Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 kwietnia 2025 18:03
  • Data zakończenia: 13 kwietnia 2025 18:28

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. średnią napięcia
B. skuteczną napięcia
C. chwilową napięcia
D. znamionową napięcia
Wybór odpowiedzi dotyczącej skutecznej, chwilowej lub znamionowej wartości napięcia w kontekście tego pytania wskazuje na niepełne zrozumienie zasad działania woltomierzy magnetoelektrycznych oraz różnic pomiędzy różnymi typami pomiarów napięcia. Skuteczna wartość napięcia, często używana w analizach obwodów prądu przemiennego, odnosi się do wartości rms (root mean square), która jest miarą dostarczanej energii. Mimo że pomiar skuteczny jest istotny w kontekście obliczeń związanych z mocą, woltomierz magnetoelektryczny w tym przypadku nie wskazuje tej wartości w przypadku napięcia sinusoidalnego ze składową stałą. Z kolei chwilowa wartość napięcia odnosi się do pomiaru w danym momencie czasu, co nie jest praktycznym zastosowaniem w przypadku długoterminowego pomiaru napięcia, a ponadto nie uwzględnia składowej stałej. Odpowiedź dotycząca znamionowej wartości napięcia także nie jest właściwa, gdyż wartość znamionowa jest określona dla określonych warunków pracy urządzenia i służy do oceny jego specyfikacji, co również nie jest tożsame z pomiarem rzeczywistym. W efekcie, wybierając nieprawidłowe odpowiedzi, można nieświadomie wpłynąć na skuteczność i bezpieczeństwo aplikacji elektrycznych, co jest sprzeczne z dobrą praktyką inżynieryjną oraz standardami branżowymi.

Pytanie 2

Ile wynosi minimalny dopuszczalny przekrój przewodów miedzianych instalowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 16 mm2
C. 10 mm2
D. 6 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 3

Jakie minimalne wartości napięć znamionowych powinien mieć przewód zastosowany do montażu instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych elementów budowlanych?

A. 600/1000 V
B. 450/750 V
C. 300/300 V
D. 300/500 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 4

Jaką funkcję pełni wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Wykrywa zwarcia.
B. Naciąga sprężynę napędu.
C. Gasi łuk elektryczny.
D. Wykrywa przeciążenia.
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 5

Które z podanych narzędzi <u><strong>nie jest potrzebne</strong></u> do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Poziomnica
B. Ściągacz izolacji
C. Piła do metalu
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 6

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne <u><strong>nie obejmują</strong></u>

A. czyszczenia urządzeń w rozdzielniach
B. czyszczenia lamp oświetleniowych
C. wymiany gniazd zasilających
D. montażu nowych punktów świetlnych
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 7

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. niebieski
D. szary
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 8

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,4 s i 0,2 s
C. 0,4 s i 0,8 s
D. 0,2 s i 0,4 s
Wybór odpowiedzi, która nie odpowiada rzeczywistym wymaganiom czasów wyłączenia w układach sieci typu IT, może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa. Czas wyłączenia w obwodach z przewodem neutralnym rzeczywiście powinien wynosić 0,4 s, jednak czas dla obwodu bez przewodu neutralnego nie powinien być skracany poniżej 0,8 s. Odpowiedzi sugerujące 0,2 s oraz 0,4 s dla obwodu bez przewodu neutralnego błędnie interpretują zasady ochrony w układach elektrycznych, co może skutkować wydłużonym czasem reakcji urządzenia ochronnego w razie wystąpienia zagrożenia. Podobne błędy myślowe wynikają z niepełnego zrozumienia zjawisk zachodzących w obwodach elektrycznych. W przypadku awarii, krótszy czas wyłączenia niż wymagany może nie zapewnić skutecznej ochrony, co stwarza ryzyko porażenia prądem dla użytkowników. Ponadto, nieodpowiednie wartości czasów wyłączenia mogą prowadzić do niewłaściwego doboru urządzeń zabezpieczających oraz niezgodności z obowiązującymi normami, takimi jak IEC 60364. W kontekście projektowania instalacji elektrycznych, kluczowe jest stosowanie się do sprawdzonych standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 9

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. ferrodynamicznym
B. magnetoelektrycznym
C. elektromagnetycznym
D. elektrodynamicznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.

