Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 28 kwietnia 2025 18:28
  • Data zakończenia: 28 kwietnia 2025 18:40

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W udzielaniu pierwszej pomocy osobie z poparzeniem, jak powinno się postąpić z miejscem oparzenia?

A. schłodzić za pomocą spirytusu
B. nałożyć tłuszcz na miejsce oparzenia
C. schłodzić czystą wodą
D. zabezpieczyć jałowym opatrunkiem
Schłodzenie oparzonego miejsca czystą wodą jest najskuteczniejszą metodą pierwszej pomocy w przypadku oparzeń. Woda powinna być letnia, a nie lodowata, aby uniknąć szoku termicznego. Schładzanie miejsca oparzenia przez co najmniej 10-20 minut pomaga zmniejszyć ból, obrzęk oraz ogranicza głębokość uszkodzenia tkanek. Warto pamiętać, że nie należy stosować lodu ani zimnej wody, ponieważ może to pogorszyć uszkodzenia. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji oraz innych organizacji medycznych, kluczowym krokiem w przypadku oparzeń jest szybkie usunięcie źródła ciepła oraz schłodzenie zranionego miejsca. Należy unikać stosowania tłuszczy, olejów czy spirytusu, ponieważ te substancje mogą prowadzić do dodatkowych podrażnień oraz zwiększać ryzyko infekcji. Po schłodzeniu, miejsce oparzenia warto przykryć jałowym opatrunkiem, co zminimalizuje ryzyko zakażeń. W sytuacjach poważniejszych, lub gdy oparzenie obejmuje dużą powierzchnię ciała, należy natychmiast wezwać pomoc medyczną.

Pytanie 2

Pierwszym krokiem przy demontażu silnika z pojazdu jest

A. odłączenie wiązki silnikowej
B. odłączenie akumulatora
C. odkręcenie skrzyni biegów
D. usunięcie oleju
Rozpoczęcie demontażu silnika od odkręcenia skrzyni biegów jest niewłaściwe, ponieważ skrzynia biegów jest integralną częścią układu napędowego, która wymaga szczególnej uwagi i najpierw odpowiedniego przygotowania. Odkręcenie skrzyni biegów bez wcześniejszego odłączenia akumulatora zwiększa ryzyko wystąpienia niebezpiecznych sytuacji, takich jak zwarcia elektryczne. Użytkownicy często popełniają błąd, sądząc, że odkręcenie skrzyni biegów można wykonać w dowolnej kolejności, jednak należy pamiętać, że obecność energii elektrycznej może prowadzić do uszkodzenia czujników i elementów elektronicznych. Kolejnym błędnym podejściem jest odłączenie wiązki silnika przed odłączeniem akumulatora. Tego rodzaju działania mogą prowadzić do uszkodzenia złącz oraz kabli, co może skutkować kosztownymi naprawami. Usunięcie oleju przed odłączeniem akumulatora również nie jest prawidłowym działaniem. Choć usunięcie oleju jest potrzebne w procesie demontażu, powinno być przeprowadzone w odpowiedniej kolejności, aby nie zanieczyścić okolicznych komponentów i powierzchni roboczej. Zawsze należy postępować zgodnie z zaleceniami producenta i standardami warsztatowymi, aby zapewnić bezpieczeństwo i efektywność pracy. Właściwe przygotowanie, w tym odłączenie akumulatora, powinno być zawsze pierwszym krokiem przed jakimkolwiek demontażem, co może zaoszczędzić czas, pieniądze oraz zapobiec nieprzewidzianym problemom w trakcie naprawy.

Pytanie 3

Podstawowym parametrem określającym benzynę używaną do zasilania silników spalinowych jest liczba

A. kwasowa
B. metanowa
C. oktanowa
D. cetanowa
Liczba oktanowa jest kluczowym parametrem określającym jakość benzyny, zwłaszcza w kontekście jej stosowania w silnikach spalinowych. Oznacza ona zdolność paliwa do opierania się zjawisku stukania, które może wystąpić podczas pracy silnika. Wysoka liczba oktanowa wskazuje, że paliwo może być stosowane w silnikach o wyższych stopniach sprężania, co zazwyczaj prowadzi do lepszej efektywności energetycznej i mocniejszego działania silnika. Standardy branżowe, takie jak ASTM D2699 i ASTM D2700, definiują metody pomiaru liczby oktanowej. Na przykład, benzyna o liczbie oktanowej 95 jest powszechnie stosowana w nowoczesnych samochodach, które wymagają paliwa o wysokiej jakości, aby uniknąć uszkodzeń silnika i zapewnić optymalną wydajność. W praktyce, stosowanie paliw o odpowiedniej liczbie oktanowej przyczynia się także do redukcji emisji szkodliwych substancji, co jest kluczowe dla ochrony środowiska.

Pytanie 4

Jakie są powody nadmiernego przegrzewania się bębna hamulcowego podczas prowadzenia pojazdu?

