Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 8 czerwca 2025 14:22
  • Data zakończenia: 8 czerwca 2025 14:26

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Osoba pracująca z lotnym rozpuszczalnikiem straciła przytomność. Jakie działania należy podjąć, aby udzielić pierwszej pomocy?

A. zwilżeniu zimną wodą czoła i karku
B. rozpoczęciu reanimacji
C. rozpoczęciu resuscytacji
D. wyniesieniu osoby poszkodowanej na świeże powietrze
Wyniesienie osoby poszkodowanej na świeże powietrze jest kluczowym krokiem w sytuacji, gdy mamy do czynienia z utratą przytomności w wyniku działania lotnych rozpuszczalników. Lotne substancje chemiczne mogą powodować duszność, osłabienie lub nawet utratę przytomności w wyniku ich wdychania, co stwarza ryzyko zatrucia. Przeniesienie osoby do miejsca z lepszą wentylacją minimalizuje ekspozycję na szkodliwe opary, co zwiększa szanse na jej szybki powrót do zdrowia. W praktyce, jeśli zauważysz osobę, która straciła przytomność po kontakcie z takimi substancjami, pierwszym krokiem powinno być ocena sytuacji, a następnie ostrożne przeniesienie jej w bezpieczne, świeże powietrze. Zgodnie z wytycznymi Europejskiej Agencji Bezpieczeństwa i Zdrowia w Pracy (EU-OSHA), ważne jest, aby zawsze mieć na uwadze ryzyko inhalacji substancji chemicznych oraz znać procedury udzielania pierwszej pomocy w takich sytuacjach, co można wdrożyć w miejscu pracy, aby poprawić bezpieczeństwo pracowników.

Pytanie 2

Wodę do badań mikrobiologicznych powinno się pobierać do butelek

A. starannie wypłukanych, na przykład po niegazowanej wodzie mineralnej
B. sterylnych
C. zanurzonych wcześniej na 2-3 minuty w alkoholu etylowym
D. umytych wodorotlenkiem sodu
Pobieranie próbek wody do badań mikrobiologicznych powinno odbywać się wyłącznie w sterylnych butelkach, co ma kluczowe znaczenie dla uzyskania wiarygodnych wyników. Sterylność opakowania eliminuje ryzyko kontaminacji próbki przez mikroorganizmy z otoczenia. W praktyce, butelki do pobierania wody mikrobiologicznej są zazwyczaj produkowane z materiałów, które można wysterylizować, a ich zamknięcia są zaprojektowane tak, aby zapobiegać wszelkim kontaktom z zanieczyszczeniami. Ponadto, w przypadku badań mikrobiologicznych, takie wymagania są zgodne z normami, takimi jak ISO 5667, które określają procedury pobierania wody. Użycie sterylnych pojemników jest szczególnie istotne, gdyż mikroorganizmy mogą być obecne w różnych formach, a nawet niewielka ilość zanieczyszczeń może prowadzić do fałszywych wyników. Dlatego w laboratoriach oraz w trakcie inspekcji sanitarno-epidemiologicznych stosuje się ściśle określone procedury, aby zapewnić wysoką jakość i wiarygodność badań.

Pytanie 3

Zgodnie z danymi zawartymi w tabeli wskaźników roztwór obojętny będzie miał barwę

WskaźnikZakres zmiany barwy
(w jednostkach pH)
Barwa w środowisku
kwaśnymzasadowym
błękit tymolowy1,2 – 2,8czerwonażółta
oranż metylowy3,1 – 4,4czerwonażółta
czerwień metylowa4,8 – 6,0czerwonażółta
czerwień chlorofenolowa5,2 – 6,8żółtaczerwona
błękit bromotymolowy6,0 – 7,6żółtaniebieska
czerwień fenolowa6,6 – 8,0żółtaczerwona
błękit tymolowy8,0 – 9,6żółtaniebieska
fenoloftaleina8,2 – 10,0bezbarwnaczerwona
żółcień alizarynowa10,1 – 12,0żółtazielona

