Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 czerwca 2025 14:44
  • Data zakończenia: 9 czerwca 2025 14:46

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Zgrzewanie
C. Lutowanie miękkie
D. Sklejanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 2

Który z poniższych czujników mierzących powinien być użyty do określenia wartości ciśnienia w zbiorniku sprężonego powietrza oraz do przesłania danych do sterownika PLC z analogowymi wejściami?

A. Czujnik termoelektryczny
B. Czujnik ultradźwiękowy
C. Czujnik piezorezystancyjny
D. Czujnik manometryczny
Wybór czujników do pomiaru ciśnienia w zbiorniku sprężonego powietrza wymaga zrozumienia ich specyfiki i zastosowania. Czujnik termoelektryczny, który działa na zasadzie pomiaru temperatury, nie jest właściwym narzędziem w tym kontekście. Jego zastosowanie w pomiarze ciśnienia jest nieefektywne, ponieważ nie jest w stanie dostarczyć informacji o ciśnieniu, co prowadzi do błędnych wniosków i niewłaściwego doboru urządzeń. Kolejnym przykładem jest czujnik ultradźwiękowy, który może być stosowany do pomiaru poziomu cieczy, jednak w kontekście pomiaru ciśnienia w gazach, jakim jest sprężone powietrze, jego zastosowanie jest ograniczone. Czujniki te są bardziej odpowiednie do monitorowania odległości lub poziomu cieczy w zbiornikach. Manometryczny czujnik ciśnienia, chociaż właściwy do wielu aplikacji, nie zawsze będzie idealnym wyborem dla sprężonego powietrza, szczególnie w przypadku wymaganej wysokiej precyzji oraz pracy w zmiennych warunkach. Często błędem jest założenie, że wszystkie czujniki ciśnienia są sobie równe, co prowadzi do niewłaściwego doboru urządzenia. Właściwy wybór czujnika powinien opierać się na specyfikacji technicznej, warunkach pracy oraz wymogach systemu, aby zapewnić optymalną dokładność i niezawodność pomiarów.

Pytanie 3

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Maskę osłaniającą twarz
B. Okulary ochronne
C. Rękawice i nauszniki ochronne
D. Czapkę z daszkiem
Rękawice i ochronniki słuchu, choć są również istotnymi elementami ochrony osobistej, nie zastępują specjalistycznych okularów ochronnych w kontekście obsługi tokarki precyzyjnej. Rękawice mogą chronić dłonie przed ostrymi krawędziami i innymi mechanicznymi urazami, ale w przypadku pracy z maszynami obrotowymi, ich noszenie może stwarzać dodatkowe ryzyko. Pracownicy powinni być świadomi, że luźne rękawice mogą zostać wciągnięte przez ruchome elementy maszyny, co stanowi poważne zagrożenie dla bezpieczeństwa. Ochronniki słuchu mają na celu ochronę przed hałasem, jednak nie chronią oczu przed odłamkami ani szkodliwymi substancjami. Maska na twarz, choć może być użyteczna w niektórych warunkach, nie jest standardowym środkiem ochrony w kontekście obróbki metali. Czapka z daszkiem, mimo że może być używana jako element odzieży roboczej, nie zapewnia żadnej ochrony przed zagrożeniami związanymi z pracą przy tokarkach. Właściwe zrozumienie i zastosowanie środków ochrony osobistej jest kluczowe do zapewnienia bezpieczeństwa w miejscu pracy, a wybór odpowiednich narzędzi ochronnych powinien być oparty na ocenach ryzyka oraz obowiązujących normach branżowych.

Pytanie 4

Co należy uczynić w przypadku rany z krwotokiem tętniczym?

A. założyć opaskę uciskową powyżej miejsca urazu
B. położyć poszkodowanego w pozycji bocznej ustalonej i czekać na pomoc medyczną
C. przemyć ranę wodą utlenioną i oczekiwać na pomoc medyczną
D. nałożyć opatrunek z jałowej gazy bezpośrednio na ranę
Założenie opatrunku z gazy jałowej bezpośrednio na ranę, przemycie rany wodą utlenioną, czy ułożenie poszkodowanego w pozycji bocznej ustalonej to działania, które w kontekście krwotoku tętniczego mogą być niewłaściwe i potencjalnie niebezpieczne. Opatrunek z gazy ma na celu jedynie zabezpieczenie rany przed zakażeniem i nie jest skuteczny w przypadku intensywnego krwawienia, jakim jest krwotok tętniczy. Gazy mogą wchłonąć część krwi, ale nie zatrzymają krwawienia, co grozi zaostrzeniem stanu pacjenta. Przemywanie rany wodą utlenioną również nie jest rekomendowane, ponieważ może prowadzić do uszkodzenia tkanek oraz zapozostawania resztek płynów, co może zwiększyć ryzyko infekcji. Ponadto, oczekiwanie na pomoc medyczną w pozycji bocznej ustalonej, stosowane w przypadku podejrzenia urazów kręgosłupa, nie jest adekwatną reakcją w sytuacji krwotoku. Kluczem do skutecznego działania w takich przypadkach jest natychmiastowe zatrzymanie krwawienia, co można osiągnąć tylko przez zastosowanie opaski uciskowej. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji zdrowotnych, w tym do wstrząsu, a w skrajnych przypadkach do śmierci pacjenta. Dlatego niezwykle ważne jest, aby podejmować świadome decyzje w sytuacjach zagrożenia życia, kierując się wiedzą na temat skutecznych metod udzielania pierwszej pomocy.