A. Standardowe zużycie okładzin szczęk hamulcowych
B. Nieszczelność pompy hamulcowej
C. Nieodpowiednie napięcie linki hamulca ręcznego
D. Zatarły rozpieracz hamulcowy
Nieszczelność pompy hamulcowej, luźne linki hamulca ręcznego oraz normalne zużycie okładzin szczęk hamulcowych są problemami, które często mogą wprowadzać w błąd osoby zajmujące się diagnostyką układów hamulcowych. Nieszczelność pompy hamulcowej może prowadzić do utraty ciśnienia w układzie, co jednak objawia się głównie zmniejszoną skutecznością hamowania, a nie bezpośrednim przegrzewaniem bębna. Luźne linki hamulca ręcznego mogą powodować, że hamulec ręczny nie zwalnia całkowicie, co prowadzi do ciągłego tarcia, ale to również nie jest najczęstszą przyczyną przegrzewania się bębna. Normalne zużycie okładzin hamulcowych to efekt naturalnego procesu eksploatacyjnego, który nie powoduje nadmiernego nagrzewania się bębna, chyba że okładziny są zużyte w stopniu, który obniża ich skuteczność, co prowadzi do intensywniejszego użytkowania układu. W praktyce, wiele osób myli objawy związane z układami hamulcowymi, co może prowadzić do niewłaściwej diagnozy i nieefektywnego zarządzania konserwacją pojazdu. Ważne jest, aby zawsze przeprowadzać dokładną diagnostykę i stosować się do zaleceń producentów oraz standardów branżowych, takich jak ISO (International Organization for Standardization) dotyczących konserwacji i naprawy układów hamulcowych.

Pytanie 5

Przekładnia napędowa z wykorzystaniem kół zębatych, wykorzystywana w mechanizmie rozrządu silnika, należy do grupy przekładni

A. walcowych
B. hiperboidalnych
C. ślimakowych
D. śrubowych
Wybór odpowiedzi inne niż walcowe wskazuje na pewne nieporozumienia dotyczące mechaniki i rodzaju przekładni. Przekładnie śrubowe, ślimakowe oraz hiperboidalne różnią się od przekładni walcowych zarówno w budowie, jak i w zastosowaniach. Przekładnie śrubowe są stosowane do przekształcania ruchu obrotowego w ruch liniowy i często znajdują zastosowanie w mechanizmach podnoszących, gdzie wymagana jest zmiana siły. Przekładnie ślimakowe z kolei zapewniają dużą redukcję prędkości i są używane w sytuacjach, gdzie konieczna jest duża różnica prędkości między wałami, ale mają ograniczenia w przenoszeniu dużych momentów obrotowych. Hiperboidalne przekładnie są stosunkowo rzadkie i stosowane głównie w specjalistycznych aplikacjach. Stąd wybór odpowiedzi śrubowej, ślimakowej czy hiperboidalnej może wynikać z nieporozumienia dotyczącego funkcji i budowy poszczególnych typów przekładni. Dobrą praktyką w inżynierii mechanicznej jest dokładne zrozumienie specyfiki zastosowań poszczególnych przekładni, co pozwala na dobór odpowiednich rozwiązań w projektach technicznych. Dlatego wiedza na temat klasyfikacji przekładni jest niezwykle istotna w kontekście projektowania i eksploatacji różnych układów mechanicznych.

Pytanie 6

Podczas pracy z elektryczną szlifierką ręczną konieczne jest noszenie

A. fartucha ochronnego
B. okularów ochronnych
C. rękawic ochronnych
D. obuwia roboczego
Użycie okularów ochronnych podczas pracy ze szlifierką ręczną z napędem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa oczu. Prace szlifierskie generują wiele niebezpiecznych odpadów, takich jak pył, iskry oraz drobne cząstki materiału, które mogą łatwo trafić do oczu pracownika. Okulary ochronne są zaprojektowane tak, aby skutecznie chronić przed tymi zagrożeniami. Przykłady zastosowania obejmują zarówno prace w przemyśle, jak i w warsztatach hobbystycznych, gdzie użytkownicy często nie zdają sobie sprawy z ryzyka spowodowanego niewłaściwym zabezpieczeniem oczu. Zgodnie z normą PN-EN 166:2002, która dotyczy środków ochrony indywidualnej oczu, okulary muszą być odpowiednio oznaczone i dopasowane do warunków pracy. Warto zwrócić uwagę na to, aby wybierać modele z odpowiednimi filtrami, które chronią przed promieniowaniem UV, gdyż długotrwałe narażenie na takie promieniowanie może prowadzić do poważnych uszkodzeń wzroku. Bezpieczeństwo powinno być zawsze priorytetem, dlatego noszenie okularów ochronnych jest nie tylko dobrym nawykiem, ale i obowiązkiem.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Typowa wartość stopnia sprężania w silniku o zapłonie iskrowym to

A. od 20 do 26
B. od 14 do 20
C. od 26 do 32
D. od 8 do 14
Odpowiedź "od 8 do 14" jest prawidłowa, ponieważ przeciętny stopień sprężania w silnikach o zapłonie iskrowym, takich jak te stosowane w samochodach osobowych, oscyluje właśnie w tym zakresie. Wartości te są zgodne z normami branżowymi i praktykami inżynieryjnymi, które definiują optymalne parametry dla efektywności spalania oraz osiągów silników. Na przykład, silniki o stopniu sprężania w przedziale 9-11 są powszechnie stosowane w pojazdach osobowych, co pozwala na uzyskanie dobrych osiągów i oszczędności paliwa. Wyższe stopnie sprężania, choć umożliwiają większą moc, na ogół wymagają stosowania paliw o wyższej jakości, aby uniknąć wystąpienia spalania stukowego. Dobrą praktyką inżynieryjną jest również dostosowanie stopnia sprężania do konstrukcji silnika, co wpływa na jego trwałość oraz efektywność energetyczną. Dlatego znajomość tego zakresu jest kluczowa dla konstruktorów i mechaników zajmujących się projektowaniem oraz serwisowaniem silników. Warto również przytoczyć, że w silnikach sportowych stopnie sprężania mogą sięgać wartości od 10 do 14, co pozwala na uzyskanie wyższej mocy, ale wiąże się z większymi wymaganiami dotyczącymi paliwa i smarowania.