Pytanie 10

Który z wymienionych elementów <u><strong>nie ma wpływu</strong></u> na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Liczba odbiorników zasilanych z instalacji
B. Typ instalacji
C. Funkcja budynku
D. Warunki atmosferyczne, którym podlega instalacja
Warunki zewnętrzne, przeznaczenie budynku oraz rodzaj instalacji mają istotny wpływ na częstotliwość sprawdzeń okresowych instalacji elektrycznej. Użytkownicy często mylą te aspekty z liczbą zainstalowanych odbiorników, co jest błędnym podejściem. Warunki zewnętrzne, takie jak wilgotność, temperatura czy zanieczyszczenia, mogą znacznie wpłynąć na stan techniczny instalacji. Na przykład, w obiektach narażonych na wysoką wilgotność, takich jak baseny czy obiekty przemysłowe, instalacje elektryczne powinny być poddawane bardziej skrupulatnym inspekcjom. Przeznaczenie budynku także odgrywa kluczową rolę; budynki użyteczności publicznej muszą spełniać wyższe standardy bezpieczeństwa, co wiąże się z koniecznością częstszych przeglądów. Rodzaj instalacji również wpływa na wymagania dotyczące częstotliwości badań. Na przykład, instalacje wykonane w trudnych warunkach, takie jak w przemyśle chemicznym, wymagają regularnych sprawdzeń z uwagi na ryzyko uszkodzenia. Powszechne jest myślenie, że im więcej odbiorników, tym większe ryzyko, co w rzeczywistości nie jest głównym czynnikiem determinującym potrzebę przeglądów. Kluczowe jest zrozumienie, że bezpieczeństwo elektryczne powinno opierać się na analizie ryzyka, a nie tylko na liczbie odbiorników w instalacji.

Pytanie 11

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 4,50 V
B. 10,00 V
C. 7,07 V
D. 6,40 V
Wartości napięcia podawane w odpowiedziach niepoprawnych mogą prowadzić do błędnych wniosków, zwłaszcza w przypadku analizy prostowników. Niektóre z tych wartości mogą wynikać z nieprawidłowego zrozumienia podstawowych koncepcji związanych z prostowaniem napięcia zmiennego. Na przykład, odpowiedź sugerująca 6,40 V mogła być obliczona na podstawie niewłaściwego pomiaru lub założenia dotyczącego średniej z całego cyklu napięcia AC, co nie uwzględnia faktu, że w przypadku prostownika jednopołówkowego napięcie jest prostowane tylko w jednej połówce sinusoidy. Z kolei odpowiedź 7,07 V może wskazywać na mylne zrozumienie wartości szczytowej, a nie średniej, co jest częstym błędem w obliczeniach. Istotne jest, aby rozróżniać między wartością skuteczną, szczytową a średnią, ponieważ każdy z tych terminów ma swoje specyficzne definicje i zastosowanie. Zrozumienie, jak oblicza się te wartości, jest kluczowe w praktycznych zastosowaniach elektrotechnicznych, na przykład w projektowaniu obwodów prostowniczych, gdzie błędne obliczenia mogą prowadzić do nieprawidłowego działania zasilaczy oraz uszkodzenia komponentów. Dlatego tak istotna jest znajomość wzorów oraz zasad rządzących działaniem prostowników, by uniknąć powszechnych pułapek w analizie elektronicznej.

Pytanie 12

Ile wynosi maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby skuteczna była w nim ochrona przeciwporażeniowa przy uszkodzeniu izolacji, jeśli wyłączenie zasilania tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy C20?

A. 3,83 Ω
B. 2,30 Ω
C. 1,15 Ω
D. 2,00 Ω
Przy ocenie maksymalnej dopuszczalnej wartości impedancji pętli zwarcia, istotne jest zrozumienie, że wartości takie jak 2,00 Ω, 3,83 Ω czy 2,30 Ω są niewłaściwe i mogą prowadzić do niebezpiecznych sytuacji. Impedancja pętli zwarcia jest kluczowym parametrem dla zadziałania wyłączników nadprądowych w przypadku zwarcia. Wyłącznik C20 działa na zasadzie detekcji nadmiernego prądu, a jego skuteczność jest w dużej mierze uzależniona od wartości impedancji pętli. Przy zbyt wysokiej impedancji, czas wyłączenia może się wydłużyć, co stwarza ryzyko porażenia prądem. Wartości takie jak 2,00 Ω czy 3,83 Ω nie spełniają wymagań dla bezpiecznych instalacji, które powinny być projektowane zgodnie z normami oraz zaleceniami branżowymi. Typowe błędy myślowe, które mogą prowadzić do wyboru nieprawidłowych wartości, obejmują niepełne zrozumienie zasad działania wyłączników oraz ich czasów reakcji w różnych warunkach obciążeniowych. Wartości impedancji pętli zwarcia muszą być starannie obliczane i regularnie sprawdzane w praktyce, aby uniknąć zagrożeń związanych z porażeniem prądem oraz uszkodzeniami instalacji elektrycznych. Zastosowanie niewłaściwych wartości impedancji może prowadzić do długotrwałych kompromisów w zakresie bezpieczeństwa elektrycznego.