Pytanie 5

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
B. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
C. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
D. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 6

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Izoluje galwanicznie sygnały
C. Wytwarza sygnały sinusoidalne
D. Zwiększa prąd
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 7

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. sztuczne oddychanie oraz masaż serca
B. ustawienie na boku, sztuczne oddychanie
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
D. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 8

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAM
B. CAD
C. CAE
D. SCADA
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 9

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. tensometrem
B. hallotronem
C. termistorem
D. pirometrem
Pomiar siły nacisku tłoka siłownika hydraulicznego za pomocą termistora, hallotronu czy pirometru jest nieadekwatny, gdyż każde z tych urządzeń ma inne zastosowanie i nie jest przeznaczone do pomiaru siły mechanicznej. Termistor jest czujnikiem temperatury, który wykorzystuje zależność oporu elektrycznego od temperatury. W przypadku siłowników hydraulicznych istotne jest mierzenie siły, a nie temperatury, więc nie może on być użyty do tego celu. Hallotron, z drugiej strony, jest czujnikiem pola magnetycznego, który działa na zasadzie pomiaru siły magnetycznej, co nie ma związku z mechanicznymi siłami działającymi w tłoku siłownika. Nieodpowiednie jest także użycie pirometru, który służy do pomiaru temperatury obiektów na podstawie promieniowania podczerwonego. Właściwe podejście do pomiaru siły w hydraulice wymaga zastosowania specjalistycznych czujników, takich jak tensometry, które są zaprojektowane do tego celu. Użycie niewłaściwych narzędzi pomiarowych może prowadzić do błędnych wyników i wpływać negatywnie na efektywność działania systemu hydraulicznego, co jest sprzeczne z najlepszymi praktykami inżynieryjnymi. Kluczowe jest, aby stosować odpowiednie metody pomiarowe w kontekście danego zastosowania, co jest fundamentem dobrego projektowania systemów i urządzeń.

Pytanie 10

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
B. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
C. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
D. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
Wskazane odpowiedzi nieprawidłowo definiują pojęcie pneumohydraulicznego wzmacniacza ciśnienia, co może prowadzić do mylnych wniosków. Propozycje takie jak akumulator hydrauliczny połączony szeregowo z siłownikiem pneumatycznym czy przemiennik pneumohydrauliczny w zestawieniu z siłownikiem hydraulicznym nie uwzględniają fundamentalnych zasad działania tych urządzeń. Akumulator hydrauliczny, będący elementem systemów hydraulicznych, przechowuje energię w postaci ciśnienia cieczy, lecz samodzielnie nie przekształca energii pneumatycznej w hydrauliczną, co jest kluczowym zjawiskiem w pneumohydraulicznych wzmacniaczach ciśnienia. Z kolei przemiennik pneumohydrauliczny jest urządzeniem, które może być wykorzystywane w kontekście różnych systemów, lecz jego rola nie jest związana z połączeniem siłowników w wymieniony sposób. Typowym błędem w myśleniu jest mylenie ról poszczególnych elementów układu oraz niewłaściwe łączenie różnych technologii, co prowadzi do nieefektywności systemu. Aby zrozumieć, jak prawidłowo konstruować tego typu systemy, ważne jest przyswojenie zasad funkcjonowania zarówno hydrauliki, jak i pneumatyki, oraz zapoznanie się z odpowiednimi normami branżowymi, które regulują ich stosowanie.

Pytanie 11

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Szlifowanie
B. Wygładzanie
C. Gratowanie
D. Powiercanie
Wybór odpowiedzi takich jak wygładzanie, szlifowanie czy powiercanie wskazuje na pewne nieporozumienia dotyczące procesów obróbczych. Wygładzanie to termin odnoszący się do redukcji chropowatości powierzchni, ale nie koncentruje się na usuwaniu zadziorów czy resztek metalu. Zazwyczaj stosuje się je w kontekście wykańczania powierzchni, jednak nie jest to proces dedykowany do postępowania ze krawędziami otworów. Szlifowanie natomiast jest bardziej skomplikowanym procesem obróbczy, który polega na użyciu narzędzi szlifierskich do precyzyjnego formowania i wygładzania, ale również nie jest to najbardziej efektywna metoda do usuwania zadziorów w otworach. Powiercanie, z kolei, odnosi się do samego procesu wiercenia, podczas którego powstają otwory, ale nie dotyczy to usuwania resztek metalu, które pozostają po tym procesie. Wybór tych terminów może wynikać z braku zrozumienia specyfiki obróbki metali oraz celów poszczególnych technik. Kluczowe w pracy z materiałami metalowymi jest zrozumienie, że gratowanie jest niezbędnym krokiem, który zapewnia bezpieczeństwo i jakość połączeń śrubowych, a także wpływa na ogólną efektywność i trwałość wykonanych elementów.

Pytanie 12

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb funkcjonowania CPU
B. Tryb wstrzymania CPU
C. Brak baterii podtrzymującej zasilanie
D. Potrzeba zmian w parametrach programu
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 13

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. okularów ochronnych i fartucha ochronnego
B. rękawic ochronnych i fartucha ochronnego
C. nienaruszonych narzędzi izolowanych
D. szczypiec oraz zestawu wkrętaków
Wybór okularów i fartucha ochronnego, rękawic oraz szczypiec i kompletu wkrętaków, choć istotny dla ogólnego bezpieczeństwa w miejscu pracy, nie rozwiązuje problemu związanego z bezpiecznym posługiwaniem się urządzeniami mechatronicznymi, w których istnieje ryzyko wystąpienia napięcia elektrycznego. Okulary ochronne i fartuchy są ważnymi elementami odzieży ochronnej, jednak ich głównym celem jest ochrona przed mechanicznymi uszkodzeniami i substancjami chemicznymi, a nie przed porażeniem prądem. Rękawice, choć mogą oferować pewien poziom izolacji, nie są wystarczające, jeśli nie są specjalnie przystosowane do pracy z urządzeniami elektrycznymi. Ponadto, używanie narzędzi, które nie są odpowiednio izolowane, stwarza poważne zagrożenie. Typowym błędem myślowym jest założenie, że wystarczające jest posiadanie wyposażenia ochronnego bez uwzględnienia specyfiki pracy z napięciem elektrycznym. Aby skutecznie minimalizować ryzyko porażenia prądem, mechatronik powinien korzystać wyłącznie z narzędzi z odpowiednią izolacją, a także przestrzegać standardów bezpieczeństwa, takich jak zalecenia zawarte w normach IEC. Ignorowanie tej zasady może prowadzić do tragicznych konsekwencji, dlatego zawsze należy upewnić się, że narzędzia są właściwie dobrane do rodzaju wykonywanej pracy.

Pytanie 14

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
Odpowiedzi, które sugerują tylko odłączenie przewodów zasilających lub pneumatycznych, nie uwzględniają kluczowych aspektów bezpieczeństwa i prawidłowego wykonywania procedur serwisowych. Samo odłączenie przewodów zasilających nie jest wystarczające, ponieważ może prowadzić do niekontrolowanego działania systemu, co stwarza poważne zagrożenie zarówno dla osób pracujących przy urządzeniu, jak i dla samego sprzętu. W sytuacji, gdy zawór elektropneumatyczny wymaga wymiany, istotne jest, aby system był całkowicie nieaktywny, co można osiągnąć jedynie poprzez wprowadzenie sterownika PLC w tryb STOP. Zdarza się, że osoby pracujące przy automatyzacji pomijają ten krok, co może prowadzić do nieprzewidzianych reakcji mechanizmów, powodując uszkodzenie sprzętu lub wypadki. Ponadto, wyłączając zasilanie pneumatyczne, zapewniamy, że nie ma ciśnienia w układzie, co jest szczególnie ważne w przypadku systemów, które mogą być pod dużym obciążeniem. Warto również podkreślić, że dobrym zwyczajem jest wizualna weryfikacja stanu maszyny przed przystąpieniem do prac, a nie tylko poleganie na odłączeniu przewodów. Wiele standardów branżowych podkreśla znaczenie stosowania procedur blokady (lockout/tagout), które zapewniają, że urządzenia są całkowicie unieruchomione i zabezpieczone przed przypadkowym uruchomieniem. Ignorowanie tych zasad może prowadzić do poważnych konsekwencji zdrowotnych oraz finansowych.

Pytanie 15

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Szczypiec płaskich
B. Kluczy płaskich
C. Szczypiec uniwersalnych
D. Kluczy oczkowych
Wybór niewłaściwych narzędzi do przykręcania przewodów hydraulicznych może prowadzić do poważnych problemów związanych z bezpieczeństwem i funkcjonalnością systemu. Szczypce uniwersalne, choć mogą wydawać się wszechstronnym narzędziem, nie są przeznaczone do precyzyjnego dokręcania nakrętek hydraulicznych. Ich konstrukcja sprawia, że siła aplikowana na nakrętki jest rozproszona, co może prowadzić do ich uszkodzenia. Użycie szczypiec płaskich również nie jest optymalne, ponieważ nie zapewniają one stabilności i precyzji, które są kluczowe podczas pracy z połączeniami hydraulicznymi. Z kolei klucze oczkowe, mimo że mogą być używane w niektórych zastosowaniach, często nie są wystarczająco uniwersalne do pracy z różnymi rozmiarami nakrętek w systemach hydraulicznych. Typowe błędy myślowe prowadzące do takich wniosków to brak zrozumienia, że przykręcanie połączeń hydraulicznych wymaga narzędzi zaprojektowanych do tego celu. Wybór odpowiedniego narzędzia, jakim są klucze płaskie, zapewnia nie tylko efektywność, ale również bezpieczeństwo pracy, co jest niezbędne w każdej instalacji hydraulicznej. Niezrozumienie znaczenia metodologii pracy z narzędziami może prowadzić do awarii systemu, co podkreśla znaczenie edukacji i praktyki w zakresie doboru właściwych narzędzi.