A. niebieską wobec błękitu bromotymolowego i błękitu tymolowego.
B. czerwoną wobec czerwieni metylowej i czerwieni chlorofenolowej.
C. żółtą wobec oranżu metylowego i czerwieni chlorofenolowej.
D. żółtą wobec błękitu tymolowego i żółcieni alizarynowej.
Roztwór obojętny, mający pH około 7, charakteryzuje się specyficznymi reakcjami wskaźników pH, co jest kluczowe w wielu zastosowaniach chemicznych i laboratoryjnych. W przypadku błękitu tymolowego i żółcieni alizarynowej, ich zmiany barwy w zależności od pH są dobrze udokumentowane. Błękit tymolowy przy pH 7 będzie miał barwę żółtą, co jest zgodne z wynikami uzyskanymi w badaniach laboratoryjnych, zgodnie z tabelą wskaźników. Żółcień alizarynowa również w neutralnym pH przyjmuje barwę żółtą. Rozumienie, jak wskaźniki reagują w różnych warunkach pH, jest niezbędne w wielu dziedzinach, takich jak chemia analityczna, biochemia, a także w praktycznych zastosowaniach, takich jak monitorowanie jakości wody, gdzie pH ma kluczowe znaczenie dla zdrowia wodnych ekosystemów. Warto zaznaczyć, że utrzymanie neutralnego pH jest istotne w wielu procesach biologicznych i chemicznych, co potwierdzają standardy laboratoryjne, takie jak ISO 17025.

Pytanie 4

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. fioletowy
B. czerwony
C. malinowy
D. niebieski
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od kwasowości lub zasadowości roztworu. W roztworze sodu wodorotlenku (NaOH), który jest silną zasadą, lakmus zabarwia się na kolor niebieski. To zjawisko jest wynikiem reakcji chemicznych zachodzących w obecności zasad, które zmieniają konfigurację cząsteczek lakmusu. NaOH, jako substancja alkaliczna, podnosi pH roztworu powyżej 7, co skutkuje zmianą koloru wskaźników pH z czerwonego (typowego dla kwasów) na niebieski. W praktyce, lakmus jest często stosowany w laboratoriach i edukacji, aby szybko ocenić pH różnych substancji, co jest niezwykle istotne w chemii analitycznej oraz w przemyśle chemicznym. Zrozumienie reakcji lakmusu z różnymi substancjami jest kluczowe dla wielu procesów, takich jak kontrola jakości wody czy reakcje chemiczne w przemyśle farmaceutycznym.

Pytanie 5

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg

A. 1,84 g/dm3
B. 1,84 g/cm3
C. 0,184 g/dm3
D. 0,184 g/cm3
Poprawna odpowiedź to 1,84 g/cm3, co wynika z bezpośredniego przeliczenia danych z etykiety kwasu siarkowego(VI). Etykieta informuje, że 1 litr kwasu waży 1,84 kg, co przelicza się na 1840 g. Gęstość substancji definiuje się jako stosunek masy do objętości. W tym przypadku, masa 1840 g umieszczona w objętości 1000 cm3 daje wynik 1,84 g/cm3. W praktyce gęstość kwasu siarkowego(VI) jest istotna w wielu zastosowaniach przemysłowych, zwłaszcza w chemii i procesach produkcyjnych. Dobrą praktyką jest zawsze zapoznanie się z danymi na etykietach substancji chemicznych, zwłaszcza gdy są one używane w laboratoriach lub w przemyśle, aby uniknąć błędnych obliczeń i zapewnić bezpieczeństwo pracy. Gęstość kwasu siarkowego(VI) ma także znaczenie przy obliczeniach dotyczących stężenia roztworów oraz w przypadku ich transportu i przechowywania.

Pytanie 6

W laboratoriach roztwór potasu dichromianu(VI) w stężonym kwasie siarkowym(VI) wykorzystuje się do

A. wytrącania trudno rozpuszczalnych soli w wodzie
B. odkamieniania urządzeń wodnych
C. czyszczenia szkła laboratoryjnego
D. roztwarzania różnych stopów
Roztwór dichromianu(VI) potasu w stężonym kwasie siarkowym(VI) jest powszechnie stosowany w laboratoriach do mycia szkła laboratoryjnego, ponieważ jego właściwości chemiczne umożliwiają skuteczne usuwanie zanieczyszczeń organicznych oraz pozostałości po reakcjach chemicznych. Dichromian(VI) potasu działa jako silny utleniacz, co sprawia, że jest efektywny w eliminowaniu resztek organicznych, które mogą pozostać na powierzchni szkła. Praktyczne zastosowanie tego roztworu obejmuje czyszczenie probówek, kolb, oraz innych naczyń używanych w chemii analitycznej i syntetycznej. Ze względu na jego wysoką skuteczność, często jest stosowany przed przeprowadzaniem eksperymentów, aby zapewnić, że nie ma kontaminacji, która mogłaby wpłynąć na wyniki. W branży laboratoryjnej przestrzeganie standardów czystości i użycie odpowiednich reagentów jest kluczowe dla uzyskania wiarygodnych wyników, a roztwór dichromianu(VI) potasu w tym kontekście odgrywa istotną rolę. Ponadto, należy pamiętać o bezpieczeństwie pracy z tymi substancjami, ponieważ są one toksyczne i wymagają odpowiednich środków ochrony osobistej.

