz potencjalnych awarii w przypadku przeciążenia. Odpowiedź 6 mm² zaś, choć jest zgodna z wytycznymi dotyczącymi bezpieczeństwa, również przekracza wymagania, co powoduje dodatkowe wydatki i nieefektywne wykorzystanie zasobów. Często błędne wnioski wynikają z nieznajomości norm obciążalności przewodów lub ignorowania praktycznych aspektów takich jak długotrwałe obciążenia czy warunki montażu. Ważne jest również, aby pamiętać, że odpowiedni dobór przekroju przewodów nie tylko wpływa na bezpieczeństwo instalacji, ale także na jej efektywność energetyczną oraz koszty eksploatacji. Działania w tej dziedzinie powinny być zawsze wspierane przez aktualne normy oraz praktyki branżowe, aby zapewnić niezawodność i bezpieczeństwo całego systemu zasilania.

Pytanie 39

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 250 V
B. 2500 V
C. 1000 V
D. 500 V
Stosowanie napięcia 500 V, 250 V czy 2500 V do pomiaru rezystancji izolacji przewodu YDY 5x6 450/700 V jest nieprawidłowe z kilku powodów. Napięcie 500 V jest zbyt niskie, aby skutecznie ocenić stan izolacji, szczególnie w przypadku przewodów o niższej klasie napięcia, które mogą wykazywać defekty poddawane jedynie wyższym napięciom. Zastosowanie zbyt niskiego napięcia może prowadzić do fałszywie pozytywnych wyników, co skutkuje błędną oceną stanu izolacji i potencjalnym zagrożeniem bezpieczeństwa. Z kolei 250 V jest jeszcze niższe i również nie dostarcza wystarczającej energii do wykrycia ewentualnych uszkodzeń izolacji. Przeciwnie, napięcie 2500 V jest zbyt wysokie dla tego typu przewodów i może doprowadzić do uszkodzenia izolacji, co w konsekwencji może spowodować poważne awarie systemu elektrycznego. Z tego powodu kluczowe jest stosowanie napięć, które są zgodne z normami i zaleceniami branżowymi, aby zapewnić zarówno dokładność pomiarów, jak i bezpieczeństwo instalacji. Warto w tym kontekście przypomnieć, że zgodnie z normą PN-EN 60364-4-6, pomiar rezystancji izolacji powinien być przeprowadzany przy napięciu 1000 V dla instalacji o napięciu do 1000 V, co podkreśla znaczenie stosowania odpowiednich wartości napięcia w praktyce inżynieryjnej.

Pytanie 40

Który element instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Ogranicznik mocy.
B. Wyłącznik priorytetowy.
C. Wyłącznik ciśnieniowy.
D. Ogranicznik przepięć.
Odpowiedź jest trafna! Na tym rysunku widzimy urządzenie elektryczne, które ma oznaczenia związane z mocą, takie jak Pm. Ogranicznik mocy odgrywa naprawdę ważną rolę w nowoczesnych instalacjach elektrycznych. Jego zadaniem jest pilnowanie i regulowanie, ile energii zużywamy, co pomaga uniknąć przepięć i przeciążeń. W praktyce, takie urządzenia często spotykamy w obiektach komercyjnych i przemysłowych, gdzie ryzyko przekroczenia przydzielonej mocy jest spore. Dzięki temu, osoby zarządzające instalacjami mogą lepiej kontrolować zużycie prądu, co przekłada się na niższe koszty i większe bezpieczeństwo. Co więcej, ograniczniki mocy muszą być zgodne z europejskimi normami, jak na przykład EN 61000, które mówią o jakości energii elektrycznej oraz o ochronie instalacji przed napięciami, które są za wysokie.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły