Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 27 maja 2025 20:50
  • Data zakończenia: 27 maja 2025 20:59

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Klasyczny mechanizm różnicowy pozwala na

A. przeniesienie momentu obrotowego z skrzyni biegów na wał.
B. aktywowanie napędu na cztery koła.
C. płynne dostosowywanie prędkości pojazdu.
D. prowadzenie samochodu z różnymi prędkościami obrotowymi kół napędowych.
Klasyczny mechanizm różnicowy jest kluczowym elementem układu napędowego pojazdów, który umożliwia jazdę z różnymi prędkościami obrotowymi kół napędzanych. Jego podstawowym zadaniem jest kompensowanie różnic w prędkości obrotowej kół, co jest szczególnie istotne podczas pokonywania zakrętów. W momencie, gdy pojazd skręca, zewnętrzne koło pokonuje dłuższą drogę niż wewnętrzne, co prowadzi do różnicy w prędkości obrotowej. Mechanizm różnicowy pozwala na swobodne obracanie się kół w zależności od ich potrzeb, co zwiększa stabilność i komfort jazdy. Przykładem zastosowania mechanizmu różnicowego są samochody osobowe, które wykorzystują go do poprawy trakcji i manewrowości. Działanie to jest zgodne z najlepszymi praktykami inżynieryjnymi, które postulują efektywne wykorzystanie mocy silnika oraz zmniejszenie zużycia paliwa, a także zwiększenie bezpieczeństwa jazdy.

Pytanie 2

Podczas inspekcji układu zawieszenia zauważono odkształcenie wahacza koła. W tej sytuacji mechanik powinien

A. wykonać kompleksową regulację geometrii zawieszenia
B. uszkodzony wahacz wymienić na nowy
C. wygięty wahacz naprawić na zimno
D. wygięty wahacz naprawić na gorąco
W przypadku stwierdzenia skrzywienia wahacza koła, najlepszym rozwiązaniem jest jego wymiana na nowy. Wahacz jest kluczowym elementem układu zawieszenia, który odpowiada za stabilność pojazdu, a także zapewnia odpowiednią geometrię kół. Skrzywienie wahacza może prowadzić do nieprawidłowego ustawienia kół, co z kolei wpływa na bezpieczeństwo jazdy, zużycie opon oraz komfort podróżowania. Wymiana wahacza jest zgodna z zasadami dobrych praktyk w branży motoryzacyjnej, które zalecają stosowanie nowych, oryginalnych lub wysokiej jakości zamienników, aby zapewnić pełną funkcjonalność i bezpieczeństwo. W sytuacjach, gdy wahacz uległ uszkodzeniu, jego regeneracja poprzez prostowanie może wprowadzić dodatkowe ryzyko, gdyż nie gwarantuje to przywrócenia pierwotnych właściwości mechanicznych materiału. Przykładem może być sytuacja, w której po prostowaniu wahacza następuje jego dalsza deformacja podczas eksploatacji pojazdu. Dlatego zaleca się wymianę uszkodzonego wahacza na nowy, co zapewnia długoterminowe bezpieczeństwo oraz niezawodność układu zawieszenia.

Pytanie 3

Podczas serwisowania silnika wymieniono 4 wtryskiwacze o łącznym koszcie 1750,00 zł netto oraz turbinę w cenie 1900,00 zł netto. Całkowity czas serwisowania wyniósł 5,5 roboczogodziny, a stawka za jedną roboczogodzinę to 120,00 zł brutto. Części samochodowe podlegają opodatkowaniu VAT w wysokości 23%. Jaki jest całkowity koszt serwisowania brutto?

A. 4 310,00 zł
B. 5 301,30 zł
C. 5 149,50 zł
D. 4 489,50 zł
Wybór odpowiedzi, która nie jest zgodna z prawidłowymi obliczeniami, może wynikać z kilku typowych błędów myślowych związanych z kalkulacją kosztów. Przede wszystkim, należy pamiętać, że koszty części zamiennych oraz robocizny powinny być sumarycznie obliczane na poziomie netto, a następnie powiększane o podatek VAT. Niekiedy osoby obliczające mogą nie uwzględnić VAT na wszystkich elementach, co prowadzi do zaniżenia łącznego kosztu. Inną powszechną pomyłką jest nieuwzględnienie kosztów robocizny w całości, co prowadzi do niepełnych kalkulacji. Warto również zwrócić uwagę, że niektóre odpowiedzi mogą ignorować istotne zasady dotyczące obliczeń brutto, co może być wynikiem braku znajomości przepisów podatkowych. Dobrą praktyką w takich sytuacjach jest zawsze weryfikacja, czy wszystkie elementy kosztowe, w tym VAT, zostały uwzględnione w obliczeniach, aby uniknąć pomyłek. W kontekście branży motoryzacyjnej, właściwe zarządzanie kosztami oraz ich poprawna kalkulacja są kluczowe dla prowadzenia działalności oraz utrzymania przejrzystości finansowej.

Pytanie 4

Jakiego oleju używa się do smarowania przekładni głównej, który ma symbol

A. L-DAA
B. SG/CC SAE 10W/40
C. DOT-4
D. GL5 SAE 75W90
Odpowiedź GL5 SAE 75W90 jest poprawna, ponieważ ten typ oleju jest specjalnie zaprojektowany do smarowania przekładni głównych w pojazdach. Oznaczenie GL5 odnosi się do klasy olejów przekładniowych, które spełniają wymagania dla zmiennych obciążeń i dużych obrotów, co jest kluczowe w aplikacjach takich jak mosty i przekładnie. Olej SAE 75W90 oznacza, że ma odpowiednią lepkość w niskich temperaturach (75W) oraz w wysokich temperaturach (90), co zapewnia odpowiednią ochronę w różnych warunkach eksploatacyjnych. W praktyce użycie oleju GL5 SAE 75W90 zapewnia lepsze smarowanie, zmniejsza tarcie oraz poprawia wydajność układów przeniesienia napędu, co przekłada się na dłuższą żywotność komponentów. Zastosowanie tego typu oleju jest zgodne z zaleceniami wielu producentów pojazdów oraz normami branżowymi, co czyni go standardem w branży motoryzacyjnej.

Pytanie 5

Obniżenie ciśnienia w systemie smarowania silnika wskazuje na usterkę

A. gładzi cylindrowej
B. pierścieni tłokowych
C. panewek głównych
D. tłoka
Spadek ciśnienia w układzie smarowania silnika rzadko bywa związany z uszkodzeniami tłoków, pierścieni tłokowych czy gładzi cylindrowej, co często prowadzi do błędnych wniosków. Tłok jest elementem, który porusza się w gładzi cylindrowej i utrzymuje ciśnienie wewnątrz cylindrów, ale jego uszkodzenie zwykle skutkuje zwiększeniem zużycia oleju i spadkiem mocy silnika, a nie bezpośrednim spadkiem ciśnienia w układzie smarowania. Podobnie, pierścienie tłokowe, które uszczelniają komorę spalania, również nie mają bezpośredniego wpływu na ciśnienie w układzie smarowania, chociaż ich uszkodzenie może prowadzić do problemów z silnikiem. Gładź cylindrowa, będąca powierzchnią, w której porusza się tłok, ma kluczowe znaczenie dla utrzymania odpowiedniej kompresji, ale nie jest bezpośrednio związana z ciśnieniem oleju w układzie smarowania. Aby uniknąć mylnych interpretacji, istotne jest zrozumienie, że spadek ciśnienia oleju jest przede wszystkim związany z systemem smarowania, gdzie kluczowe są panewki i pompa olejowa. Właściwe monitorowanie ciśnienia oleju oraz jego regularna wymiana są standardami pozwalającymi na zapobieganie awariom i wydłużenie żywotności silnika.