Pytanie 7

Woda, która została poddana dwukrotnej destylacji, to woda

A. odejonizowana
B. odmineralizowana
C. redestylowana
D. ultra czysta
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.

Pytanie 8

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. niebieskim
B. żółtym
C. szarym
D. zielonym
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 9

Aby przygotować zestaw do filtracji, należy zebrać

A. bagietkę, zlewkę, łapę metalową, statyw metalowy
B. biuretę, statyw metalowy, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
Nieprawidłowe zestawy narzędzi do sączenia mogą prowadzić do wielu problemów w laboratorium, które mogą wpłynąć na jakość wyników eksperymentu. Odpowiedzi sugerujące użycie szkiełka zegarkowego, tryskawki oraz kolby stożkowej wskazują na fundamentalne nieporozumienie dotyczące zasad działania procesu sączenia. Szkiełko zegarkowe jest narzędziem stosowanym do przykrywania naczyń lub jako powierzchnia do ważenia, co nie ma zastosowania w kontekście sączenia. Tryskawka, chociaż przydatna do precyzyjnego dozowania cieczy, nie jest elementem niezbędnym do samego procesu sączenia, ponieważ nie służy do kierowania cieczy do innego naczynia. Kolba stożkowa jest natomiast przeznaczona do mieszania substancji, a nie do filtracji. Warto zauważyć, że biureta, będąca urządzeniem do dokładnego odmierzania cieczy, również nie znajduje zastosowania w procesie sączenia. Typowe błędy myślowe, prowadzące do takich wniosków, obejmują pomieszanie ról różnych instrumentów laboratoryjnych oraz brak zrozumienia całego procesu filtracji, który wymaga specyficznych narzędzi w celu osiągnięcia zamierzonego celu. Bez odpowiedniego zestawu narzędzi, eksperymenty mogą być nieefektywne lub wręcz niebezpieczne, co podkreśla znaczenie stosowania właściwych elementów w laboratoriach.

Pytanie 10

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Przepuszczalność promieniowania ultrafioletowego
B. Niska wrażliwość na zmiany temperatury
C. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
D. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 11

Instalacja, do której należy podłączyć palnik, powinna być pokryta farbą w kolorze

A. szarym
B. zielonym
C. żółtym
D. niebieskim
Odpowiedź 'żółty' jest prawidłowa, ponieważ zgodnie z europejskimi standardami dotyczącymi oznaczeń kolorystycznych instalacji gazowych, szczególnie w kontekście palników, kolor żółty jest używany do oznaczania instalacji związanych z gazem. Takie oznaczenie ma na celu zwiększenie bezpieczeństwa, umożliwiając łatwe zidentyfikowanie instalacji gazowych w obiektach przemysłowych oraz mieszkalnych. Praktycznie, jeśli instalacja gazowa jest pomalowana na kolor żółty, operatorzy i serwisanci mogą szybko zidentyfikować, że mają do czynienia z systemem wymagającym szczególnej uwagi, co jest kluczowe w kontekście zapobiegania awariom. Dodatkowo, w dokumentacji technicznej wielu krajów europejskich, w tym Polskim Normie PN-EN 60079, podkreśla się znaczenie użycia odpowiednich kolorów do oznaczania instalacji, co ułatwia prace konserwacyjne i serwisowe. Użycie właściwego koloru minimalizuje ryzyko pomyłek i poprawia ogólne bezpieczeństwo w miejscu pracy.

Pytanie 12

Aby przyspieszyć reakcję, należy zwiększyć stężenie substratów

A. zwiększyć, a temperaturę podnieść
B. zwiększyć, a temperaturę zmniejszyć
C. zmniejszyć, a temperaturę podnieść
D. zmniejszyć, a temperaturę obniżyć
Zwiększenie szybkości reakcji chemicznych trochę się sprowadza do tego, jak ważne są substraty i temperatura. Kiedy podnosisz stężenie substratów, to więcej cząsteczek jest dostępnych do reakcji, więc mają większe szanse na zderzenie. Z drugiej strony, wyższa temperatura podkręca energię kinetyczną cząsteczek, co sprawia, że zderzają się częściej i mocniej, co pomaga im pokonać energię aktywacji. Na przykład w biochemii, jak mamy reakcje enzymatyczne, zwiększenie stężenia substratu może pomóc osiągnąć maksymalną prędkość reakcji, co jest zgodne z zasadą Vmax. W praktyce w przemyśle chemicznym, dobrze jest dostosować stężenie i temperaturę, żeby zoptymalizować wydajność i rentowność. Ciekawe jest to, że czasami, jak w reakcjach równowagi, podwyższenie stężenia reagentów może przesunąć równowagę w stronę produktów, co też jest korzystne dla wydajności reakcji.

Pytanie 13

Który z procesów jest endotermiczny?

A. rozpuszczanie azotanu(V) amonu w wodzie
B. roztwarzanie magnezu w kwasie solnym
C. rozcieńczanie stężonego kwasu siarkowego(VI)
D. rozpuszczanie wodorotlenku sodu w wodzie
Rozpuszczanie azotanu(V) amonu w wodzie jest procesem endotermicznym, co oznacza, że podczas tego procesu energia jest absorbowana z otoczenia, prowadząc do spadku temperatury roztworu. Zjawisko to można zaobserwować, gdy dotykamy pojemnika z roztworem – będzie on chłodniejszy niż otoczenie. Endotermiczne charakterystyki tego procesu są kluczowe w wielu zastosowaniach, takich jak chłodzenie w reakcjach chemicznych, w laboratoriach analitycznych oraz w zastosowaniach przemysłowych. Azotan(V) amonu jest wykorzystywany w nawozach, gdzie jego zdolność do absorbowania ciepła jest wykorzystywana do stabilizacji temperatury gleby, co sprzyja wzrostowi roślin. W kontekście standardów branżowych, zrozumienie procesów endotermicznych pomaga w opracowywaniu bardziej efektywnych metod chłodzenia oraz w projektowaniu systemów, które wykorzystują zmiany temperatury do poprawy wydajności energetycznej.

Pytanie 14

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. potrzebą wyrównania temperatury roztworu z otoczeniem
C. opóźnieniem w ustaleniu się kontrakcji objętości
D. koniecznością dokładnego wymieszania roztworu
Odpowiedź dotycząca konieczności wyrównania temperatury roztworu i otoczenia jest prawidłowa, ponieważ temperatura ma kluczowe znaczenie dla dokładności pomiarów oraz właściwości fizykochemicznych roztworów. Po rozpuszczeniu substancji w kolbie miarowej, ważne jest, aby roztwór osiągnął równowagę temperaturową przed dopełnieniem do kreski. Różnice temperatur mogą prowadzić do błędów w objętości, ponieważ cieczy o wyższej temperaturze mają tendencję do rozszerzania się. W praktyce, standardy laboratoryjne, takie jak normy ISO dotyczące przygotowywania roztworów, zalecają odczekiwanie, aby uniknąć nieprecyzyjnych wyników analitycznych. Na przykład, w chemii analitycznej, nawet niewielkie różnice w objętości mogą wpłynąć na stężenie roztworu, co ma bezpośredni wpływ na wyniki pomiarów spektroskopowych czy titracji. Przygotowując roztwory, należy także brać pod uwagę efekty, takie jak rozpuszczalność substancji w różnych temperaturach, co może wpływać na ostateczny skład roztworu. Dlatego przestrzeganie protokołów dotyczących wyrównania temperatury jest kluczowe dla uzyskania wiarygodnych i powtarzalnych wyników w laboratoriach.