Pytanie 13

Do sprawnego wykonania otworu w twardym betonie pod gniazdo sieciowe należy użyć wiertarki oraz

A. otwornicy z nasypem wolframowym.
B. młotka z przecinakiem.
C. wyrzynarki do głębokich cięć.
D. otwornicy z segmentami diamentowymi.
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 14

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. niebieski
B. żółty
C. zielony
D. szary
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 15

Rezystancja uzwojenia silnika elektrycznego zmierzona omomierzem wynosi ∞ Ω. Oznacza to, że uzwojenie silnika

A. ma uszkodzoną izolację.
B. jest sprawne.
C. posiada zwarcie międzyzwojowe.
D. jest przerwane.
Rezystancja uzwojenia silnika elektrycznego, której pomiar wskazuje wartość nieskończoną (∞ Ω), jednoznacznie sugeruje, że obwód uzwojenia jest przerwany. Przerwanie uzwojenia może wynikać z różnych przyczyn, takich jak zużycie mechaniczne, przegrzanie czy uszkodzenie mechaniczne. Przykładowo, w silnikach asynchronicznych, przerwanie uzwojenia może prowadzić do całkowitej utraty funkcji silnika. W praktyce, jeśli podczas pomiaru omomierzem uzyskamy wartość nieskończoności, konieczne jest dalsze diagnozowanie silnika, w tym wizualna inspekcja uzwojenia oraz sprawdzenie innych elementów, takich jak łożyska czy wirnik. W kontekście standardów branżowych, zgodnie z normą IEC 60034-1, regularne sprawdzanie stanu uzwojeń silników elektrycznych jest kluczowe dla zapewnienia niezawodności i wydajności operacyjnej urządzeń. Dlatego, aby uniknąć kosztownych awarii, zaleca się przeprowadzanie systematycznych testów rezystancji i monitorowanie stanu technicznego silników w cyklu regularnych przeglądów.

Pytanie 16

Który z wymienionych łączników instalacyjnych jest przeznaczony do niezależnego sterowania dwoma sekcjami źródeł światła w żyrandolu?

A. Dwubiegunowy.
B. Schodowy.
C. Krzyżowy.
D. Świecznikowy.
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 17

Który z wymienionych materiałów wykazuje się najmniejszą rezystywnością?

A. Nichrom.
B. Stal.
C. Aluminium.
D. Miedź.
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 18

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Separacja elektryczna
C. Umieszczenie części dostępnych poza zasięgiem ręki
D. Samoczynne wyłączanie zasilania
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 19

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 20

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
B. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
Odpowiedź dotycząca nastawienia urządzeń zabezpieczających i sygnalizacyjnych oraz sprawdzenia dostępności urządzeń jest prawidłowa, ponieważ wchodzą one w zakres oględzin instalacji elektrycznej w budynku mieszkalnym. W procesie oględzin kluczowe jest zapewnienie, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe (RCD) i zabezpieczenia przeciążeniowe, działają zgodnie z wymaganiami norm, takich jak PN-EN 61010-1. Oprócz tego istotne jest, aby sprawdzić dostępność urządzeń, co pozwala na szybką reakcję w razie awarii. Użytkownik musi mieć możliwość łatwego dostępu do tych urządzeń w celu przeprowadzenia ewentualnych napraw lub konserwacji. Dobre praktyki branżowe sugerują regularne przeglądy tych urządzeń, aby potwierdzić ich funkcjonalność i kompletność, co z kolei zwiększa bezpieczeństwo całej instalacji. Warto również zaznaczyć, że zgodność z odpowiednimi normami i regulacjami prawnymi jest kluczowa dla zapewnienia bezpieczeństwa użytkowników budynków mieszkalnych.