Pytanie 6

Potrzeba regularnej wymiany płynu hamulcowego wynika głównie

A. ze zmiany składu chemicznego płynu
B. ze zwiększenia zawartości wody w płynie
C. z zanieczyszczenia płynu cząstkami i osadami
D. z zapowietrzenia układu hamulcowego
Zwiększenie zawartości wody w płynie hamulcowym jest kluczowym powodem, dla którego konieczna jest jego okresowa wymiana. Płyn hamulcowy, szczególnie ten na bazie glikolu, ma zdolność absorpcji wilgoci z otoczenia. W miarę upływu czasu, woda, która dostaje się do układu, obniża temperaturę wrzenia płynu. To zjawisko może prowadzić do wystąpienia zjawiska 'wodnego wrzenia', co jest niebezpieczne, ponieważ podczas hamowania płyn może osiągnąć temperaturę wrzenia, co skutkuje utratą ciśnienia w układzie hamulcowym, a tym samym zmniejszeniem skuteczności hamowania. W praktyce, normy bezpieczeństwa, takie jak te określone przez DOT (Department of Transportation), zalecają sprawdzanie zawartości wody w płynie hamulcowym co dwa lata lub po przejechaniu określonego przebiegu. Regularna wymiana płynu hamulcowego pomaga utrzymać optymalną wydajność hamulców i zapewnia bezpieczeństwo na drodze. Dbanie o układ hamulcowy jest zatem fundamentalnym aspektem utrzymania pojazdu, który wpływa na bezpieczeństwo kierowcy oraz pasażerów.

Pytanie 7

Najprościej pomiar zbieżności połówkowej przeprowadza się

A. z wykorzystaniem projektorów zamocowanych do wszystkich kół
B. gdy samochód przejeżdża przez płytę pomiarową w Stacji Kontroli Pojazdów
C. przy użyciu rozpędzarki do kół
D. za pomocą projektorów instalowanych na kołach po jednej stronie pojazdu
Jak się okazuje, pomiar zbieżności połówkowej przy pomocy płyty pomiarowej na Stacji Kontroli Pojazdów to naprawdę dobry wybór. Dlaczego? Bo to pozwala na precyzyjne sprawdzenie kątów ustawienia kół w trakcie jazdy, co jest super ważne. Płyta pomiarowa pozwala badać wszystkie koła jednocześnie, co znacznie zwiększa dokładność pomiarów. Jest to zgodne z określonymi normami, więc wyniki są wiarygodne. Dzięki temu można łatwo znaleźć problemy z geometrią zawieszenia, co ma ogromne znaczenie dla bezpieczeństwa na drodze oraz komfortu jazdy. Na przykład, przed zimą warto sprawdzić stan techniczny auta, żeby wcześnie zauważyć ewentualne usterki i je naprawić. Regularne kontrole też zapobiegają nierównomiernemu zużyciu opon, co wpływa na oszczędność paliwa i stabilność pojazdu.

Pytanie 8

Reaktor katalityczny stanowi część systemu

A. zasilania
B. napędowego
C. wylotowego
D. dolotowego
Reaktor katalityczny jest kluczowym komponentem układu wylotowego w pojazdach z silnikami spalinowymi. Jego głównym zadaniem jest redukcja emisji szkodliwych substancji, takich jak tlenki azotu, węglowodory i tlenek węgla, poprzez katalityczną konwersję ich w mniej szkodliwe związki, takie jak azot i dwutlenek węgla. Przykładem zastosowania reaktora katalitycznego jest jego rola w układzie wydechowym, gdzie zachodzi reakcja chemiczna na powierzchni katalizatora. W praktyce, reaktory te współpracują z systemem monitorowania emisji, co pozwala na spełnienie norm ekologicznych, takich jak te określone w normach Euro. Dobre praktyki branżowe zalecają regularne kontrole stanu reaktora katalitycznego, aby zapewnić jego efektywność i długowieczność, co z kolei wpływa na zmniejszenie kosztów eksploatacyjnych pojazdów oraz ograniczenie ich wpływu na środowisko. Współczesne technologie wytwarzania katalizatorów, w tym rozwój katalizatorów na bazie platyny, palladu czy rod, pozwalają na osiąganie coraz lepszych parametrów redukcji emisji, co czyni reaktory katalityczne niezbędnym elementem nowoczesnych układów wydechowych.

Pytanie 9

Czas wymiany dwóch sworzni zwrotnic w pojeździe osobowym wynosi 2 godziny. Jakie będą koszty wymiany sworzni oraz ustawienia zbieżności przy założeniu, że:
- cena jednego sworznia to 60 zł brutto,
- stawka za roboczogodzinę wynosi 80 zł brutto,
- opłata za pomiar i ustawienie zbieżności wynosi 100 zł brutto?

A. 380 zł
B. 320 zł
C. 240 zł
D. 300 zł
Podczas analizy błędnych odpowiedzi, istotne jest zrozumienie, jakie elementy kosztów zostały pominięte lub źle obliczone. W przypadku odpowiedzi, które sugerują kwoty takie jak 320 zł czy 300 zł, najprawdopodobniej zignorowano jeden z kosztów lub zastosowano niewłaściwe mnożniki. Na przykład, kwota 320 zł może wynikać z błędnego założenia, że koszt robocizny wynosi tylko 80 zł, co jest niemożliwe, ponieważ obejmuje on czas pracy na wymianę dwóch sworzni, a nie tylko jeden. Z kolei odpowiedź 240 zł może wynikać z całkowitego zignorowania kosztu regulacji zbieżności, co jest kluczowym elementem procesu. Zbieżność kół jest niezbędna nie tylko dla bezpieczeństwa, ale także dla wydajności samochodu, wpływając na zużycie opon i ogólne koszty eksploatacji. Odpowiedzi te ukazują typowe błędy myślowe, takie jak nieuwzględnienie wszystkich składowych kosztów lub mylenie roboczogodzin z całkowitym kosztem robocizny. W realnych warunkach, zawsze warto kalkulować wszystkie związane z usługą koszty, aby uniknąć niedoszacowania wydatków, co jest zgodne z zasadami dobrych praktyk w branży motoryzacyjnej.