Pytanie 16

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Polerowanie ręczne powierzchni
B. Dobór narzędzi
C. Smarowanie odpowiednim smarem
D. Dokręcanie śrub
Dobór narzędzi ma znaczenie, lecz nie jest tak krytyczny jak dokręcanie śrub. Odpowiednie narzędzia mogą ułatwić proces montażu, ale nawet najlepsze narzędzia nie naprawią błędów wynikających z niewłaściwego dokręcenia. Smarowanie odpowiednim smarem również ma swoje uzasadnienie, ale nie wpływa na bezpieczeństwo połączenia w takim stopniu, jak właściwe dokręcenie. W przypadku smarów, ich zastosowanie jest często elementem poprawiającym wydajność połączenia, jednak brak smarowania nie zawsze prowadzi do katastrofy, o ile śruby są dokręcone zgodnie z instrukcjami. Polerowanie ręczne powierzchni jest procesem estetycznym i może wpływać na właściwości tarcia, jednak nie jest to czynność, która bezpośrednio wpływa na integralność połączenia, a przede wszystkim nie wymaga tak ścisłego przestrzegania procedur jak dokręcanie. Myląc te czynności, można dojść do błędnych wniosków, że są one równoważne, kiedy tak naprawdę praktyki te mają różne cele i znaczenie w procesie montażu. Ignorując znaczenie dokręcania, można nieumyślnie narazić całą konstrukcję na ryzyko usterek, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 17

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy poniżej rany
B. umieścić poszkodowanego w bezpiecznej pozycji bocznej
C. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
D. założyć poszkodowanemu opatrunek uciskowy na ranę
Nieprawidłowe podejście do sytuacji, w której osoba została ranna w wyniku krwotoku, może prowadzić do poważnych konsekwencji zdrowotnych. Upewnienie się, czy w pobliżu są osoby przeszkolone w reanimacji, choć jest to istotny krok w sytuacjach kryzysowych, nie powinno być priorytetem w pierwszej kolejności, gdyż czas jest kluczowy. Opóźnienie w udzielaniu pomocy poprzez czekanie na obecność innych osób może prowadzić do pogłębienia obrażeń i zwiększenia ryzyka dla poszkodowanego. Ułożenie poszkodowanego w pozycji bocznej bezpiecznej jest techniką stosowaną w przypadku utraty przytomności, ale nie jest skuteczne w kontekście krwotoku, gdyż nie zatrzymuje krwawienia. Ponadto założenie opatrunku uciskowego poniżej rany jest błędne, ponieważ nie przyniesie ulgi w przypadku krwotoku z miejsca urazu. Opatrunek należy zakładać bezpośrednio na ranę, aby skutecznie uciskać miejsce krwawienia. Ignorowanie podstawowych zasad udzielania pierwszej pomocy, takich jak szybkie zatamowanie krwawienia, może prowadzić do zagrażających życiu sytuacji. Wiedza na temat udzielania pierwszej pomocy powinna być regularnie aktualizowana, aby zapewnić bezpieczeństwo w miejscu pracy i szybką reakcję w krytycznych momentach.

Pytanie 18

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 15 V DC
B. 25 V DC
C. 20 V DC
D. 30 V DC
Napięcia 15 V DC, 30 V DC i 20 V DC nie mieszczą się w określonym zakresie zasilania dla sterownika PLC. Wybór zbyt niskiego napięcia, takiego jak 15 V DC, może prowadzić do niewłaściwego działania urządzenia. Sterownik PLC wymaga odpowiedniego napięcia, aby poprawnie funkcjonować i realizować zaprogramowane zadania. Zbyt niskie napięcie może skutkować niestabilnością pracy, co może prowadzić do błędów w przetwarzaniu sygnałów i w konsekwencji do awarii systemu. Z kolei napięcie 30 V DC przekracza dopuszczalny zakres zasilania, co stwarza ryzyko uszkodzenia komponentów, a nawet ich trwałego zniszczenia. W przypadku zasilania stosuje się zasady dotyczące tolerancji napięcia, które gwarantują bezpieczeństwo i efektywność działania urządzeń. Ponadto, 20 V DC, mimo że jest bliższe dolnej granicy, również nie spełnia wymogów określonych w dokumentacji, co może prowadzić do nieprzewidywalnych zachowań urządzenia oraz problemów z jego stabilnością. Wybór niewłaściwego napięcia zasilania jest częstym błędem, który może wynikać z niedostatecznej analizy specyfikacji technicznych i wymagań aplikacji. Kluczowe jest zrozumienie, że każde urządzenie ma swoje unikalne wymagania, które należy spełnić, aby zapewnić jego prawidłowe funkcjonowanie i bezpieczeństwo operacyjne.

Pytanie 19

Jakie urządzenie chroni silnik przed zwarciem i przeciążeniem?

A. odgromnik
B. przekaźnik termiczny
C. termistor
D. wyłącznik silnikowy
Choć przekaźnik termiczny, odgromnik i termistor są ważnymi elementami w systemach elektrycznych, nie pełnią one roli zabezpieczenia silników przed zwarciem i przeciążeniem. Przekaźnik termiczny działa na zasadzie detekcji wzrostu temperatury, co może być stosowane w zabezpieczeniach różnych obwodów, ale nie jest bezpośrednim zabezpieczeniem silnika. Jego zastosowanie ogranicza się do obwodów, w których przyczyny przegrzania są inne niż przeciążenie lub zwarcie. Odgromnik, z drugiej strony, jest urządzeniem ochronnym zapobiegającym skutkom przepięć, ale nie zabezpiecza przed problemami związanymi z przeciążeniem silników. Jego rola koncentruje się na ochronie instalacji przed wyładowaniami atmosferycznymi. Termistor, jako element elektroniczny, również nie jest praktycznym rozwiązaniem do zabezpieczania silników, gdyż jego zastosowanie ogranicza się do pomiarów temperatury, a nie do bezpośredniego odcięcia zasilania w przypadku awarii. W praktyce, przy projektowaniu systemów elektrycznych i automatyki, kluczowe jest stosowanie wyłączników silnikowych, które oferują odpowiednią reakcję na zmiany warunków pracy silnika, co gwarantuje jego dłuższą żywotność i bezawaryjność.

Pytanie 20

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. zapewnia stałe ciśnienie robocze
C. generuje mgłę olejową
D. łączy sprężone powietrze z mgłą olejową
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 21

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. poziomem skomplikowania
B. formą
C. rozmiarem
D. kolejnością montażu
Porządkowanie części podzespołów według wielkości, kształtu czy stopnia złożoności może wydawać się logiczne, jednak w praktyce takie podejście jest mało efektywne. Porządkowanie według wielkości może prowadzić do sytuacji, w której mniejsze komponenty będą trudniej dostępne w momencie, gdy będą one potrzebne do montażu. W przypadku kształtów, różnorodność elementów w produkcji często sprawia, że klasyfikacja według formy nie przynosi rzeczywistych korzyści, a wręcz może powodować dezorganizację, zwłaszcza w przypadku, gdy elementy o różnych kształtach są montowane w podobnym czasie. Natomiast porządkowanie według stopnia złożoności może prowadzić do błędnych założeń dotyczących samego procesu montażu; bardziej złożone elementy niekoniecznie muszą być montowane jako ostatnie. Tego typu klasyfikacje mogą rodzić nieporozumienia, co do rzeczywistych wymagań procesu montażu, a także zwiększać ryzyko błędów ludzkich, które mogą prowadzić do uszkodzeń komponentów lub, co gorsza, do nieprawidłowego działania całego systemu. Wydajne organizowanie stanowiska pracy jest kluczowe dla każdej produkcji, a zastosowanie odpowiednich praktyk, takich jak planowanie kolejności montażu, pozwala na zaoszczędzenie czasu i zasobów, jednocześnie zwiększając jakość finalnego produktu.

Pytanie 22

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Zawleczki
B. Uszczelki
C. Płytki
D. Podkładki
Zawleczki, płytki i podkładki to elementy, które pełnią różne funkcje w mechanice i budownictwie, jednak nie są one skutecznymi rozwiązaniami w kontekście zapobiegania wyciekaniu płynów. Zawleczki są głównie używane do zabezpieczania elementów w połączeniach, zapobiegając ich przypadkowemu luzowaniu. Choć mogą odgrywać rolę w stabilizacji lub mocowaniu, nie są zaprojektowane z myślą o uszczelnianiu. Płytki, takie jak płytki uszczelniające, są często stosowane w elementach konstrukcyjnych, ale nie powinny być mylone z prawdziwymi uszczelkami, które są dedykowane do izolacji przestrzeni przed cieczą. Podkładki służą głównie do rozłożenia siły nacisku lub stabilizacji, a nie do uszczelniania. Często mylnie są traktowane jako elementy uszczelniające, co prowadzi do błędnych założeń o ich funkcjonalności. W rzeczywistości, jeśli stosujemy je w miejscach, gdzie wymagane jest prowadzenie płynów, możemy napotkać na poważne problemy, takie jak wycieki i uszkodzenia komponentów. Kluczowe jest zrozumienie właściwej funkcji każdego z tych elementów, aby stosować je zgodnie z ich przeznaczeniem i zapewnić prawidłowe działanie systemów, w których są używane. Ignorowanie tych zasad może prowadzić do kosztownych napraw oraz przestojów w produkcji.