Pytanie 15

Oblicz masę wapienia, który został rozłożony, jeśli w trakcie reakcji uzyskano 44,8 dm3 CO2 (w warunkach standardowych).
MC = 12 g/mol, MCa = 40 g/mol, MO = 16 g/mol

A. 250g
B. 200g
C. 100g
D. 150g
Wapń w postaci węglanu wapnia (CaCO3) ulega rozkładowi termicznemu, w wyniku którego powstaje tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Reakcję można zapisać jako: CaCO3 → CaO + CO2. Zgodnie z prawem zachowania masy, ilość moli reagujących reagentów można wyznaczyć na podstawie objętości gazu wytworzonego w reakcjach chemicznych. W warunkach normalnych 1 mol gazu zajmuje 22,4 dm3. W tym przypadku mamy 44,8 dm3 CO2, co odpowiada 2 molom CO2 (44,8 dm3 / 22,4 dm3/mol = 2 mol). Z równania reakcji wnioskujemy, że 1 mol CaCO3 produkuje 1 mol CO2, więc do produkcji 2 moli CO2 potrzebujemy 2 moli CaCO3. Masa molowa CaCO3 wynosi: M = M_C + M_Ca + 3*M_O = 12 g/mol + 40 g/mol + 3*16 g/mol = 100 g/mol. Zatem 2 mole CaCO3 to 200 g. W praktyce znajomość tego procesu jest kluczowa w przemyśle chemicznym, gdzie węglan wapnia jest powszechnie stosowany, na przykład w produkcji cementu oraz jako surowiec w różnych reakcjach chemicznych. Takie obliczenia są niezwykle ważne w projektowaniu procesów przemysłowych oraz w laboratoriach chemicznych.

Pytanie 16

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08

A. Ozonu.
B. Chloroformu.
C. Tlenku siarki(IV).
D. Amoniaku.
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 17

Ile masy kwasu mrówkowego jest wymagane do uzyskania 11,2 dm3 tlenku węgla(II) (w warunkach normalnych) w procesie odwodnienia kwasu mrówkowego (M = 46 g/mol) za pomocą kwasu siarkowego(VI), zakładając efektywność procesu na poziomie 70%?

A. 23,1 g
B. 18,6 g
C. 16,1 g
D. 32,9 g
Aby obliczyć masę kwasu mrówkowego potrzebnego do otrzymania 11,2 dm³ tlenku węgla(II) w warunkach normalnych, możemy skorzystać z zależności gazów doskonałych oraz stochiometrii reakcji chemicznych. W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Stąd dla 11,2 dm³ tlenku węgla(II) potrzebujemy 0,5 mola CO. Reakcja odwodnienia kwasu mrówkowego (HCOOH) przy użyciu kwasu siarkowego(VI) prowadzi do powstania tlenku węgla(II) oraz wody. Równanie reakcji chemicznej można zapisać jako: HCOOH → CO + H₂O. Z równania wynika, że 1 mol kwasu mrówkowego daje 1 mol tlenku węgla(II). Skoro potrzebujemy 0,5 mola CO, to oznacza, że potrzebujemy 0,5 mola HCOOH. Molarna masa kwasu mrówkowego wynosi 46 g/mol, więc masa potrzebnego kwasu wynosi: 0,5 mol × 46 g/mol = 23 g. Z uwagi na to, że proces ma wydajność 70%, rzeczywista masa kwasu mrówkowego, którą musimy zastosować, wynosi: 23 g / 0,7 = 32,9 g. Ta odpowiedź jest zatem prawidłowa i opiera się na standardach obliczeń chemicznych oraz praktykach laboratoryjnych, które uwzględniają wydajność reakcji. W praktyce, takie obliczenia są kluczowe w przemyśle chemicznym oraz laboratoriach badawczych.

Pytanie 18

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Chlor pozostały.
B. Mangan.
C. Kwasowość.
D. Chemiczne zapotrzebowanie na tlen (ChZT).
Odpowiedź 'Chlor pozostały' jest prawidłowa, ponieważ w kontekście monitorowania jakości wody, zwłaszcza w systemach wodociągowych, oznaczanie pozostałego chloru jest kluczowym wskaźnikiem efektywności dezynfekcji. Chlor pozostały jest to ilość chloru, która pozostaje w wodzie po procesie dezynfekcji i jest niezbędna do zapewnienia, że woda pozostaje wolna od patogenów. Zgodnie z normami, takimi jak PN-EN ISO 7393-2, regularne monitorowanie poziomu chloru pozostałego jest standardem branżowym, aby zapewnić bezpieczeństwo wody pitnej. Niewystarczający poziom chloru może wskazywać na niewłaściwe procesy dezynfekcji, co może prowadzić do zagrożeń zdrowotnych. W praktyce oznaczanie chloru pozostałego powinno być wykonywane systematycznie, a wyniki interpretowane w kontekście całego systemu uzdatniania wody, co pozwala na podejmowanie odpowiednich działań korygujących.

Pytanie 19

Skuteczny środek do osuszania

A. powinien działać wolno.
B. powinien być rozpuszczalny w cieczy, która jest suszona.
C. nie powinien przyspieszać rozkładu suszonej substancji.
D. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
Dobry środek suszący nie powinien katalizować rozkładu substancji suszonej, ponieważ jego główną funkcją jest usunięcie wody bez wpływania negatywnego na właściwości chemiczne suszonego materiału. Katalizatory mogą przyspieszać reakcje chemiczne, co w przypadku substancji wrażliwych na utlenienie czy degradację prowadziłoby do obniżenia ich jakości oraz zmiany ich właściwości. Na przykład, w przemyśle farmaceutycznym, gdzie utrzymanie stabilności substancji czynnych jest kluczowe, stosowanie środków, które nie katalizują rozkładów jest absolutnie niezbędne. Dobre praktyki sugerują, aby wybierać środki suszące zgodne z wymaganiami danej substancji, unikając jednocześnie substancji, które mogłyby przyczynić się do degradacji. Dlatego kluczowe jest dobieranie odpowiednich metod suszenia, takich jak suszenie w próżni czy użycie substancji adsorpcyjnych, które nie mają wpływu na chemiczne właściwości suszonego materiału, co jest zgodne z normami jakościowymi takimi jak ISO 9001.

Pytanie 20

W celu przeprowadzenia opisanego doświadczenia, należy przygotować:

Opis procesu wydzielenia kwasu acetylosalicylowego z tabletek
Pięć rozgniecionych tabletek aspiryny (polopiryny) umieszcza się w kolbie stożkowej o pojemności 100 ml, dodaje 10 ml etanolu i ogrzewa na łaźni wodnej, aż do momentu rozpadnięcia się tabletek. W roztworze znajduje się kwas acetylosalicylowy, natomiast masa tabletkowa pozostaje w osadzie. Osad ten odsącza się na ogrzanym lejku szklanym zaopatrzonym w sączek karbowany. Do odebiornego przesączu dodaje się 20-30 ml zimnej wody destylowanej. Dodatek wody powoduje wypadanie osadu aspiryny z roztworu (zmniejsza się rozpuszczalność aspiryny w roztworze wodno-alkoholowym). Wydzielone kryształy odsączyć na lejku sitowym i suszyć na powietrzu.

A. aspirynę, moździerz, etanol, kolbę stożkową 100 ml, łaźnię wodną, lejek szklany, kolbę ssawkową, lejek sitowy, sączek karbowany.
B. etopirynę, stężony kwas siarkowy, etanol, kolbę ssawkową lejek sitowy, pompkę wodną, eksykator, cylinder miarowy, moździerz.
C. aspirynę etanol, kolbę stożkową 250 ml, łaźnię wodną, lejek metalowy do sączenia na gorąco, bagietkę, pompkę wodą, cylinder miarowy.
D. polopirynę, metanol, kolbę stożkową 100 ml, łaźnię wodną, bagietkę, lejek szklany, termometr.
Odpowiedź jest poprawna, ponieważ opisany proces eksperymentalny rzeczywiście wymaga użycia aspiryny, która jest substancją czyną w tym doświadczeniu. Kluczowym krokiem jest rozcieranie aspiryny w moździerzu, co pozwala na zwiększenie powierzchni kontaktu substancji z rozpuszczalnikiem, jakim jest etanol. Użycie kolby stożkowej o pojemności 100 ml jest zgodne z zasadami laboratoryjnymi, które zalecają stosowanie odpowiednich naczyń do reakcji chemicznych, aby zapewnić dokładność pomiarów. Ogrzewanie roztworu w łaźni wodnej to standardowa procedura, która pozwala na kontrolowanie temperatury, co jest niezbędne dla prawidłowego rozpuszczenia aspiryny. W procesie filtracji, obecność lejka szklanego, kolby ssawkowej, lejka sitowego oraz sączka karbowanego umożliwia skuteczne oddzielenie kryształów aspiryny od roztworu oraz ich osuszenie. Takie podejście jest zgodne z dobrymi praktykami laboratoryjnymi, które kładą nacisk na precyzję i efektywność w przeprowadzaniu doświadczeń chemicznych.