Pytanie 10

W trakcie corocznego przeglądu serwisowego pojazdu należy zawsze przeprowadzić

A. wymianę płynu chłodzącego
B. wymianę płynu hamulcowego
C. wymianę oleju silnikowego i filtra oleju
D. wymianę piór wycieraczek
Wymiana oleju silnikowego i filtra oleju jest jednym z kluczowych elementów corocznego przeglądu serwisowego pojazdu, ponieważ zapewnia optymalne działanie silnika oraz przedłuża jego żywotność. Olej silnikowy odgrywa fundamentalną rolę w smarowaniu ruchomych części silnika, co zapobiega nadmiernemu zużyciu i uszkodzeniom mechanicznym. W miarę eksploatacji pojazdu, olej ulega degradacji z powodu wysokich temperatur oraz powstawania zanieczyszczeń, co wpływa na jego właściwości smarne. Dlatego regularna wymiana oleju oraz filtra oleju, który zatrzymuje zanieczyszczenia, jest niezbędna dla prawidłowego funkcjonowania jednostki napędowej. Przykładowo, zalecenia producentów dotyczące wymiany oleju często określają interwały czasowe lub przebieg, po którym należy wykonać tę czynność, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej. Ignorowanie tej procedury może prowadzić do poważnych awarii i kosztownych napraw silnika, dlatego kluczowe jest przestrzeganie harmonogramu konserwacji pojazdu, aby zapewnić jego długotrwałe i niezawodne działanie.

Pytanie 11

Do rozmontowania kolumny Mc Phersona potrzebny jest ściągacz

A. łożysk.
B. sprężyn szczęk hamulcowych.
C. sprężyn zaworowych.
D. sprężyn układu zawieszenia.
Odpowiedź "sprężyn układu zawieszenia" jest poprawna, ponieważ demontaż kolumny McPhersona wiąże się z koniecznością usunięcia sprężyn, które są kluczowym elementem tego typu zawieszenia. Kolumna McPhersona jest popularnym rozwiązaniem w nowoczesnych pojazdach, wykorzystującym połączenie amortyzatora i sprężyny w jednej konstrukcji. Do demontażu sprężyn układu zawieszenia niezbędne jest zastosowanie odpowiedniego ściągacza sprężyn, który umożliwia bezpieczne i skuteczne usunięcie sprężyny z kolumny. W praktyce, przed przystąpieniem do demontażu, należy podnieść pojazd, zabezpieczyć go stabilnie, a następnie zdemontować koło, aby uzyskać dostęp do kolumny. Użycie ściągacza sprężyn jest niezbędne, aby uniknąć ryzyka uszkodzenia elementów zawieszenia, a także zapewnić bezpieczeństwo podczas pracy. Warto również pamiętać o dokładnym sprawdzeniu stanu pozostałych elementów zawieszenia oraz ich wymianie, jeśli tego wymaga sytuacja. Zgodność z zaleceniami producenta oraz odpowiednie narzędzia są kluczowe w prawidłowym przeprowadzeniu tej operacji.

Pytanie 12

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. SOHC
B. DOHC
C. OHC
D. OHV
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 13

W systemie rozrządu silnika z hydrauliczną regulacją luzów zaworowych wykryto nieszczelność w regulatorach. Co należy w tej sytuacji zrobić?

A. wymienić na nowe
B. uszczelnić przy użyciu dodatkowych uszczelek
C. zastąpić mechanizmami mechanicznymi
D. regenerować metodą toczenia
Zastąpienie regulatorów hydraulicznymi regulatorami mechanicznymi nie jest zalecane, ponieważ mechaniczne układy regulacji luzów zaworowych działają na zupełnie innej zasadzie niż ich hydrauliczne odpowiedniki. Mechaniczne regulacje wymagają stałych interwencji w postaci regulacji luzów, co może prowadzić do błędów w ustawieniu i zwiększonego zużycia silnika. Ponadto, nie wszystkie silniki są przystosowane do pracy z mechanicznymi regulatorami, co może skutkować dodatkowymi problemami w działaniu układu rozrządu. Uszczelnianie regulatorów dodatkowymi uszczelkami to kolejny mylny krok, ponieważ stosowanie improwizowanych rozwiązań może jedynie maskować problem, ale nie rozwiązuje go. Takie podejście może prowadzić do dalszych uszkodzeń oraz znacznie zwiększyć ryzyko awarii w systemie. Regeneracja metodą toczenia także jest nieodpowiednia, ponieważ wymaga precyzyjnego dostosowania wymiarów, co w przypadku regulatorów hydraulicznych jest mało praktyczne i może nie zapewnić wymaganego poziomu szczelności. W kontekście układów hydraulicznych, kluczowe jest zapewnienie ściśle określonych parametrów działania, których nie można osiągnąć poprzez takie metody. Praktyka pokazuje, że stosowanie najlepszych praktyk i ścisłe trzymanie się specyfikacji producentów stanowi fundament efektywnej i bezpiecznej pracy silnika.

Pytanie 14

Wskaźnik temperatury chłodziwa w trakcie jazdy samochodem pokazał wartość przekraczającą 110 °C (czerwone pole). Co to oznacza?

A. może świadczyć o awarii klimatyzacji
B. może wskazywać na uszkodzenie układu chłodzenia
C. może sugerować niski poziom oleju
D. może być oznaką zatarcia silnika
Przekroczenie temperatury płynu chłodzącego powyżej 110 °C wskazuje na poważny problem, najczęściej związany z awarią układu chłodzenia. Układ chłodzenia silnika ma kluczowe znaczenie dla jego prawidłowego funkcjonowania, gdyż jego zadaniem jest odprowadzanie nadmiaru ciepła wytwarzanego podczas pracy silnika. W przypadku awarii, na przykład z powodu uszkodzenia termostatu, przecieku w układzie chłodzenia lub zatykania chłodnicy, temperatura może szybko wzrosnąć. W takich sytuacjach, ignorowanie wskaźnika temperatury może prowadzić do poważniejszych uszkodzeń silnika, takich jak zatarcie tłoków czy uszkodzenie uszczelki głowicy. Standardy motoryzacyjne zalecają regularne przeglądy układu chłodzenia oraz kontrolę poziomu płynu chłodzącego, aby zapobiec tym niebezpiecznym sytuacjom. Proaktywnym podejściem jest również przynajmniej raz w roku sprawdzanie stanu komponentów układu chłodzenia, co może znacznie zredukować ryzyko wystąpienia awarii.

Pytanie 15

Na profil wału korbowego silnika nie oddziałuje

A. liczba cylindrów
B. umiejscowienie wałka rozrządu
C. kolejność zapłonów
D. pojemność skokowa silnika
Umiejscowienie wałka rozrządu nie ma wpływu na kształt wału korbowego silnika, ponieważ te dwa elementy pełnią różne funkcje w układzie napędowym silnika. Wał korbowy jest odpowiedzialny za przekształcanie ruchu posuwistego tłoków w ruch obrotowy, natomiast wałek rozrządu kontroluje otwieranie i zamykanie zaworów w odpowiednich momentach cyklu pracy silnika. W praktyce oznacza to, że zmiany w umiejscowieniu wałka rozrządu mogą wpływać na dynamikę pracy silnika, jednak nie zmieniają geometrii wału korbowego. Przykładami zastosowania tej wiedzy w projektowaniu silników są silniki DOHC (Double Overhead Camshaft), które posiadają dwa wałki rozrządu, ale to ich umiejscowienie nie wpływa na kształt wału korbowego, który pozostaje niezmienny. W kontekście standardów branżowych, projektanci silników często korzystają z zaawansowanych symulacji komputerowych, by ocenić wpływ różnych parametrów na osiągi silnika, a umiejscowienie wałka rozrządu jest jednym z wielu aspektów, które są brane pod uwagę, ale nie wpływa na kształt wału korbowego.

Pytanie 16

Mechanik podczas weryfikacji układu napędowego samochodu powinien zwrócić szczególną uwagę na:

A. Poziom płynu do spryskiwaczy
B. Jakość dźwięku z głośników
C. Kondycję wycieraczek przednich
D. Stan przegubów homokinetycznych
Podczas weryfikacji układu napędowego samochodu, szczególną uwagę należy zwrócić na stan przegubów homokinetycznych. Przeguby te mają kluczowe znaczenie w przenoszeniu napędu z wału napędowego do kół, umożliwiając jednocześnie ruchy zawieszenia i skręcanie kół. Ich prawidłowe działanie zapewnia płynne i efektywne przekazywanie mocy, co jest niezbędne dla bezpieczeństwa i komfortu jazdy. Uszkodzone przeguby mogą prowadzić do wibracji, hałasów oraz trudności w prowadzeniu pojazdu. Dlatego regularna kontrola ich stanu, w tym osłon przegubów, które chronią przed zanieczyszczeniami i utratą smaru, jest jedną z podstawowych czynności podczas diagnostyki układu napędowego. Profesjonalni mechanicy wykorzystują różne metody, takie jak testy drogowe czy inspekcje wizualne, aby ocenić kondycję przegubów. Dbanie o te elementy zgodnie z zaleceniami producentów i najlepszymi praktykami branżowymi to klucz do długotrwałej i bezawaryjnej eksploatacji pojazdu.

Pytanie 17

Aby zmierzyć wielkość luzu na zamku pierścienia tłokowego, jaki przyrząd należy zastosować?

A. czujnik zegarowy
B. szczelinomierz
C. mikrometr
D. suwmiarka
Szczelinomierz jest narzędziem pomiarowym służącym do dokładnego pomiaru luzów i szczelin, co czyni go idealnym do sprawdzania wielkości luzu na zamku pierścienia tłokowego. Praktyczne zastosowanie szczelinomierza polega na wprowadzeniu odpowiednich blaszek pomiarowych w szczelinę, co pozwala na precyzyjne określenie jej wielkości. W branży motoryzacyjnej i mechanicznej, w której tolerancje muszą być ściśle przestrzegane, użycie szczelinomierza jest standardem dobrych praktyk. Umożliwia on również pomiar szczelin w trudnodostępnych miejscach, gdzie inne narzędzia mogłyby być niewystarczające. Aby zapewnić optymalną wydajność silnika, ważne jest, aby luz między pierścionkami a cylindrem był odpowiedni. Przykładowo, zbyt mały luz może prowadzić do zatarcia silnika, natomiast zbyt duży luz może skutkować utratą ciśnienia sprężania. Dlatego stosowanie szczelinomierza w takich zastosowaniach jest kluczowe dla bezpieczeństwa i efektywności pracy silników.

Pytanie 18

W przypadku silnika czterosuwowego, gdy prędkość obrotowa wału korbowego wynosi 3000 obr/min, jaka jest prędkość obrotowa wałka rozrządu?

A. 6 000 obr/min
B. 3 000 obr/min
C. 1 500 obr/min
D. 750 obr/min
Jak się patrzy na prędkości w silniku 4-suwowym, trzeba zrozumieć, jak działa wał korbowy i wałek rozrządu. W tych silnikach wał korbowy robi pełny obrót, a wałek rozrządu tylko pół. Więc, jeśli wał korbowy jest na 3000 obr/min, wałek powinien być na 1500 obr/min. Jak ktoś wybiera 750 obr/min, to może myśleć, że wałek jest jeszcze wolniejszy, a to nie ma sensu. Z kolei 3000 obr/min sugeruje, że wałek chodzi tak samo jak wał korbowy, co jest po prostu błędne. 6000 obr/min znowu pokazuje, że myślą, że wałek powinien mieć więcej obrotów, a to też jest zła droga, bo za szybkie kręcenie wałka może spowodować uszkodzenia. Widać, że niektórzy nie rozumieją, jak to wszystko powinno działać razem, a takie myślenie może prowadzić do problemów w silniku, jak źle ustawiony rozrząd, co wpływa na jego wydajność. Moim zdaniem, lepiej zacząć od podstaw, żeby uniknąć takich zamieszania.

Pytanie 19

Tuż po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym, należy

A. zrealizować adaptację układu hamulcowego podczas jazdy próbnej
B. wykonać obowiązkowe odpowietrzanie całego układu
C. sprawdzić i usunąć pamięć błędów sterownika ABS
D. ustawić podstawowe parametry układu przy użyciu testera
Adaptacja układu hamulcowego w czasie jazdy próbnej po wymianie klocków hamulcowych w pojazdach z elektromechanicznym hamulcem postojowym ma swoje ograniczenia. Choć jazda próbna jest ważnym elementem testowania działania pojazdu po serwisie, nie jest to wystarczające ani odpowiednie podejście do kalibracji nowo zamontowanych klocków. Podczas jazdy próbnej nie są w stanie zostać wprowadzone precyzyjne wartości ustawień, które są wymagane dla prawidłowego funkcjonowania układu hamulcowego. Proces odpowietrzania układu hamulcowego również nie jest bezpośrednio związany z wymianą klocków, chyba że podczas serwisu doszło do sytuacji, w której układ został naruszony, co jest rzadkością i nie wynika z standardowych procedur wymiany klocków. Odczyt i kasowanie pamięci błędów sterownika ABS, choć mogą być ważne w kontekście diagnostyki, nie są kluczowym krokiem po wymianie klocków hamulcowych. W wielu przypadkach błędy związane z ABS mogą być nieobecne przed wymianą, a ich kasowanie nie wpływa na ustawienia związane z nowymi klockami. Wprowadzenie podstawowych nastaw układu przy pomocy testera jest jedynym właściwym podejściem, które zapewnia nie tylko bezpieczeństwo, ale również efektywność hamowania poprzez eliminację błędów w instalacji. Bez tej procedury, ryzykujemy poważne problemy z bezpieczeństwem na drodze, a także zwiększone koszty naprawy w przyszłości.

Pytanie 20

Większa ilość zaworów ssących w silniku ma bezpośredni wpływ na

A. większe zużycie paliwa
B. nadmiarowy pobór powietrza
C. wolniejsze opróżnianie cylindra
D. szybsze napełnianie cylindra
Większa liczba zaworów ssących w silniku bezpośrednio wpływa na szybkość napełniania cylindra, co jest kluczowe dla osiągnięcia lepszej efektywności silnika. Większa liczba zaworów pozwala na większy przepływ mieszanki powietrzno-paliwowej do cylindra, co w rezultacie przekłada się na lepsze wypełnienie komory spalania. Przykładem zastosowania tej zasady mogą być silniki sportowe, które często wyposażone są w systemy z większą liczbą zaworów na cylinder, co pozwala na osiągnięcie wyższej mocy i lepszej reakcji na gaz. W praktyce, zastosowanie technologii takich jak VTEC w silnikach Hondy, gdzie wykorzystywana jest zmienna geometria zaworów, potwierdza, że zwiększona liczba zaworów skutkuje lepszym wykorzystaniem mocy silnika w różnych zakresach obrotów. Normy dotyczące emisji spalin i efektywności paliwowej również skłaniają producentów do optymalizacji liczby zaworów, co prowadzi do bardziej wydajnych i ekologicznych rozwiązań.