Pytanie 23

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. temperatury
B. szumów
C. prędkości
D. drgań
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 24

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. watomierzem w układzie Arona
B. mostkiem Thompsona
C. woltomierzem i amperomierzem
D. mostkiem Wheatstone'a
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC nie może być przeprowadzony za pomocą mostka Wheatstone'a, ponieważ ten typ mostka jest używany głównie do pomiaru oporu elektrycznego, a nie mocy. Mostek Wheatstone'a działa na zasadzie równoważenia dwóch gałęzi obwodu, co umożliwia dokładne pomiary oporu, ale nie dostarcza informacji o napięciu i prądzie przepływającym przez obwód. Z tego powodu jego zastosowanie w kontekście pomiarów mocy jest niewłaściwe i prowadzi do błędnych wniosków. Z kolei mostek Thompsona, podobnie jak mostek Wheatstone'a, jest zaprojektowany do pomiaru oporu, a jego wykorzystanie w pomiarze mocy również nie ma sensu. W obu przypadkach pomiar mocy wymaga znajomości wartości napięcia i natężenia prądu, co nie jest możliwe za pomocą tych mostków. Watomierz w układzie Arona, choć jest urządzeniem dedykowanym do pomiaru mocy, nie jest najpraktyczniejszym rozwiązaniem w prostych układach prądu stałego, jak 24 V DC. Często stosowane urządzenia pomiarowe w przemyśle elektronicznym i elektrotechnicznym to woltomierze i amperomierze, które są bardziej uniwersalne i łatwe w użyciu. Użycie nieodpowiednich przyrządów pomiarowych oraz brak zrozumienia ich zastosowania mogą prowadzić do nieprecyzyjnych pomiarów oraz błędnych interpretacji wyników, co jest kluczowym zagadnieniem w praktyce inżynierskiej.

Pytanie 25

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. wzrostu rezystancji uzwojeń
C. spadku rezystancji uzwojeń
D. zmniejszenia prędkości obrotowej
Spadek prędkości obrotowej silnika indukcyjnego, gdy częstotliwość jego zasilania maleje, jest wynikiem nieporozumienia dotyczącego zasady działania silników elektrycznych oraz ich parametrów. Wyjściowe częstotliwości w falownikach są zaprojektowane tak, aby umożliwiały szeroki zakres regulacji prędkości, a ich zmiana wpływa na prędkość obrotową silnika. W rzeczywistości spadek częstotliwości nie prowadzi do wzrostu prędkości obrotowej, ale wręcz przeciwnie – zmniejsza ją, co jest zgodne z fundamentalnymi zasadami elektromagnetyzmu. Podobnie, twierdzenia dotyczące rezystancji uzwojeń są także nieprawidłowe. Wzrost częstotliwości nie wpływa na rezystancję uzwojeń, która pozostaje stała w normalnych warunkach operacyjnych. Możliwe jest jednak, że przy ekstremalnych warunkach, takich jak przegrzanie silnika, rezystancja może ulec zmianie, ale to nie jest związane z częstotliwością wyjściową. Zrozumienie tych zasad jest kluczowe w kontekście efektywnego zarządzania napędami, a nieprawidłowe wnioski mogą prowadzić do błędnych decyzji w doborze i eksploatacji urządzeń elektrycznych. W praktyce oznacza to, że ignorowanie wpływu częstotliwości na prędkość obrotową silnika może prowadzić do niewłaściwego doboru falowników i potencjalnych usterek w systemach automatyki.

Pytanie 26

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
B. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
D. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 27

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
B. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
C. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
D. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 28

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. odtwarzacz płyt CD oraz DVD
B. silnik indukcyjny klatkowy
C. drukarka laserowa
D. chłodziarko-zamrażarka z cyfrowym sterowaniem
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 29

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
C. pozostawić je obok kontenera na śmieci
D. wrzucić je do kosza na śmieci
Pozbywanie się wyeksploatowanych urządzeń elektronicznych poprzez pozostawienie ich obok śmietnika bądź wyrzucenie do śmietnika jest niezgodne z obowiązującymi przepisami i normami dotyczącymi ochrony środowiska. Tego rodzaju praktyki prowadzą do niekontrolowanego uwalniania substancji niebezpiecznych, które mogą wydostać się do gleby, wód gruntowych oraz atmosfery, stwarzając zagrożenie dla zdrowia ludzi oraz ekosystemów. Wiele urządzeń zawiera szkodliwe chemikalia, a ich przypadkowe usunięcie może powodować poważne kontaminacje. Ponadto, stłuczenie szyjki kineskopu przed wyrzuceniem urządzenia jest nie tylko nieodpowiedzialne, lecz także potencjalnie niebezpieczne, jako że może prowadzić do wydobycia się szkodliwych substancji. Warto pamiętać, że zgodnie z zasadami zrównoważonego rozwoju oraz dobrymi praktykami branżowymi, odbiór i utylizacja odpadów elektronicznych powinny być realizowane przez wyspecjalizowane firmy, które przestrzegają norm prawnych i środowiskowych. Wiele państw oraz regionów wprowadza rygorystyczne przepisy dotyczące e-odpadów i ich utylizacji, co oznacza, że nieprzestrzeganie tych zasad może skutkować nie tylko problemami ekologicznymi, ale również konsekwencjami prawnymi dla osób, które decydują się na nieodpowiedzialne metody pozbycia się tych urządzeń.