Pytanie 9

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Grubości pierścienia
B. Objętości cylindra
C. Średnicy tłoka
D. Średnicy sworznia tłokowego
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Aluminiową chłodnicę z nieszczelnością należy

A. naprawić przy użyciu spawania
B. naprawić wykorzystując lutowanie twarde
C. wymienić na nową
D. naprawić przy pomocy klejenia
Wymiana nieszczelnej aluminiowej chłodnicy na nową jest najbardziej zalecaną opcją ze względu na kilka kluczowych czynników. Przede wszystkim, chłodnice aluminiowe są często stosowane w różnych aplikacjach, w tym w motoryzacji i chłodnictwie przemysłowym, ze względu na ich doskonałe właściwości przewodzenia ciepła oraz lekkość. W przypadku nieszczelności, mogą występować mikropęknięcia lub uszkodzenia, które mogą wpłynąć na ich efektywność i bezpieczeństwo eksploatacji. Naprawa poprzez lutowanie lub spawanie może wydawać się kusząca, jednak w praktyce często prowadzi to do kompromisów w wytrzymałości materiału oraz ryzyka ponownego uszkodzenia. Dodatkowo, standardy jakości w wielu branżach, takie jak ISO 9001, zachęcają do wymiany uszkodzonych elementów, co zapewnia długoterminową niezawodność i bezpieczeństwo. Dlatego inwestycja w nową chłodnicę jest z perspektywy technicznej i ekonomicznej bardziej uzasadniona, a także zapewnia zgodność z najlepszymi praktykami inżynieryjnymi.

Pytanie 12

Przed rozpoczęciem weryfikacji zbieżności kół konieczne jest

A. sprawdzić ciśnienie w oponach
B. unieruchomić pedał hamulca
C. zdjąć obciążenie z pojazdu
D. zablokować kierownicę
Sprawdzanie ciśnienia w oponach przed przystąpieniem do kontroli zbieżności kół jest kluczowym krokiem, ponieważ niewłaściwe ciśnienie w oponach może wpływać na geometrię zawieszenia oraz na zachowanie pojazdu podczas jazdy. Odpowiednie ciśnienie w oponach zapewnia równomierne zużycie bieżnika, a także poprawia stabilność i bezpieczeństwo pojazdu. Przykładowo, opony z niedostatecznym ciśnieniem będą się odkształcały, co może prowadzić do błędnych odczytów geometrii zawieszenia, a tym samym wpływać na zbieżność kół. W praktyce, zaleca się regularne sprawdzanie ciśnienia w oponach, najlepiej co miesiąc oraz przed dłuższymi podróżami. Standardy branżowe, takie jak te określone przez ECE (Europejska Komisja Gospodarcza), wskazują, że optymalne ciśnienie powinno być dostosowane do obciążenia pojazdu oraz warunków drogowych. Warto również pamiętać, że ciśnienie należy sprawdzać na zimnych oponach, aby uzyskać najdokładniejsze wyniki. Właściwe ciśnienie to fundament bezpieczeństwa i efektywności pojazdu, dlatego jest to niezbędny krok przed przystąpieniem do dalszych prac serwisowych.

Pytanie 13

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. wyważenia kół
B. zbieżności kół przednich
C. ustawienia świateł
D. zbieżności kół tylnych
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W przypadku wykrycia niekontrolowanego podniesienia poziomu oleju w układzie smarowania silnika, możliwe przyczyny to

A. uszkodzenie uszczelki pod głowicą
B. awaria pompy olejowej
C. zbyt duże zanieczyszczenie filtra oleju
D. zużycie czopów wału korbowego
Nadmierne zabrudzenie filtra oleju może prowadzić do spadku ciśnienia oleju w silniku, co objawia się problemami z smarowaniem, ale nie jest przyczyną wzrostu jego poziomu. Filtr oleju ma za zadanie zatrzymywać zanieczyszczenia, a jego zanieczyszczenie skutkuje wyłącznie obniżeniem efektywności smarowania. Zużycie czopów wału korbowego wpływa na luz i może powodować wycieki oleju, ale nie ma bezpośredniego wpływu na wzrost poziomu oleju. W przypadku uszkodzenia pompy olejowej, mogłoby to prowadzić do obniżenia ciśnienia oleju, co także nie jest związane z jego wzrostem. W praktyce, problemy z podzespołami silnika mogą być mylnie interpretowane ze względu na niewystarczającą wiedzę na temat ich funkcji. Aby uniknąć takich błędów myślowych, ważne jest zrozumienie, że różne usterki silnika mają różne objawy, a ich diagnozowanie wymaga znajomości mechaniki i zastosowania odpowiednich narzędzi diagnostycznych. Standardy branżowe sugerują stosowanie systematycznych procedur diagnostycznych w celu prawidłowego zidentyfikowania przyczyny problemów, co jest kluczowe dla zapewnienia bezawaryjnej pracy silników.

Pytanie 17

Pomiar ciśnienia sprężania przeprowadza się, aby ocenić szczelność

A. chłodnicy
B. układu wydechowego
C. opon
D. zaworów
Pomiar ciśnienia sprężania w silniku spalinowym jest kluczowym testem diagnostycznym, który pozwala ocenić szczelność zaworów, a także ogólny stan silnika. Wysokiej jakości szczelność zaworów jest niezbędna do prawidłowego działania silnika, ponieważ zapewnia efektywne spalanie mieszanki paliwowo-powietrznej. W przypadku uszkodzenia lub niewłaściwego funkcjonowania zaworów, ciśnienie sprężania może być znacznie niższe niż normy producenta, co prowadzi do obniżenia mocy silnika, zwiększenia zużycia paliwa oraz emisji spalin. Standardowe procedury diagnostyczne, takie jak pomiar ciśnienia sprężania, są zalecane przez producentów silników i stosowane w warsztatach mechanicznych jako rutynowy element diagnostyki. Dobrą praktyką jest regularne przeprowadzanie takich testów, aby wykryć problemy, zanim doprowadzą one do poważniejszych awarii. Na przykład, w silnikach z uszkodzonymi zaworami wydechowymi, może wystąpić zjawisko "zaworu niezamkniętego" (ang. valve overlap), co znacząco obniża wydajność silnika. Testy ciśnienia sprężania powinny być przeprowadzane z użyciem odpowiednich narzędzi, takich jak manometry, które są kalibrowane i spełniają standardy branżowe.

Pytanie 18

W głowicy czterosuwowego silnika spalinowego wykorzystuje się zawory

A. suwakowe
B. grzybkowe
C. membranowe
D. kulowe
Zawory grzybkowe to naprawdę istotny element w głowicy czterosuwowego silnika. Dzięki nim kanały dolotowe i wylotowe działają sprawnie, bo po prostu otwierają się i zamykają w odpowiednim momencie. Działają na zasadzie podnoszenia grzybka, który jest na końcu dźwigni zaworu, co pozwala na kontrolowanie przepływu mieszanki paliwa i powietrza oraz spalin. W silnikach o wysokich obrotach wybiera się te zawory, bo są mega szczelne i szybko reagują na zmiany ciśnienia. Dzięki temu silnik może chodzić lepiej i zużywać mniej paliwa. To, że tak się dzieje, to nie przypadek - spełniają one wszystkie standardy branżowe, więc są niezawodne w nowoczesnych samochodach. W silnikach wyścigowych też często się je stosuje, co tylko potwierdza ich przewagę w osiągach.

Pytanie 19

Silnik ZI z systemem wtrysku paliwa utrzymuje na biegu jałowym wysokie obroty. Może być uszkodzony

A. przekaźnik zasilania pompy paliwa
B. układ wydechowy
C. silnik krokowy
D. przewód w układzie zapłonowym
Silnik krokowy jest kluczowym elementem w systemach wtrysku paliwa, który reguluje obroty silnika na biegu jałowym. W przypadku jego uszkodzenia, silnik może pracować z nieprawidłowymi obrotami, co objawia się ich niekontrolowanym wzrostem. Silnik krokowy, działając na zasadzie zmiany położenia, precyzyjnie dostosowuje ilość powietrza dostającego się do komory spalania, co jest kluczowe dla stabilizacji biegu jałowego. Przykładowo, w nowoczesnych systemach wtrysku, takich jak EFI (Electronic Fuel Injection), silnik krokowy współpracuje z jednostką sterującą silnika (ECU), aby zapewnić odpowiednią mieszankę paliwowo-powietrzną, co przekłada się na wydajność i emisję spalin. Regularna diagnostyka i konserwacja silnika krokowego są zgodne z najlepszymi praktykami w branży motoryzacyjnej i mogą zapobiec poważnym problemom mechanicznych.

Pytanie 20

Z układu wydechowego samochodu wydobywa się znaczna ilość białego dymu. Możliwą przyczyną tego zjawiska może być

A. zablokowany filtr powietrza.
B. zbyt duża ilość paliwa wtryskiwanego.
C. uszkodzenie uszczelki głowicy silnika
D. nieprawidłowe ustawienie zapłonu.
Uszkodzenie uszczelki głowicy silnika jest jedną z najczęstszych przyczyn wydobywania się białego dymu z układu wydechowego. Tego rodzaju dym zazwyczaj jest wynikiem przedostawania się płynu chłodniczego do cylindrów silnika. W sytuacji, gdy uszczelka głowicy ulega uszkodzeniu, ciśnienie w silniku może wpływać na to, że płyn chłodniczy, który powinien krążyć tylko w obiegu chłodzenia, dostaje się do komory spalania. W efekcie przy mieszaniu się z paliwem i powietrzem, tworzy białą parę, która jest wydobywana przez układ wydechowy. W praktyce, diagnozując problem, warto również sprawdzić poziom płynu chłodniczego oraz obserwować, czy nie ma śladów oleju w chłodnicy. Utrzymanie uszczelki w dobrym stanie jest kluczowe dla właściwego funkcjonowania silnika oraz uniknięcia kosztownych napraw. Standardy branżowe zalecają regularne inspekcje oraz wymianę uszczelek podczas większych przeglądów technicznych, aby zapobiec problemom z silnikiem.

Pytanie 21

Klasyczny mechanizm różnicowy pozwala na

A. prowadzenie samochodu z różnymi prędkościami obrotowymi kół napędowych.
B. aktywowanie napędu na cztery koła.
C. przeniesienie momentu obrotowego z skrzyni biegów na wał.
D. płynne dostosowywanie prędkości pojazdu.
Klasyczny mechanizm różnicowy jest kluczowym elementem układu napędowego pojazdów, który umożliwia jazdę z różnymi prędkościami obrotowymi kół napędzanych. Jego podstawowym zadaniem jest kompensowanie różnic w prędkości obrotowej kół, co jest szczególnie istotne podczas pokonywania zakrętów. W momencie, gdy pojazd skręca, zewnętrzne koło pokonuje dłuższą drogę niż wewnętrzne, co prowadzi do różnicy w prędkości obrotowej. Mechanizm różnicowy pozwala na swobodne obracanie się kół w zależności od ich potrzeb, co zwiększa stabilność i komfort jazdy. Przykładem zastosowania mechanizmu różnicowego są samochody osobowe, które wykorzystują go do poprawy trakcji i manewrowości. Działanie to jest zgodne z najlepszymi praktykami inżynieryjnymi, które postulują efektywne wykorzystanie mocy silnika oraz zmniejszenie zużycia paliwa, a także zwiększenie bezpieczeństwa jazdy.

Pytanie 22

W trakcie spawania gazowego niemożliwe jest

A. nasączenie olejem lub innym tłuszczem zaworów butli
B. korzystanie z skórzanych rękawic ochronnych
C. aplikowanie defektoskopu
D. zbyt duże przewietrzanie warsztatu / hali
Nadmierne przewietrzanie warsztatu lub hali podczas spawania gazowego może być postrzegane jako zjawisko pozytywne, ponieważ zapewnia lepszą cyrkulację powietrza i zmniejsza koncentrację gazów w powietrzu. Jednakże, w praktyce, nadmierne przewietrzanie może prowadzić do zmniejszenia efektywności procesów spawalniczych oraz wpływać na stabilność płomienia, co z kolei wpłynie na jakość spawania. Dlatego należy zachować umiar i dostosować wentylację do konkretnych warunków pracy. Użycie skórzanych rękawic ochronnych jest również standardową praktyką, zapewniającą ochronę rąk przed wysoką temperaturą oraz odpryskami metalu, co jest zgodne z normami BHP. Odnośnie użycia defektoskopu, jest to narzędzie niezbędne do oceny jakości złącza spawanego. Jego zastosowanie pozwala na wczesne wykrycie wad, co jest kluczowe dla zapewnienia bezpieczeństwa oraz trwałości konstrukcji. W związku z tym, niezrozumienie roli wentylacji, rękawic czy defektoskopu może prowadzić do błędnych wniosków i zagrożeń w trakcie spawania.

Pytanie 23

W dowodzie rejestracyjnym wskazana dopuszczalna masa całkowita pojazdu odnosi się do maksymalnej masy określonej przepisami, włączając w to

A. kierowcę oraz pasażerów, jednak bez ładunku
B. materiały eksploatacyjne w ilościach standardowych, z pominięciem kierowcy i ładunku
C. przyczepę
D. pasażerów, kierowcę i ładunek
Odpowiedź wskazująca, że dopuszczalna masa całkowita pojazdu odnosi się do masy pojazdu wraz z pasażerami, kierowcą i ładunkiem jest prawidłowa, ponieważ zgodnie z przepisami prawa drogowego, dopuszczalna masa całkowita (DMC) to maksymalna masa, jaką pojazd może ważyć podczas użytkowania na drodze. W skład tej masy wchodzą nie tylko same materiały eksploatacyjne, ale również wszyscy użytkownicy pojazdu oraz wszelkie przewożone ładunki. Przykładowo, przy wyliczaniu DMC dla autobusu pasażerskiego uwzględnia się zarówno masę pojazdu, jak i masę wszystkich pasażerów oraz ewentualny bagaż. Dobrą praktyką dla kierowców i przedsiębiorstw transportowych jest monitorowanie ilości przewożonych pasażerów oraz ładunku, aby nie przekraczać DMC, co może prowadzić do niebezpiecznych sytuacji na drodze oraz naruszeń przepisów prawa. W przypadku przekroczenia DMC, kierowca naraża siebie, pasażerów oraz innych uczestników ruchu na ryzyko, a także może ponieść konsekwencje prawne, w tym mandaty i kary administracyjne.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Diagnostyka systemu hamulcowego na stanowisku rolkowym nie umożliwia

A. ustalenia różnic sił hamowania na wszystkich kołach pojazdu
B. wykrycia owalizacji bębnów hamulcowych
C. oceny stopnia zużycia elementów ciernych
D. wykrycia deformacji oraz bicia tarcz hamulcowych
Diagnostyka układu hamulcowego na stanowisku rolkowym rzeczywiście ma swoje ograniczenia, jednak wiele osób może błędnie wywnioskować, że pozwala ona na zidentyfikowanie deformacji i bicia tarcz hamulcowych, owalizacji bębnów hamulcowych oraz różnic sił hamowania na wszystkich kołach pojazdu. W rzeczywistości, przy użyciu stanowiska rolkowego można z powodzeniem wykrywać deformacje i bicie tarcz hamulcowych. Te defekty są często spowodowane zużyciem, korozją lub nieprawidłowym montażem, co prowadzi do wibracji i obniżenia skuteczności hamowania. Stanowiska rolkowe umożliwiają oceny siły hamowania, co pozwala na wykrycie różnic między poszczególnymi kołami, co jest istotnym wskaźnikiem stanu układu hamulcowego. W przypadku owalizacji bębnów hamulcowych, testy na rolkach również mogą dostarczyć informacji o ich stanie, ponieważ owalność wpływa na równomierne rozłożenie siły hamowania. Typowym błędem myślowym jest zakładanie, że stanowisko rolkowe jedynie mierzy siłę hamowania, podczas gdy w rzeczywistości dostarcza ono cennych danych na temat całego układu hamulcowego. Dlatego kluczowe jest zrozumienie, że chociaż stanowisko rolkowe jest narzędziem diagnostycznym, nie jest w stanie ocenić rzeczywistego zużycia materiałów ciernych, co powinno być realizowane w trakcie regularnych inspekcji.