Pytanie 21

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: P<sub>N</sub> = 3 kW, U<sub>N</sub> = 230 V?

A. aM 16 A
B. gG 20 A
C. gG 16 A
D. aM 20 A
Wybór wkładki bezpiecznikowej gG 16 A do zabezpieczenia obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V jest uzasadniony z kilku powodów. Po pierwsze, moc bojlera wynosząca 3 kW przy 230 V generuje prąd znamionowy równy około 13 A (obliczane według wzoru I = P/U). W tym przypadku wkładka gG, zaprojektowana do ochrony przewodów przed przeciążeniem i zwarciem, jest odpowiednia, gdyż może wytrzymać chwilowe przeciążenia, jakie mogą wystąpić podczas rozruchu bojlera. Ponadto, wkładki gG mają charakterystykę czasowo-prądową, co oznacza, że mogą tolerować krótkotrwałe przeciążenia, co czyni je idealnym wyborem w aplikacjach, gdzie występują takie zjawiska. Stosowanie wkładek aM, które są bardziej przystosowane do ochrony obwodów silnikowych, nie jest wskazane w tym przypadku, ponieważ ich charakterystyka nie jest optymalna do zabezpieczenia obwodu grzewczego. W praktyce, dobór wkładek bezpiecznikowych powinien opierać się na analizie specyfiki obciążenia oraz na standardach takich jak PN-EN 60269, które definiują wymagania dla wkładek bezpiecznikowych. Dlatego wkładka gG 16 A jest najlepszym wyborem dla tego zastosowania.

Pytanie 22

Którą z funkcji pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Wytwarza napięcie remanentu.
B. Zmniejsza rezystancję obwodu twornika.
C. Wytwarza pole magnetyczne wzbudzenia.
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika.
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 23

Po zmianie podłączenia do budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w przeciwną stronę niż przed wymianą podłączenia. Co jest przyczyną takiego działania silnika?

A. brak podłączenia jednej fazy
B. zamiana dwóch faz miejscami
C. brak podłączenia dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest kluczowym zjawiskiem w trójfazowych układach zasilania, które wpływa na kierunek obrotów silników asynchronicznych. W przypadku silników trójfazowych, kierunek ich obrotów można zmieniać poprzez zamianę miejscami dwóch dowolnych faz zasilających. W praktyce, jeśli podłączymy fazy w inny sposób, silnik zacznie obracać się w przeciwną stronę, co można zaobserwować w przypadku hydroforów, które są często używane do pompowania wody w różnych aplikacjach domowych. W takiej sytuacji, ważne jest, aby zwracać uwagę na prawidłowe oznaczenia faz oraz standardy instalacyjne, które powinny być przestrzegane dla zapewnienia prawidłowego działania urządzeń. Przykładem zastosowania tej wiedzy jest również sytuacja, gdy wykonujemy konserwację instalacji elektrycznej, w której zmieniamy przyłącze, co może prowadzić do niezamierzonych skutków, takich jak zmiana kierunku obrotów silnika. Dlatego ważne jest, aby zawsze upewnić się, że połączenia faz są zgodne z dokumentacją oraz zaleceniami producentów urządzeń.

Pytanie 24

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. YKY
B. OMY
C. AsXSn
D. GsLGs
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 25

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. aR
C. aM
D. gL
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 26

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 1 000 V
B. 250 V
C. 2 500 V
D. 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 27

Które z oznaczeń literowych dotyczy przewodu przeznaczonego do zasilania odbiorników przenośnych?

A. YDY
B. YAKY
C. LY
D. OMY
Oznaczenia LY, YDY oraz YAKY, mimo że są powszechnie stosowane w branży elektroinstalacyjnej, nie są odpowiednie do zastosowań zasilania odbiorników przenośnych. Oznaczenie LY odnosi się do przewodów o niskiej elastyczności, przeznaczonych głównie do instalacji stałych, co czyni je nieodpowiednimi do aplikacji, w których wymagana jest mobilność. Takie przewody mogą być podatne na uszkodzenia mechaniczne i nie są dostosowane do dynamicznych warunków pracy. Oznaczenie YDY odnosi się do przewodów instalacyjnych, które również nie zapewniają wystarczającej elastyczności i odporności na mechaniczne uszkodzenia w warunkach mobilnych. Z kolei YAKY to przewód, który może być stosowany w instalacjach stałych, często wykorzystywany w budynkach, ale nie spełnia standardów dla urządzeń przenośnych. Wybór niewłaściwego przewodu do zasilania przenośnych odbiorników elektrycznych może prowadzić do ryzykownych sytuacji, takich jak zwarcia, uszkodzenia sprzętu, a nawet pożary. Dlatego kluczowe jest stosowanie przewodów oznaczonych odpowiednio do specyfiki aplikacji, co jest zgodne z normami dotyczącymi bezpieczeństwa i efektywności energetycznej.