Pytanie 21

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. In
B. B
C. Ex
D. A
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 22

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania dopływów
B. celu oraz zakresu badań
C. usytuowania źródeł zanieczyszczeń
D. rodzaju pojemników do ich przechowywania
Wybór miejsca pobierania próbek wody z rzeki jest kluczowym elementem badań jakości wody, a rodzaj naczyń do ich przechowywania nie ma wpływu na lokalizację ich pobierania. Istotne jest, aby miejsce poboru było reprezentatywne dla badanego obszaru i odpowiadało celom oraz zakresowi badań. Na przykład, jeśli celem jest ocena wpływu zanieczyszczeń przemysłowych, należy wybierać miejsca w pobliżu źródeł tych zanieczyszczeń. Z kolei lokalizacja dopływów może wskazywać na różne warunki hydrologiczne i chemiczne wody. Zarówno standardy ISO, jak i normy krajowe dotyczące monitorowania jakości wody podkreślają znaczenie odpowiedniego doboru punktów poboru. Przechowywanie próbek w odpowiednich naczyniach, takich jak butelki szklane lub plastikowe, ma z kolei na celu zapewnienie, że próbki nie ulegną zanieczyszczeniu ani degradacji w czasie transportu do laboratorium. Dlatego rodzaj naczyń jest istotny, ale nie wpływa na wybór miejsca ich pobierania.

Pytanie 23

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 2,510 g
B. 0,215 g
C. 0,251 g
D. 0,025 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 24

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. elastyczne, o największych porach
B. elastyczne, o najmniejszych porach
C. sztywne, o najmniejszych porach
D. sztywne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 25

Transportuje się pobrane próbki wody do analiz fizykochemicznych

A. w temperaturze 20±3°C, bez dostępu światła
B. w temperaturze 10±3°C, z dostępem światła
C. w temperaturze 5±3°C, bez dostępu światła
D. w temperaturze 15±3°C, z dostępem światła
Prawidłowa odpowiedź, czyli transportowanie próbek wody w temperaturze 5±3°C, bez dostępu światła, jest zgodna z najlepszymi praktykami oraz standardami laboratoryjnymi. Niska temperatura jest kluczowa, ponieważ spowalnia procesy biologiczne i chemiczne, które mogą prowadzić do zmian w składzie chemicznym próbki. Na przykład, w przypadku próbek wód powierzchniowych, wyższa temperatura może sprzyjać rozwojowi mikroorganizmów, co zafałszowałoby wyniki analizy. Dodatkowo, brak dostępu światła jest istotny dla ochrony próbek przed fotoutlenianiem i degradacją substancji organicznych, co również mogłoby wpłynąć na wiarygodność wyników. Standardy takie jak ISO 5667-3 dotyczące pobierania próbek wody zalecają właśnie takie warunki transportu, aby zminimalizować ryzyko zafałszowania wyników analiz. Stosowanie tych zasad w praktyce laboratoryjnej jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników analiz fizykochemicznych, co ma kluczowe znaczenie w monitorowaniu jakości wód. W sytuacjach, gdy próbki są transportowane na dłuższe odległości, stosuje się również odpowiednie pojemniki, które izolują próbki od wpływu czynników zewnętrznych, co w połączeniu z optymalną temperaturą i brakiem światła, zapewnia ich integralność.

Pytanie 26

Urządzenie pokazane na ilustracji jest przeznaczone do

A. ekstrakcji ciecz-ciecz
B. dekantacji
C. sedymentacji
D. ługowania
Aparat do ługowania jest kluczowym narzędziem w chemii analitycznej i przemysłowej, wykorzystywanym do rozdzielania substancji, które są rozpuszczalne w różnych rozpuszczalnikach. Proces ługowania polega na wydobywaniu substancji z materiału stałego poprzez ich rozpuszczenie w cieczy. Przykładem zastosowania ługowania jest proces oczyszczania metali ciężkich z odpadów, gdzie stosuje się odpowiednie chemikalia do rozpuszczenia metalu, który następnie można dalej przetwarzać. W kontekście standardów branżowych, procedury ługowania są ściśle regulowane przez normy środowiskowe, takie jak REACH, które mają na celu minimalizację wpływu chemikaliów na środowisko. Ponadto, w laboratoriach często stosuje się różne techniki ługowania, takie jak ługowanie kwasowe lub alkaliczne, w zależności od rodzaju substancji, która ma być wydobyta oraz jej toksyczności. Zrozumienie procesu ługowania jest kluczowe nie tylko dla chemików, ale także dla inżynierów zajmujących się technologią oczyszczania oraz ochroną środowiska.