Pytanie 30

Enkoder to urządzenie przetwarzające

A. kąt obrotu na impulsy elektryczne
B. prędkość obrotową na regulowane napięcie stałe
C. kąt obrotu na regulowane napięcie stałe
D. prędkość obrotową na impulsy elektryczne
Enkoder to urządzenie, które przekształca kąt obrotu w impulsy elektryczne, co jest kluczowe w wielu aplikacjach automatyki i robotyki. Przykładami zastosowania enkoderów są systemy napędu w robotach, które muszą precyzyjnie określić położenie swoich kończyn. Działanie enkodera opiera się na zasadzie pomiaru kąta obrotu wału, co pozwala na dokładne śledzenie ruchu. W praktyce, impulsy elektryczne generowane przez enkoder są wykorzystywane przez kontrolery do regulacji prędkości i pozycji napędu. Standardowe normy, takie jak IEC 61131, definiują klasyfikację i wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich niezawodność i interoperacyjność w różnych systemach. Warto również zauważyć, że istnieją różne typy enkoderów, jak inkrementalne i absolutne, które różnią się zasadą działania, ale oba przekształcają kąt obrotu na impulsy elektryczne, co czyni je niezbędnymi w nowoczesnych systemach automatyzacji.

Pytanie 31

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Sprężynę zaworu zwrotnego
B. Zawór bezpieczeństwa
C. Tłokowy pierścień uszczelniający
D. Filtr oleju
Wymiana innych komponentów podnośnika hydraulicznego, takich jak filtr oleju, sprężyna zaworu zwrotnego czy zawór bezpieczeństwa, nie rozwiązuje problemu opadania tłoczyska. Filtr oleju ma na celu jedynie oczyszczanie oleju hydraulicznego z zanieczyszczeń, co jest istotne dla długotrwałego funkcjonowania systemu, ale nie wpływa bezpośrednio na utrzymywanie ciśnienia w siłowniku. Z kolei sprężyna zaworu zwrotnego ma za zadanie zapewnić odpowiednie ciśnienie w systemie oraz regulować przepływ oleju, jednak jej uszkodzenie nie powoduje opadania tłoka, lecz może prowadzić do problemów z jego podnoszeniem. Zawór bezpieczeństwa, który zapobiega nadmiernemu ciśnieniu w układzie, również nie ma wpływu na obniżanie się tłoka po jego podniesieniu. W rzeczywistości, niepoprawne zrozumienie funkcji tych elementów może prowadzić do niepotrzebnych kosztów w wymianie podzespołów i zaburzeń w pracy maszyny. Kluczowe jest zrozumienie, że problem opadania tłoka wynika z nieszczelności w układzie hydrauliki, a nie z niewłaściwego działania innych komponentów. Dlatego zamiast wymieniać części, które nie są przyczyną problemu, należy skupić się na diagnostyce i wymianie kluczowego elementu, jakim jest tłokowy pierścień uszczelniający, aby przywrócić prawidłową funkcjonalność podnośnika.

Pytanie 32

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. wkrętaka krzyżowego
C. klucza płaskiego
D. wkrętaka płaskiego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 33

Watomierz jest urządzeniem do pomiaru mocy

A. czynnej
B. chwilowej
C. pozornej
D. biernej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 34

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. zwrotne
B. regulacyjne
C. dławiące
D. rozdzielające
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 35

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Grafitowy
B. Molibdenowy
C. Litowy
D. Silikonowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 36

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i przeprowadzić sztuczne oddychanie
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
D. przeprowadzić reanimację poszkodowanego i wezwać pomoc
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 37

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. ochrony prądowej systemu
B. czujnika poziomu światła
C. wskaźnika działania systemu
D. przełącznika instalacyjnego systemu
Kiedy analizujemy inne odpowiedzi, łatwo zauważyć, dlaczego są one mylne. Na przykład, określenie fotorezystora jako sygnalizatora pracy układu jest nieprecyzyjne. Fotorezystor nie sygnalizuje stanu pracy układu, lecz reaguje na poziom światła. Takie myślenie może prowadzić do błędnej koncepcji działania wyłączników zmierzchowych, które mają na celu automatyzację oświetlenia na podstawie warunków świetlnych, a nie stanu operacyjnego układu. Ponadto, twierdzenie, że fotorezystor działa jako włącznik instalacyjny, jest również błędne. Włącznik instalacyjny to urządzenie, które manualnie kontroluje przepływ energii do urządzenia, a fotorezystor automatycznie dostosowuje działanie w zależności od otoczenia. W tym kontekście, pomylenie tych funkcji może skutkować niezrozumieniem procesu automatyzacji oświetlenia. Również koncepcja, że fotorezystor pełni rolę zabezpieczenia prądowego, jest nieprawidłowa, ponieważ zabezpieczenia prądowe mają na celu ochronę obwodów przed przeciążeniem lub zwarciem, co jest całkowicie odrębne od funkcji detekcji światła. Wszelkie nieporozumienia w tych kwestiach mogą prowadzić do nieefektywnego projektowania systemów oświetleniowych, a także zwiększać ryzyko awarii sprzętu lub nieprawidłowego działania instalacji. Ważne jest, aby dobrze rozumieć różnice między tymi rolami, aby móc prawidłowo zaprojektować i zastosować systemy automatyzacji w praktyce.