Pytanie 21

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. płyn hydrauliczny
B. smar stały
C. olej silnikowy
D. olej przekładniowy
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 22

Ryzyko wystąpienia aquaplaningu w pojeździe zwiększa się wraz z

A. zmniejszeniem szerokości opony
B. obniżeniem ciśnienia w oponach
C. podwyższeniem ciśnienia w oponach
D. zmniejszeniem powierzchni przekroju wzoru bieżnika
Niestety, inne odpowiedzi nie trzymają się faktów o tym, jak działają opony w deszczu. Zmniejszenie bieżnika może wprawdzie wpływać na odprowadzanie wody, ale to nie jest najważniejszy powód do obaw w kontekście aquaplaningu. Bieżnik musi być dobrze zaprojektowany, by radzić sobie z wodą, a zmniejszenie rzeźby to może obniżyć przyczepność, ale niekoniecznie od razu prowadzi do aquaplaningu. Co do wzrostu ciśnienia w oponach, to jest to trochę mylące. Odpowiednie ciśnienie to podstawa, ale za wysokie ciśnienie może sprawić, że opony będą zbyt twarde i wtedy kontakt z nawierzchnią będzie gorszy, co może skutkować utratą przyczepności. Zmiana szerokości opony to kolejny błąd – węższe opony czasami lepiej radzą sobie z wodą, ale mogą też zwiększać ryzyko aquaplaningu przez mniejszą powierzchnię kontaktu z drogą. Dlatego warto wiedzieć, jak ciśnienie, bieżnik i szerokość opony się ze sobą wiążą, bo to ważne dla bezpieczeństwa. Dobrym pomysłem jest regularnie sprawdzać stan opon i ich ciśnienie, żeby były zgodne z tym, co mówi producent, bo to może pomóc w unikaniu aquaplaningu.

Pytanie 23

Jakie informacje z dowodu rejestracyjnego pojazdu będzie potrzebował mechanik przy zamawianiu części zamiennych do naprawy pojazdu?

A. Datę ważności przeglądu technicznego
B. Numer rejestracyjny oraz dane właściciela pojazdu
C. Numer identyfikacyjny pojazdu
D. Datę pierwszej rejestracji w kraju
Numer identyfikacyjny pojazdu (VIN) jest kluczowym elementem przy zamawianiu części zamiennych, gdyż jest unikalnym identyfikatorem danego pojazdu. Mechanik korzysta z VIN, aby precyzyjnie zidentyfikować model, rok produkcji oraz szczegółowe dane techniczne, co jest niezbędne do zamówienia odpowiednich części. Przykładowo, w przypadku zamówienia elementów zawieszenia, różne modele pojazdów mogą mieć różne specyfikacje, a VIN pozwala na wyeliminowanie pomyłek. Wiele systemów zamówień części opiera się na bazach danych, które przetwarzają dane VIN i oferują odpowiednie komponenty, co minimalizuje ryzyko błędów. Standardy branżowe, takie jak ISO 3833, definiują system identyfikacji pojazdów, co dodatkowo podkreśla znaczenie VIN w obiegu informacji o częściach zamiennych. Zrozumienie tej procedury jest fundamentalne dla efektywnej pracy w warsztatach samochodowych oraz dla zapewnienia bezpieczeństwa i jakości napraw.

Pytanie 24

W pojeździe z silnikiem wysokoprężnym przeprowadzono pomiar emisji spalin uzyskując następujące wyniki: CO – 0,4g/km; NOx – 0,19g/km; PM – 0,008g/km; HC-0,03g/km; HC+NOx – 0,28g/km. Na podstawie dopuszczalnych wartości przedstawionych w tabeli, można pojazd zakwalifikować do grupy spełniającej co najwyżej normę

Dopuszczalne wartości emisji spalin w poszczególnych normach EURO
dla pojazdów z silnikiem wysokoprężnym
emisja
[g/km]
EURO 1EURO 2EURO 3EURO 4EURO 5EURO 6
CO3,1610,640,50,50,5
HC-0,150,060,050,050,05
NOx-0,550,50,250,180,08
HC+NOx1,130,70,560,30,230,17
PM0,140,080,050,0090,0050,005

A. EURO 3
B. EURO 5
C. EURO 4
D. EURO 6
Wybór normy EURO 3, EURO 5 lub EURO 6 jako odpowiedzi na to pytanie jest nieprawidłowy z kilku powodów. Norma EURO 3 dopuszcza wyższe limity emisji tlenku węgla (CO) wynoszące 2,3 g/km oraz tlenków azotu (NOx) na poziomie 0,5 g/km, co oznacza, że pojazd zakwalifikowany do tej normy mógłby emitować znacznie więcej zanieczyszczeń niż zmierzone wartości. Takie rozumienie norm skutkuje błędnym wnioskiem o spełnieniu standardów dla pojazdów EURO 3, ponieważ w rzeczywistości emisje muszą być niższe i dostosowane do aktualnych wymagań ochrony środowiska. Z kolei norma EURO 5 charakteryzuje się bardziej rygorystycznymi limitami, które znacznie obniżają dopuszczalne wartości emisji NOx do 0,18 g/km, co sprawia, że pojazd z pomiarem 0,19 g/km już nie spełnia tej normy. Natomiast norma EURO 6 wprowadza jeszcze surowsze wymagania, w tym limit 0,08 g/km dla NOx, co czyni niemożliwym zakwalifikowanie pojazdu do tej grupy, biorąc pod uwagę uzyskane wyniki. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, dotyczą braku zrozumienia różnic między normami oraz ich progresywnego zaostrzania w kontekście ochrony środowiska i zdrowia ludzi.

Pytanie 25

Jasnobeżowy osad na elektrodach świecy zapłonowej wskazuje na

A. spalanie mieszanki o niskiej zawartości paliwa
B. spalanie mieszanki o dużej zawartości paliwa
C. intensywne zanieczyszczenie filtra powietrza
D. prawidłowe spalanie
Jasnobeżowy nalot na elektrodach świecy zapłonowej nie świadczy o silnym zabrudzeniu filtra powietrza, spalaniu mieszanki bogatej ani ubogiej, ani też o prawidłowym spalaniu. Zabrudzenie filtra powietrza prowadziłoby do niedoboru powietrza, co skutkowałoby ubogą mieszanką i nieefektywnym spalaniem, a w konsekwencji czarnym nalotem na elektrodach. Spalanie mieszanki bogatej, charakteryzującej się nadmiarem paliwa, prowadzi do powstawania czarnego osadu, a nie jasnobeżowego nalotu. W przypadku mieszanki ubogiej, gdzie brakuje paliwa, mogą pojawić się znaki przegrzewania, takie jak białe lub jasnoszare osady. Prawidłowe spalanie daje z kolei jasnobeżowy nalot, świadczący o optymalnych warunkach pracy silnika. Typowe błędy myślowe w tej sytuacji polegają na myleniu kolorów nalotów z jakością spalania oraz na niedocenianiu znaczenia dokładnej analizy stanu świec zapłonowych. Dlatego tak ważne jest, aby mechanicy odpowiednio interpretowali wszelkie zmiany w stanie świec i reagowali na nie, aby utrzymać silnik w najlepszej formie.