Pytanie 26

Zanim mechanik umieści pojazd na podnośniku kolumnowym, powinien zweryfikować, czy podnośnik dysponuje ważnym zaświadczeniem o przeprowadzonym badaniu technicznym, które zostało zrealizowane przez

A. Państwową Inspekcję Pracy
B. Państwową Inspekcję Sanitarną
C. Urząd Dozoru Technicznego
D. Urząd Nadzoru Budowlanego
Urząd Dozoru Technicznego (UDT) jest odpowiedzialny za kontrolę oraz nadzór nad urządzeniami technicznymi, w tym podnośnikami kolumnowymi. Posiadanie aktualnego zaświadczenia o przeprowadzonym badaniu technicznym jest kluczowe dla zapewnienia bezpieczeństwa pracy w warsztatach i serwisach samochodowych. Badania te obejmują ocenę stanu technicznego urządzenia, weryfikację jego parametrów oraz bezpieczeństwa użytkowania. Przykładowo, przed wprowadzeniem pojazdu na podnośnik, mechanik powinien upewnić się, że podnośnik nie tylko funkcjonuje poprawnie, ale również spełnia normy bezpieczeństwa określone przez regulacje UDT. Kontrola ta jest częścią systemu zarządzania jakością i bezpieczeństwem w miejscu pracy, co jest zgodne z dobrymi praktykami branżowymi. Umożliwia to nie tylko zabezpieczenie zdrowia pracowników, ale również minimalizację ryzyka uszkodzenia pojazdów. Dlatego regularne przeglądy i badania techniczne są niezbędne w każdym serwisie, gdzie używane są podnośniki.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jak dokonuje się bezkontaktowego pomiaru temperatury elementów silnika?

A. multimetrem
B. stroboskopem
C. refraktometrem
D. pirometrem
Refraktometr jest narzędziem używanym do pomiaru współczynnika załamania światła, co jest przydatne w analizie cieczy, w tym płynów chłodzących czy olejów, ale nie ma zastosowania w bezdotykowym pomiarze temperatury. Użytkownicy mogą mylnie sądzić, że refraktometr mógłby dostarczyć informacji o temperaturze na podstawie zmian w załamaniu światła, jednak zjawisko to nie jest zbyt wiarygodne w kontekście pomiarów temperatury. Multimetr, z kolei, jest urządzeniem do pomiaru napięcia, prądu i oporu, a choć niektóre modele mogą mieć funkcje pomiaru temperatury, ich użycie w kontekście silników jest ograniczone, ponieważ wymaga bezpośredniego kontaktu z obiektem, co może prowadzić do błędów pomiarowych. Stroboskop jest narzędziem stosowanym do analizy ruchu obrotowego, używanym głównie w diagnostyce maszyn, ale nie ma on żadnych właściwości, które umożliwiałyby bezdotykowy pomiar temperatury. Wybór niewłaściwego narzędzia do pomiaru temperatury może prowadzić do nieefektywnej diagnostyki i w konsekwencji do poważnych awarii silników. Dlatego niezwykle istotne jest stosowanie odpowiednich narzędzi w odniesieniu do specyfiki pomiarów, co jest kluczowym aspektem w każdym procesie inżynieryjnym.

Pytanie 29

Aby zmierzyć ciśnienie oleju w układzie smarowania silnika z zapłonem iskrowym, powinno się zastosować manometr o zakresie pomiarowym

A. 0 - 0,4 MPa
B. 0 - 0,2 MPa
C. 0 - 0,l MPa
D. 0 - 0,5 MPa
Wybór manometru o zakresie pomiarowym 0 - 0,5 MPa do pomiaru ciśnienia oleju w układzie smarowania silnika z zapłonem iskrowym jest właściwy, gdyż ciśnienie oleju w tym typie silnika zazwyczaj wynosi od kilkudziesięciu do około 0,5 MPa (5 bar). Użycie manometru o zbyt wąskim zakresie może prowadzić do nieprawidłowych odczytów, a nawet uszkodzenia przyrządu, jeżeli wartości ciśnienia przekroczą zakres pomiarowy. Standardy branżowe, takie jak ISO 4126, wskazują na konieczność doboru odpowiednich przyrządów pomiarowych do specyfikacji danego systemu. Praktycznym przykładem zastosowania tego manometru może być jego wykorzystanie w czasie rutynowych przeglądów technicznych, gdzie operatorzy mogą monitorować ciśnienie oleju, co pozwala na wczesne wykrywanie problemów w układzie smarowania, takich jak zatarcie czy niewłaściwe działanie pompy olejowej. Utrzymanie optymalnego ciśnienia oleju jest kluczowe dla prawidłowego funkcjonowania silnika, co podkreśla znaczenie stosowania manometrów o odpowiednich parametrach.