Pytanie 28

Ile wynosi prąd obciążenia przewodów fazowych zasilających odbiornik trójfazowy, jeżeli pobiera on 2,2 kW mocy przy napięciu 400 V i współczynniku mocy 0,82?

A. 2,2 A
B. 6,7 A
C. 3,2 A
D. 3,9 A
Wiele osób może błędnie obliczyć prąd, ignorując istotne aspekty związane z mocą czynną oraz współczynnikiem mocy. Przykładowo, odpowiedzi wskazujące na 2,2 A, 6,7 A czy 3,2 A mogą wynikać z nieprawidłowego zrozumienia wzoru na moc w obwodach trójfazowych. Niektórzy mogą mylnie przyjąć, że moc czynna equaluje się do wartości prądu bez uwzględnienia napięcia i współczynnika mocy, co prowadzi do błędnych wniosków. Przykład 2,2 A mógłby sugerować bezpośrednie odniesienie do wartości mocy, co jest niewłaściwe, ponieważ nie uwzględnia napięcia ani współczynnika mocy. Z kolei obliczenie 6,7 A mogłoby być wynikiem błędnego założenia, że prąd jest równy mocy podzielonej przez napięcie, co jest poprawne tylko w przypadku układów jednofazowych. Odpowiedź 3,2 A również mogłaby być wynikiem zastosowania nieodpowiednich danych lub uproszczonych obliczeń. W kontekście instalacji elektrycznych, kluczowe jest zrozumienie, jak moc, napięcie i współczynnik mocy współdziałają ze sobą, co jest niezbędne do prawidłowego doboru komponentów oraz zapewnienia bezpieczeństwa i efektywności energetycznej systemów elektrycznych. W praktyce, pominięcie czynnika √3 w obliczeniach jest powszechnym błędem, który może prowadzić do niedoszacowania prądu i niewłaściwego doboru przewodów czy zabezpieczeń.

Pytanie 29

Które czynności i w jakiej kolejności należy wykonać podczas wymiany uszkodzonego odcinka przewodu w instalacji prowadzonej w rurach peszla?

A. Odłączenie napięcia zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymienienie uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, załączenie napięcia zasilania, sprawdzenie poprawności działania instalacji.
B. Wykonanie pomiaru rezystancji przewodu, odłączenie napięcia zasilania, wymiana uszkodzonego przewodu, załączenie napięcia, sprawdzenie działania instalacji.
C. Odłączenie napięcia zasilania, rozkucie tynku na uszkodzonym odcinku instalacji, wymiana rury peszla z przewodami, załączenie napięcia, sprawdzenie działania instalacji.
D. Odłączenie napięcia zasilania, rozkucie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, załączenie napięcia.
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 30

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 5-10 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 31

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar rezystancji izolacji przewodów
B. Pomiar impedancji pętli zwarciowej
C. Badanie wyłącznika różnicowoprądowego
D. Badanie stanu izolacji podłóg
Badanie wyłącznika różnicowoprądowego (RCD) jest kluczowym krokiem w ocenie skuteczności ochrony przed porażeniem prądem elektrycznym. Wyłączniki różnicowoprądowe są zaprojektowane w celu wykrywania różnicy prądów między przewodem fazowym a neutralnym. W momencie, gdy prąd upływowy, wskazujący na potencjalne porażenie prądem, przekroczy ustalony próg, wyłącznik natychmiast odłącza zasilanie, co minimalizuje ryzyko urazu. Badanie RCD polega na sprawdzeniu, czy wyłącznik działa prawidłowo i odłącza obwód w określonym czasie i przy zadanym prądzie upływowym, co jest zgodne z normami takimi jak PN-EN 61008. Praktycznym przykładem jest rutynowe testowanie RCD w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników ma kluczowe znaczenie. Regularne kontrole RCD powinny być częścią planu konserwacji instalacji elektrycznych, aby zapewnić stałą ochronę przed zagrożeniami związanymi z prądem elektrycznym.