Pytanie 26

Który z elementów układu kierowniczego jest najbardziej podatny na zużycie?

A. Przekładnia kierownicza
B. Sworzeń kulisty
C. Kolumna kierownicza
D. Drążek kierowniczy
Sworzeń kulisty jest kluczowym elementem układu kierowniczego pojazdu, który łączy drążki kierownicze z kołami. Jest on narażony na znaczne zużycie, ponieważ podczas manewrowania pojazdem, szczególnie w trakcie skręcania, podlega intensywnym obciążeniom oraz ruchom. Jego konstrukcja pozwala na pewną elastyczność, co umożliwia płynne kierowanie pojazdem, ale jednocześnie prowadzi do szybszego zużycia materiałów. Przykładem może być samochód osobowy, w którym sworzeń kulisty ulega zużyciu w wyniku eksploatacji oraz korozji spowodowanej działaniem czynników atmosferycznych i soli drogowej. Regularne przeglądy techniczne, zgodne z zaleceniami producenta, powinny obejmować kontrolę stanu sworzni kulistych, aby zapobiec ich uszkodzeniu i potencjalnym awariom przekładającym się na bezpieczeństwo jazdy. W przypadku wykrycia luzu lub zużycia, wymiana sworznia powinna być przeprowadzona niezwłocznie, co jest zgodne z dobrymi praktykami w dziedzinie utrzymania pojazdów.

Pytanie 27

Podczas montażu pierścieni uszczelniających Simmera wyjętych ze skrzyni biegów należy

A. zamienić miejscami
B. wymienić na nowe
C. pozostawić w oryginalnych gniazdach
D. zregenerować, gdy uległy zniszczeniu
Wymiana pierścieni uszczelniających Simmera na nowe jest niezbędna, ponieważ te elementy są kluczowe dla zapewnienia szczelności układów mechanicznych, w tym skrzyń biegów. Uszczelnienia te często narażone są na działanie wysokich temperatur, ciśnień oraz substancji chemicznych, co prowadzi do ich zużycia i degradacji. Nowe uszczelnienia zapewniają optymalną funkcjonalność i minimalizują ryzyko wycieków oleju lub innych płynów eksploatacyjnych, co mogłoby prowadzić do poważnych uszkodzeń mechanicznych. Stosowanie nowych pierścieni jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie używania oryginalnych lub wysokiej jakości zamienników. Na przykład, w przypadku wymiany uszczelnień w samochodach, producenci zalecają stosowanie elementów zgodnych z ich specyfikacjami, co ma na celu zapewnienie długotrwałej i niezawodnej pracy pojazdu. Oprócz tego, wymiana starych uszczelnień na nowe w trakcie przeglądów technicznych lub napraw zwiększa bezpieczeństwo i efektywność urządzeń, co jest niezbędne w kontekście utrzymania właściwego stanu technicznego pojazdów.

Pytanie 28

W temperaturze 21°C zmierzono rezystancję wtryskiwacza elektromagnetycznego i uzyskano wynik 1,6 Ω. Jeśli prawidłowa rezystancja tego elementu w zakresie temperatury (20±5)°C wynosi (1,2+0,4) Ω, to analizowany wtryskiwacz charakteryzuje się

A. za wysoką temperaturą
B. prawidłową rezystancją
C. za wysoką rezystancją
D. za niską temperaturą
W analizowanym pytaniu, pojawiają się nieporozumienia dotyczące zależności między rezystancją a temperaturą. Niektórzy mogą sądzić, że zadana temperatura 21°C wpływa na rezystancję elementu, prowadząc do wniosku, że wynik 1,6 Ω jest za wysoki. W rzeczywistości, rezystancja elementów elektrycznych zazwyczaj wzrasta w miarę wzrostu temperatury, co oznacza, że podwyższona wartość rezystancji w wyższej temperaturze niekoniecznie wskazuje na błąd. Dodatkowo, niektórzy mogą błędnie zakładać, że powinni uwzględniać jedynie dolną granicę tolerancji rezystancji, co jest niewłaściwe. Prawidłowe podejście wymaga oceny całego zakresu wartości akceptowalnych, a tym samym 1,6 Ω jest w pełni zgodne z wymaganiami. Kluczowym aspektem jest zrozumienie, że przy ocenie rezystancji należy kierować się określonymi normami, takimi jak ISO 7637, które określają tolerancje dla komponentów elektronicznych. Dobrą praktyką jest także znajomość właściwości materiałów używanych w wtryskiwaczach, które mogą wpływać na ich działanie w różnych warunkach. Nieprawidłowe rozumienie tych zasad może prowadzić do fałszywych diagnoz i niepotrzebnych kosztów w naprawach.

Pytanie 29

Jednorodne, nadmierne zużycie centralnej części bieżnika opony, występujące wzdłuż całego obwodu, jest spowodowane?

A. niewyważeniem koła
B. zbyt dużym ciśnieniem w oponie
C. zbyt małym ciśnieniem w oponie
D. nieprawidłowym ustawieniem zbieżności kół
Zbyt duże ciśnienie w oponie prowadzi do nadmiernego zużycia środkowej części bieżnika, co jest wynikiem zmniejszonej powierzchni kontaktu opony z nawierzchnią drogi. Wysokie ciśnienie powoduje, że opona staje się sztywniejsza, a jej środkowa część wpada w kontakt z drogą w większym stopniu niż boki. W praktyce oznacza to, że podczas jazdy opona nie jest w stanie równomiernie rozkładać obciążenia, co skutkuje szybszym zużyciem bieżnika w centralnym obszarze. Zaleca się regularne sprawdzanie ciśnienia w oponach, zgodnie z normami producenta, aby zapewnić ich optymalną wydajność i bezpieczeństwo. Właściwe ciśnienie w oponach wpływa nie tylko na trwałość opon, ale również na zużycie paliwa oraz stabilność pojazdu. Przykładowo, zbyt wysokie ciśnienie może również powodować zwiększone ryzyko aquaplaningu podczas deszczu, co jest istotnym zagrożeniem dla bezpieczeństwa jazdy.

Pytanie 30

Kiedy tłok silnika spalinowego znajduje się w górnym martwym punkcie, to przestrzeń nad nim określa objętość

A. całkowita cylindra
B. skokowa cylindra
C. komory spalania
D. skokowasilnika
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z niepełnego zrozumienia podstawowych terminów związanych z konstrukcją silnika spalinowego. Odpowiedź "skokowasilnika" jest błędna, ponieważ termin ten odnosi się do całkowitej długości, jaką tłok przebywa w cylindrze podczas jednego pełnego cyklu pracy, a nie do przestrzeni nad tłokiem w GMP. Podobnie "całkowita cylindra" to termin, który odnosi się do całkowitej objętości cylindra, a nie konkretnej przestrzeni nad tłokiem w danym momencie cyklu. Ostatecznie, "skokowa cylindra" odnosi się do objętości, którą tłok przesuwa, podczas gdy porusza się w górę i w dół, a nie do konkretnej lokalizacji przestrzeni nad tłokiem, gdy ten znajduje się w GMP. Zrozumienie tych terminów jest kluczowe dla prawidłowej analizy pracy silnika. W praktyce, błędne interpretacje mogą prowadzić do nieefektywnych rozwiązań projektowych i problemów podczas eksploatacji silników, co może skutkować zwiększonym zużyciem paliwa, emisją spalin oraz obniżoną wydajnością. W kontekście inżynierii mechanicznej istotne jest zatem, aby studenci i inżynierowie dobrze przyswoili te podstawowe pojęcia, co pozwoli im na lepsze zrozumienie mechanizmów działania silników spalinowych i przyczyni się do ich optymalizacji w codziennej praktyce inżynierskiej.