Pytanie 38

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. natężenia pola elektrycznego
B. pojemności elektrycznej kondensatorów
C. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
D. indukcyjności własnej cewki
Wybór odpowiedzi związanych z pomiarem indukcyjności własnej cewki, pojemności elektrycznej kondensatorów oraz natężenia pola elektrycznego jest błędny, ponieważ oscyloskop nie jest narzędziem przeznaczonym do bezpośrednich pomiarów tych parametrów. Pomiar indukcyjności cewki wymaga zastosowania specjalistycznych urządzeń, takich jak mierniki indukcyjności, które działają na zasadzie analizy obwodów rezonansowych lub wykorzystują metody pomiaru impedancji. Podobnie, pojemność kondensatorów nie jest mierzona oscyloskopem; zamiast tego wykorzystuje się multimetry lub specjalistyczne przyrządy pomiarowe. Natężenie pola elektrycznego również nie jest bezpośrednio mierzone przy użyciu oscyloskopu, ponieważ wymaga to zastosowania detektorów pola elektrycznego. Typowe błędy myślowe, które mogą prowadzić do takich niepoprawnych odpowiedzi, obejmują mylenie funkcji różnych urządzeń pomiarowych oraz nieznajomość ich specyfikacji i zastosowań. W kontekście technologii elektronicznej, ważne jest, aby zrozumieć, które instrumenty są odpowiednie do określonych pomiarów, aby zapewnić dokładność i niezawodność wyników.

Pytanie 39

Transoptor wykorzystuje się do

A. sygnalizowania transmisji
B. galwanicznego połączenia obwodów
C. konwersji impulsów elektrycznych na promieniowanie świetlne
D. galwanicznej izolacji obwodów
Zamiana impulsów elektrycznych na promieniowanie świetlne jest funkcją, którą pełnią diody LED, a nie transoptory. Transoptor to urządzenie, które wykorzystuje światło do przesyłania sygnałów, ale nie zamienia energii elektrycznej na promieniowanie, tylko używa wewnętrznego źródła światła do aktywacji detektora, co zapewnia separację galwaniczną. Sygnalizacja transmisji, choć może sugerować pewne aspekty działania transoptora, nie oddaje głównego celu tego komponentu, którym jest izolacja. Izolacja galwaniczna jest kluczowym aspektem w wielu aplikacjach, gdzie różne poziomy napięcia muszą być oddzielone, a nie tylko sygnalizowane. W praktyce, transoptory są projektowane specjalnie do tej funkcji, aby chronić obwody przed szkodliwymi skutkami zakłóceń i różnic potencjałów. W związku z tym, odpowiedzi sugerujące sygnalizację czy zamianę energii są mylne i nie odzwierciedlają rzeczywistego zastosowania transoptorów w nowoczesnej elektronice, gdzie kluczowa jest ochrona i niezawodność obwodów.

Pytanie 40

Jakie metody wykorzystuje się do produkcji prętów?

A. walcowanie
B. wytłaczanie
C. tłoczenie
D. odlewanie
Odpowiedzi takie jak odlewanie, wytłaczanie i tłoczenie, choć są powszechnie stosowane w przemyśle metalowym, nie są odpowiednie dla procesu produkcji prętów. Odlewanie polega na wlewaniu ciekłego metalu do form, gdzie stwardnieje w pożądanym kształcie. Ta metoda, choć efektywna dla produkcji części o skomplikowanych kształtach, nie zapewnia wymaganego stopnia jednorodności ani kontrolowanej struktury mikro w prętach, co jest kluczowe dla ich późniejszego zastosowania. Wytłaczanie, z drugiej strony, polega na formowaniu metalu poprzez przepychanie go przez matrycę; chociaż jest to skuteczna technika dla tworzenia długich elementów, pręty wymagają specyficznych wymiarów i właściwości mechanicznych, które lepiej osiągnąć poprzez walcowanie. Tłoczenie, będące procesem kształtowania blachy lub cienkowarstwowych materiałów poprzez użycie nacisku, nie jest także odpowiednie do produkcji prętów, które wymagają szczególnej precyzji w grubości i długości. Zrozumienie różnicy między tymi metodami obróbki jest kluczowe dla wyboru odpowiedniego procesu w zależności od zamierzonych zastosowań prętów. Typowym błędem myślowym jest traktowanie wszystkich metod obróbczych jako równoważnych, bez uwzględnienia ich specyfiki oraz wymagań technicznych danego produktu. Właściwe podejście do wyboru technologii obróbczej ma kluczowe znaczenie dla jakości i wydajności produkcji.