Pytanie 32

Jaka część strumienia świetlnego wysyłana jest w dół w oprawie oświetleniowej V klasy?

A. (60 ÷ 90) %
B. (40 ÷ 60) %
C. (0 ÷ 10) %
D. (90 ÷ 100) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 33

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Waromierza
B. Woltomierza
C. Reflektometru
D. Watomierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 34

Które z wymienionych materiałów stosowane są do wykonywania izolacji żył przewodów elektrycznych?

A. Polwinit i guma.
B. Polwinit i mika.
C. Mika i krzem.
D. Guma i krzem.
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 35

Która z poniższych zasad <u><strong>nie jest</strong></u> zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
C. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
D. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 36

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. instalacje odbiorcze
C. przyłącze
D. złącze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 37

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (2÷3) · In
B. (5÷10) · In
C. (5÷10) · In
D. (3÷5) · In
Odpowiedź (5÷10) · In jest prawidłowa, ponieważ wyzwalacze elektromagnetyczne samoczynnych wyłączników instalacyjnych nadprądowych typu C działają w określonym zakresie krotności prądu znamionowego. Zgodnie z normą IEC 60947-2, wyzwalacze te są zaprojektowane do zadziałania przy prądzie zwarciowym równym 5 do 10 razy prąd znamionowy (In). Oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zadziała, aby chronić obwód przed uszkodzeniem, w przypadku gdy prąd przekroczy 5-krotną wartość znamionową. Przykładem praktycznym może być instalacja elektryczna w budynku komercyjnym, gdzie zastosowanie wyłączników typu C jest zalecane w obwodach z silnikami elektrycznymi, które mogą przy rozruchu generować wyższe prądy. Ich zastosowanie minimalizuje ryzyko fałszywego zadziałania wyłącznika podczas normalnego funkcjonowania obwodu, jednocześnie zapewniając odpowiednią ochronę w przypadku rzeczywistego zagrożenia.

Pytanie 38

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 1,5 mm2
B. 10 mm2
C. 2,5 mm2
D. 4 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 39

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Zagniatarka
B. Płaskoszczypce
C. Nóż monterski
D. Szczypce boczne
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 40

Podczas wymiany uszkodzonego gniazda wtyczkowego w instalacji podtynkowej prowadzonej w rurach karbowanych stwierdzono, że w wyniku obluzowania zacisku izolacja jednego przewodu na długości kilku centymetrów straciła elastyczność i zmieniła kolor. W jaki sposób należy naprawić uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu.
B. Nałożyć gumowy wężyk na uszkodzoną izolację przewodu.
C. Wymienić wszystkie przewody na nowe o większym przekroju.
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju.
Nałożenie gumowego wężyka na uszkodzoną izolację przewodu jest działaniem tymczasowym i nieodpowiednim w kontekście standardów bezpieczeństwa. Choć może to wydawać się praktycznym rozwiązaniem, nie eliminuje ono problemu, jakim jest uszkodzenie izolacji. W rzeczywistości, gumowy wężyk nie zapewni odpowiedniej ochrony przed wpływem czynników zewnętrznych, takich jak wilgoć oraz zanieczyszczenia, które mogą prowadzić do dalszych uszkodzeń. Ponadto, niepoprawne jest również zakładanie, że nałożenie wężyka rozwiąże kwestię bezpieczeństwa elektrycznego, ponieważ w przypadku długotrwałego kontaktu z prądem, uszkodzenie może prowadzić do poważnych incydentów, w tym porażenia prądem. Wymiana wszystkich przewodów na nowe o większym przekroju nie jest uzasadniona, gdyż w tym przypadku wystarczy wymienić tylko uszkodzony element, co jest bardziej ekonomiczne i praktyczne. Polakierowanie uszkodzonej izolacji również nie jest właściwym podejściem, ponieważ nie przywraca to właściwości izolacyjnych materiału, a jedynie maskuje problem. Kluczowym błędem myślowym jest mylenie działania doraźnego z trwałym rozwiązaniem problemu. Takie podejście nie jest zgodne z zasadami dobrej praktyki inżynieryjnej, które wymagają trwałych i skutecznych rozwiązań w zakresie zabezpieczeń elektrycznych.