Pytanie 30

Podczas realizacji wymiany łożysk kół przednich, dla zapewnienia bezpieczeństwa pracy oraz właściwej pozycji mechanika, powinno się

A. ustawić oś przednią na klinach
B. uniesić oś przednią za pomocą podnośnika hydraulicznego
C. podnieść pojazd za pomocą podnośnika kolumnowego
D. uniesić oś przednią przy użyciu podnośnika śrubowego
Podniesienie pojazdu podnośnikiem kolumnowym jest najbezpieczniejszą i najbardziej stabilną metodą, gdyż pozwala na równomierne rozłożenie ciężaru pojazdu oraz zapewnia dostęp do wszystkich elementów zawieszenia. Podnośniki kolumnowe są zaprojektowane z myślą o pracy z pojazdami o różnych konstrukcjach, co czyni je odpowiednim wyborem dla profesjonalnych warsztatów. Dzięki stabilnej konstrukcji, mechanik może swobodnie pracować nad wymianą łożysk kół przednich, nie martwiąc się o możliwe przewrócenie się pojazdu. Przykładowo, w przypadku większych pojazdów dostawczych, zastosowanie podnośnika kolumnowego pozwala na swobodne operowanie narzędziami oraz dostęp do wszystkich niezbędnych elementów. Warto też podkreślić, że zgodnie z normami BHP, prace związane z wymianą elementów zawieszenia powinny odbywać się na stabilnym podłożu, co dodatkowo podkreśla znaczenie użycia odpowiedniego podnośnika, który spełnia te wymagania.

Pytanie 31

Aby uzupełnić poziom płynu w systemie hamulcowym, należy zastosować płyn oznaczony symbolem

A. DOT
B. ŁT4
C. 40W10
D. 30W10
Prawidłowa odpowiedź to DOT, co odnosi się do standardu klasyfikacji płynów hamulcowych. Płyny te są klasyfikowane na podstawie temperatury wrzenia oraz właściwości chemicznych. DOT (Department of Transportation) to oznaczenie stosowane w Stanach Zjednoczonych, które wskazuje, że dany płyn spełnia wymagania określone w normach dotyczących wydajności i bezpieczeństwa. Płyny hamulcowe oznaczone jako DOT są dostępne w różnych klasach, takich jak DOT 3, DOT 4 i DOT 5.1, które różnią się między sobą temperaturą wrzenia oraz odpornością na wilgoć. W praktyce, używanie odpowiedniego płynu hamulcowego jest kluczowe dla zapewnienia optymalnej wydajności układu hamulcowego, a także bezpieczeństwa pojazdu. Na przykład, podczas wymiany płynu hamulcowego w samochodzie, zaleca się stosowanie płynu zgodnego z odpornością materiałów uszczelniających w układzie. Przykładowo, wiele nowoczesnych systemów hamulcowych, zwłaszcza w pojazdach sportowych, wymaga płynów klasy DOT 4 lub DOT 5.1 ze względu na ich wyższą temperaturę wrzenia.

Pytanie 32

Podejmując się głównej naprawy ciągnika siodłowego, na początku należy

A. odprowadzić płyny eksploatacyjne
B. rozłączyć naczepę z ciągnikiem
C. poddać cały pojazd czyszczeniu
D. zdemontować ciągnik na poszczególne części
Odłączenie naczepy od ciągnika siodłowego jest kluczowym krokiem przed przystąpieniem do naprawy głównej pojazdu. Właściwe procedury bezpieczeństwa nakładają obowiązek na mechaników, aby upewnili się, że pojazd jest stabilny i bezpieczny do pracy. Rozłączenie naczepy minimalizuje ryzyko przypadkowego przewrócenia się lub przesunięcia ciągnika podczas dokonywania napraw. Praktyka ta jest zgodna z ogólnymi standardami BHP w warsztatach mechanicznych, które podkreślają znaczenie zabezpieczenia pojazdu przed nieautoryzowanym ruchem. Dodatkowo, brak naczepy ułatwia dostęp do silnika oraz układów mechanicznych, co jest niezbędne do przeprowadzenia dokładnej inspekcji oraz wymiany podzespołów. Zgodnie z dobrą praktyką, przed rozpoczęciem jakiejkolwiek pracy, mechanik powinien również sprawdzić, czy pojazd jest odpowiednio zablokowany, co dodatkowo zwiększa bezpieczeństwo pracy. Znajomość procedur oraz stosowanie się do nich jest nie tylko zalecane, ale wręcz niezbędne dla zapewnienia efektywności oraz bezpieczeństwa w warsztacie.

Pytanie 33

Jakiego oleju używa się do smarowania przekładni głównej, który ma symbol

A. L-DAA
B. DOT-4
C. GL5 SAE 75W90
D. SG/CC SAE 10W/40
Odpowiedź GL5 SAE 75W90 jest poprawna, ponieważ ten typ oleju jest specjalnie zaprojektowany do smarowania przekładni głównych w pojazdach. Oznaczenie GL5 odnosi się do klasy olejów przekładniowych, które spełniają wymagania dla zmiennych obciążeń i dużych obrotów, co jest kluczowe w aplikacjach takich jak mosty i przekładnie. Olej SAE 75W90 oznacza, że ma odpowiednią lepkość w niskich temperaturach (75W) oraz w wysokich temperaturach (90), co zapewnia odpowiednią ochronę w różnych warunkach eksploatacyjnych. W praktyce użycie oleju GL5 SAE 75W90 zapewnia lepsze smarowanie, zmniejsza tarcie oraz poprawia wydajność układów przeniesienia napędu, co przekłada się na dłuższą żywotność komponentów. Zastosowanie tego typu oleju jest zgodne z zaleceniami wielu producentów pojazdów oraz normami branżowymi, co czyni go standardem w branży motoryzacyjnej.