Pytanie 31

Wskaźnik, który informuje o aktywacji systemu kontroli trakcji, świeci w kolorze

A. zielonym
B. żółtym
C. czerwonym
D. niebieskim
Żółta kontrolka sygnalizująca, że system kontroli trakcji jest włączony to coś, co widzimy w każdym normalnym samochodzie. Jak się świeci, to znaczy, że system działa, a kierowca powinien być tego świadomy, bo to ważne dla bezpieczeństwa na drodze. TCS, czyli systemy kontroli trakcji, mają za zadanie zapobiegać ślizganiu się kół, co jest mega istotne, zwłaszcza na mokrej czy zaśnieżonej nawierzchni. Na przykład, jak przyspieszasz na śliskiej drodze, to TCS się włącza, żeby lepiej zarządzać mocą silnika i zapobiec utracie kontroli nad autem. To wszystko ma sens, bo są różne normy, jak ISO 26262, które mówią o bezpieczeństwie w pojazdach. Wiedza o tym, co oznaczają te sygnały świetlne, jest kluczowa, bo dzięki temu można lepiej reagować na to, co dzieje się na drodze.

Pytanie 32

W głowicy silnika spalinowego do elementów układu rozrządu należy zaliczyć zawory

A. membranowe
B. grzybkowe
C. suwakowe
D. kulowe
Zawory grzybkowe w silnikach spalinowych to naprawdę istotna sprawa. Ich rola w układzie rozrządu jest kluczowa, bo to one decydują, kiedy mieszanka paliwa i powietrza wchodzi do cylindrów, a kiedy spaliny są wydalane. Jak się dobrze zastanowić, to ich kształt faktycznie przypomina grzyb, co pomaga w uszczelnieniu gniazda zaworu i zmniejsza straty ciśnienia. W praktyce, są one używane w autach, motocyklach i wielu innych maszynach, co pokazuje, jak ważne są w naszym codziennym życiu. Dzięki ich standaryzacji, można je łatwo stosować w różnych silnikach, co też przyspiesza produkcję. Ważne jest, żeby regularnie dbać o luz zaworowy i konserwację, bo to wpływa na efektywność silnika. Przy wyborze materiałów i technologii produkcji, trzeba mieć na uwadze ich trwałość i niezawodność, co w praktyce naprawdę się przydaje.

Pytanie 33

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt nachylenia osi sworznia zwrotnicy są powiązane z systemem

A. jezdnym
B. napędowym
C. hamulcowym
D. kierowniczym
Odpowiedź "kierowniczym" jest całkiem trafna, bo kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia to naprawdę ważne rzeczy w układzie kierowniczym. Kąt wyprzedzenia, znany też jako kąt caster, ma wpływ na to, jak stabilny jest pojazd podczas jazdy, a także jak dokładnie reaguje na ruchy kierownicą. Jak ten kąt jest dobrze ustawiony, to auto samo zaczyna prostować kierownicę po zakręcie, co jest mega przydatne. Kąt pochylenia osi sworznia zwrotnicy, czyli kąt camber, odnosi się do tego, jak koło nachyla się w stosunku do drogi. Właściwe ustawienie tego kąta jest super ważne, żeby opony się równomiernie zużywały i żeby lepiej trzymały się drogi w zakrętach. Mechanicy na co dzień używają specjalnych narzędzi do regulacji tego układu, by wszystko działało jak należy, co jest ważne dla bezpieczeństwa i komfortu jazdy. Takie regulacje to część przeglądów, które powinny być robione regularnie.

Pytanie 34

Jakie jest zadanie cewki zapłonowej?

A. produkcja wysokiego natężenia prądu
B. ochrona przed przepięciem
C. generowanie iskry zapłonowej
D. wytwarzanie wysokiego napięcia
Cewka zapłonowa odgrywa kluczową rolę w układzie zapłonowym silników spalinowych, a jej głównym zadaniem jest wytworzenie wysokiego napięcia, które jest niezbędne do generowania iskry zapłonowej w świecy zapłonowej. Działa na zasadzie indukcji elektromagnetycznej, gdzie prąd stały płynący przez uzwojenie wtórne wytwarza pole magnetyczne. Kiedy prąd w uzwojeniu pierwotnym zostaje przerwany, pole magnetyczne zapada się, co powoduje indukcję wysokiego napięcia w uzwojeniu wtórnym. Wysokie napięcie, osiągające nawet 40 kV, jest niezbędne do pokonywania odstępów między elektrodami świecy zapłonowej, co umożliwia zapłon mieszanki paliwowo-powietrznej w cylindrze. Przykładowo, w nowoczesnych silnikach stosuje się cewki zapłonowe oparte na technologii DIS (Direct Ignition System), które eliminują potrzebę używania przewodów zapłonowych, co poprawia efektywność i niezawodność systemu zapłonowego. Takie rozwiązania są zgodne z aktualnymi standardami branżowymi, które kładą nacisk na efektywność systemów zapłonowych i redukcję emisji spalin.

Pytanie 35

Aby wyciągnąć i zainstalować tłoki w silniku ZI o czterech cylindrach w układzie rzędowym bez demontażu całego silnika, należy zdemontować

A. pokrywy korbowodów oraz wał korbowy
B. pokrywy korbowodów
C. głowicę, pokrywy korbowodów oraz wał korbowy
D. głowicę i pokrywy korbowodów
Wybór odpowiedzi dotyczącej demontażu jedynie pokryw korbowodów lub dodatkowo wału korbowego pokazuje niepełne zrozumienie budowy silnika i jego komponentów. Pokrywy korbowodów mają na celu zabezpieczanie układu korbowego, ale same w sobie nie wystarczą do uzyskania dostępu do tłoków. Wał korbowy, będąc centralnym elementem przekształcającym ruch posuwisto-zwrotny tłoków na ruch obrotowy, nie powinien być demontowany, gdyż jego usunięcie wiąże się z wieloma dodatkowymi komplikacjami, w tym koniecznością demontażu innych kluczowych komponentów silnika. W przypadku odpowiedzi sugerującej demontaż głowicy i pokryw korbowodów oraz wału korbowego, stwierdzenie to jest zbyteczne, gdyż dostęp do tłoków można uzyskać bez potrzeby demontowania wału, co zwiększa ryzyko błędów w montażu. Typowym błędem myślowym jest założenie, że wszystkie elementy silnika muszą być usunięte do uzyskania dostępu do tłoków. Wiedza o tym, które elementy można zdemontować, a które nie, jest kluczowa w praktyce serwisowej, a niewłaściwe podejście może prowadzić do niepotrzebnych kosztów i czasochłonnych napraw.