Pytanie 34

Aby zamówić właściwe części do naprawy pojazdu,

A. należy dostarczyć uszkodzony element do porównania z zamiennikiem.
B. wystarczy podać numer VIN.
C. wystarczy podać rok produkcji pojazdu.
D. wystarczy podać jego markę oraz model.
Podanie numeru VIN (Vehicle Identification Number) jest kluczowe w procesie zamawiania części do pojazdu, ponieważ ten unikalny identyfikator zawiera wszystkie istotne informacje dotyczące konkretnego egzemplarza samochodu. Numery VIN składają się z 17 znaków, które obejmują m.in. informacje o marce, modelu, roku produkcji, miejscu produkcji oraz specyfikacji silnika. Dzięki temu, kiedy zamawiamy części, dostawcy mogą dokładnie zidentyfikować, które elementy będą odpowiednie do danego pojazdu, co pozwala zminimalizować ryzyko pomyłek i niezgodności. Przykładowo, dwa modele tego samego pojazdu mogą mieć różniące się specyfikacje, a użycie VIN zapewnia, że zamówione części będą idealnie pasować. W praktyce, stosowanie numeru VIN jest standardem w branży motoryzacyjnej, co z kolei wspiera procesy logistyczne i serwisowe, podnosząc efektywność obsługi klienta oraz zmniejszając koszty związane z błędnymi zamówieniami.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Co oznacza oznaczenie TWI umieszczone na oponie?

A. przeznaczenie opony do pojazdu terenowego
B. dostosowanie opony do sezonu zimowego
C. graniczne zużycie bieżnika
D. typ materiału użytego do produkcji bieżnika
Oznaczenie TWI (Tread Wear Indicator) na oponie jest kluczowym wskaźnikiem informującym kierowców o granicznym zużyciu bieżnika. W momencie, gdy bieżnik opony osiągnie poziom wskazany przez TWI, oznacza to, iż opona jest zużyta do minimum dopuszczalnego poziomu, co może negatywnie wpływać na bezpieczeństwo jazdy. Praktyczne zastosowanie TWI polega na regularnym monitorowaniu stanu opon, co jest kluczowe dla zapewnienia optymalnej przyczepności, zwłaszcza w trudnych warunkach drogowych. Warto pamiętać, że minimalna głębokość bieżnika, zgodna z europejskimi normami, wynosi 1,6 mm, jednak zaleca się wymianę opon już przy głębokości 3 mm, aby uniknąć potencjalnych zagrożeń. Właściwe zarządzanie zużyciem opon nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do dłuższej żywotności pojazdu i zmniejszenia kosztów eksploatacyjnych.

Pytanie 39

Kolejność dokręcania śrub/nakrętek głowicy rzędowego silnika wielocylindrowego ustalana przez producenta realizuje się według jakiej zasady?

A. po kolei od strony skrzyni biegów
B. od wnętrza do zewnętrznej strony
C. od zewnętrznej strony do wnętrza
D. po kolei od strony napędu wałka rozrządu
Właściwa kolejność dokręcania śrub głowicy silnika od środka do zewnątrz jest kluczowa dla zapewnienia równomiernego rozkładu sił i uniknięcia odkształceń w obszarze głowicy. Dzięki tej metodzie, wszystkie śruby działają w zharmonizowany sposób, co pozwala na równomierne dociśnięcie uszczelki oraz stabilizację całej konstrukcji. Działanie to jest szczególnie istotne w silnikach wielocylindrowych, gdzie różnice w rozkładzie ciśnienia mogłyby prowadzić do uszkodzeń, takich jak nieszczelności lub pęknięcia. Przykładem może być silnik typu V, gdzie ścisłe przestrzeganie tej zasady jest niezbędne do zapewnienia optymalnej pracy jednostki napędowej. W branży motoryzacyjnej standardy takie jak ISO 6789 określają metody i narzędzia do precyzyjnego dokręcania, co podkreśla wagę tego procesu. Wykonując dokręcanie zgodnie z tą zasadą, minimalizujemy ryzyko awarii i przedłużamy żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 40

Zanim rozpoczniesz diagnostykę układu hamulcowego na stanowisku rolkowym, na początku należy zweryfikować

A. szczelność układu.
B. ciśnienie w ogumieniu.
C. obciążenie pojazdu.
D. stan płynu hamulcowego.
Ciśnienie w ogumieniu jest kluczowym czynnikiem wpływającym na efektywność układu hamulcowego. Przed przystąpieniem do diagnostyki układu hamulcowego na stanowisku rolkowym, ważne jest, aby upewnić się, że opony pojazdu są odpowiednio napompowane. Niskie ciśnienie w oponach może prowadzić do zwiększonego oporu toczenia, co z kolei wpłynie na obciążenie układu hamulcowego oraz jego skuteczność. Odpowiednie ciśnienie w oponach poprawia stabilność pojazdu, a także zapewnia równomierne rozłożenie sił hamowania na wszystkie koła. W praktyce, diagnostycy powinni korzystać z manometru do sprawdzenia ciśnienia w oponach przed przystąpieniem do jakichkolwiek testów hamulców. To nie tylko poprawia bezpieczeństwo, ale również zwiększa dokładność wyników testów. Ponadto, zgodność z normami producentów pojazdów oraz zaleceniami dotyczącymi ciśnienia w oponach stanowi standard w branży motoryzacyjnej, co powinno być integralną częścią procesu diagnostycznego.