Pytanie 36

Jakie miejsce jest odpowiednie do przeprowadzenia pomiarów geometrii kół?

A. na wypoziomowanym stanowisku lub podnośniku
B. na podnośniku pneumatycznym
C. na podstawkach
D. na podnośniku dwukolumnowym
Pomiar geometrii kół powinien być przeprowadzany na wypoziomowanym stanowisku lub podnośniku, ponieważ zapewnia to stabilność i precyzyjność pomiarów. Właściwe wypoziomowanie jest kluczowe, aby uniknąć błędów wynikających z nachyleń, które mogą wpływać na wyniki pomiarów. W warunkach warsztatowych, wypoziomowane stanowisko daje pewność, że wszystkie elementy są w odpowiedniej płaszczyźnie, co jest szczególnie istotne przy pomiarze parametrów takich jak zbieżność, kąt nachylenia czy odległości między kołami. Przykładowo, w przypadku regulacji zbieżności kół, precyzyjne wyniki pomiarów są niezbędne dla zapewnienia bezpieczeństwa i komfortu jazdy. W branży motoryzacyjnej stosowane są urządzenia pomiarowe, takie jak laserowe systemy do pomiaru geometrii, które wymagają idealnie płaskiej i stabilnej powierzchni, co czyni wypoziomowane stanowisko najlepszym rozwiązaniem. Dobre praktyki wskazują również na regularne sprawdzanie poziomu urządzeń pomiarowych, co zwiększa ich dokładność i żywotność.

Pytanie 37

Jaka powinna być minimalna grubość okładzin ściernych klocków hamulcowych?

A. od 1,5 mm do 2 mm
B. od 0,5 mm do 1 mm
C. od 1,5 cm do 2 cm
D. od 0,5 cm do 1 cm
Minimalna grubość okładzin ściernych klocków hamulcowych, wynosząca od 1,5 mm do 2 mm, jest kluczowym parametrem zapewniającym bezpieczeństwo i efektywność układu hamulcowego. Grubość ta została określona na podstawie standardów branżowych, które uwzględniają zarówno wymogi dotyczące bezpieczeństwa, jak i wydajności. W praktyce, grubość okładzin poniżej 1,5 mm może prowadzić do nieodpowiedniego hamowania, zwiększonego zużycia elementów układu oraz ryzyka uszkodzenia tarczy hamulcowej. Regularna kontrola grubości okładzin jest konieczna, aby zapewnić ich odpowiednią efektywność i uniknąć niebezpiecznych sytuacji na drodze. Przykładowo, w samochodach osobowych, zaleca się wymianę klocków hamulcowych, gdy osiągną one minimalną grubość, zwłaszcza w kontekście intensywnego użytkowania lub jazdy w trudnych warunkach. Tylko przestrzeganie tych standardów zapewnia nieprzerwaną skuteczność hamowania oraz bezpieczeństwo podróżujących.

Pytanie 38

Co oznacza symbol API GL-4?

A. oleju silnikowego
B. płynu hamulcowego
C. oleju przekładniowego
D. płynu chłodzącego
Symbol API GL-4 odnosi się do olejów przekładniowych, które są zaprojektowane do zastosowania w skrzyniach biegów manualnych, szczególnie w jednostkach wymagających olejów o wyższej wydajności. Standard ten zapewnia odpowiednie właściwości smarne, ochronę przed zużyciem oraz odporność na wysokie temperatury, co jest kluczowe dla prawidłowego funkcjonowania układu przekładniowego. Oleje oznaczone jako GL-4 są specyfikowane do zastosowań, gdzie występują wysokie obciążenia, a także do przekładni, w których nie jest wymagane stosowanie olejów o właściwościach EP (Extreme Pressure). Przykładem zastosowania olejów GL-4 są pojazdy wyposażone w manualne skrzynie biegów, które często nie wymagają olejów o wyższej klasie, takich jak GL-5, które są przeznaczone do bardziej obciążonych przekładni. Właściwy dobór oleju wpływa na efektywność pracy przekładni oraz wydłuża jej żywotność, co jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co czyni tę wiedzę istotną dla każdego użytkownika samochodu oraz specjalisty w dziedzinie motoryzacji.

Pytanie 39

Aby zamówić właściwe części do naprawy pojazdu,

A. wystarczy podać rok produkcji pojazdu.
B. wystarczy podać numer VIN.
C. wystarczy podać jego markę oraz model.
D. należy dostarczyć uszkodzony element do porównania z zamiennikiem.
Podanie numeru VIN (Vehicle Identification Number) jest kluczowe w procesie zamawiania części do pojazdu, ponieważ ten unikalny identyfikator zawiera wszystkie istotne informacje dotyczące konkretnego egzemplarza samochodu. Numery VIN składają się z 17 znaków, które obejmują m.in. informacje o marce, modelu, roku produkcji, miejscu produkcji oraz specyfikacji silnika. Dzięki temu, kiedy zamawiamy części, dostawcy mogą dokładnie zidentyfikować, które elementy będą odpowiednie do danego pojazdu, co pozwala zminimalizować ryzyko pomyłek i niezgodności. Przykładowo, dwa modele tego samego pojazdu mogą mieć różniące się specyfikacje, a użycie VIN zapewnia, że zamówione części będą idealnie pasować. W praktyce, stosowanie numeru VIN jest standardem w branży motoryzacyjnej, co z kolei wspiera procesy logistyczne i serwisowe, podnosząc efektywność obsługi klienta oraz zmniejszając koszty związane z błędnymi zamówieniami.

Pytanie 40

Wałek napędowy oraz koło talerzowe stanowią element mechanizmu w pojeździe

A. napędu wycieraczek
B. przekładni kierowniczej
C. napędu układu rozrządu
D. przekładni głównej
Twoje odpowiedzi na temat napędu wycieraczek, przekładni kierowniczej i napędu układu rozrządu pokazują, że jest pewne nieporozumienie z podstawami działania tych systemów w autach. Napęd wycieraczek nie ma nic wspólnego z przekładnią główną, bo jego zadanie to poruszanie ramionami wycieraczek, żeby mogły zmywać wodę z szyby. To zupełnie inny układ, który nie ma wpływu na to, jak moc silnika trafia do kół. Jeśli chodzi o przekładnię kierowniczą, to ona odpowiada za kierowanie autem, przekształcając ruch kierownicy w ruch kół przednich. I znów - nie ma to związku z wałkiem atakującym ani kołem talerzowym. A napęd układu rozrządu reguluje, kiedy zawory silnika się otwierają i zamykają, co jest istotne dla działania silnika, ale też nie ma bezpośredniej relacji z przekładnią główną. Jeśli źle rozumiesz te funkcje, to może się zdarzyć, że będziesz miał problem z diagnostyką i zarządzaniem procesami w pojeździe, co w dłuższej perspektywie może prowadzić do drogich napraw. Dobrze jest zrozumieć, jak te różne mechanizmy współdziałają, żeby auto działało sprawnie i bezpiecznie.