Pytanie 27

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 0,01 mg
B. 1,00 g
C. 10 g
D. 10 mg
Poprawna odpowiedź to 10 mg, ponieważ waga przedstawiona na rysunku to precyzyjna waga laboratoryjna, która ma zdolność ważenia substancji z dokładnością do 10 mg, co odpowiada 0,01 g. Tego rodzaju wagi są szeroko stosowane w laboratoriach chemicznych, farmaceutycznych oraz badawczych, gdzie precyzyjne pomiary masy są kluczowe dla jakości wyników eksperymentów i analiz. Przykładem praktycznego zastosowania takiej wagi jest ważenie reagentów chemicznych do syntez, gdzie nawet niewielkie odchylenia od zadanej masy mogą prowadzić do błędnych reakcji chemicznych. W kontekście standardów branżowych, wagi te powinny być regularnie kalibrowane, aby zapewnić ich dokładność i powtarzalność pomiarów, co jest zgodne z normami ISO oraz zasadami Dobrej Praktyki Laboratoryjnej (GLP). Warto również podkreślić, że dokładność takiej wagi wspiera procesy zapewnienia jakości w laboratoriach, co jest istotne dla uzyskiwania wiarygodnych wyników badań.

Pytanie 28

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Kolba stożkowa
B. Biureta gazowa
C. Rozdzielacz
D. Kolba ssawkowa
Rozdzielacz to w sumie mega ważne narzędzie w laboratorium, bo pozwala oddzielić różne fazy, a to kluczowe podczas ekstrakcji. Jego główna rola to separacja cieczy o różnych gęstościach, co jest istotne w chemii i biochemii. Ekstrakcja to tak naprawdę wydobywanie substancji z jednego medium do drugiego, a rozdzielacz, dzięki swojej budowie, umożliwia to w fajny sposób. Na przykład, gdy chcemy wyciągnąć związki organiczne z roztworów wodnych, to właśnie rozdzielacz pozwala nam na zebranie frakcji organicznej po oddzieleniu od wody. W praktyce często korzysta się z rozdzielaczy w kształcie lejka, co jest zgodne z zasadami dobrej praktyki w labie (GLP), bo zapewnia dokładność i powtarzalność wyników. Oczywiście, użycie rozdzielacza ma też swoje zasady dotyczące bezpieczeństwa i efektywności, więc to narzędzie jest naprawdę niezastąpione w laboratoriach chemicznych.

Pytanie 29

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. sublimacji
B. destylacji
C. krystalizacji
D. ekstrakcji
Destylacja jest procesem, który polega na podgrzewaniu cieczy, w wyniku czego powstają pary, które następnie są skraplane i zbierane jako ciecz. Jest to jedna z najczęściej stosowanych metod zatężania roztworów, szczególnie w przypadku roztworów wodnych soli nieorganicznych. W praktyce laboratoria chemiczne wykorzystują destylację do separacji składników roztworów, co pozwala na uzyskanie czystszych substancji oraz na analizę ich stężenia. W destylacji kluczowe jest dobranie odpowiedniego układu aparatu destylacyjnego, takiego jak destylator prosty czy destylator frakcyjny, w zależności od różnic w temperaturze wrzenia substancji. Przykłady zastosowania destylacji obejmują przemysł chemiczny, gdzie stosuje się ją do oczyszczania rozpuszczalników oraz w laboratoriach analitycznych do przygotowywania próbek do dalszych badań. Zgodnie z normami ISO, destylacja jest uznawana za metodę wysokowydajną i efektywną, co czyni ją niezbędnym narzędziem w chemii analitycznej.

Pytanie 30

Aby przygotować roztwór wzorcowy potrzebny do oznaczania miana, konieczne jest użycie odczynnika chemicznego o czystości przynajmniej

A. czystości chemicznej
B. czystości drugorzędnej analitycznej
C. spektralnej czystości
D. czystości
Odpowiedź 'cz.d.a.' oznacza 'czystość do analizy', co jest kluczowe w kontekście przygotowania roztworu wzorcowego. Użycie odczynnika chemicznego o czystości co najmniej cz.d.a. zapewnia, że jego skład chemiczny jest znany i dobrze określony, co jest fundamentalne dla uzyskania wiarygodnych wyników analiz chemicznych. W praktyce, zastosowanie reagentów o tej czystości jest powszechnie wymagane w laboratoriach analitycznych, ponieważ wszelkie zanieczyszczenia mogą prowadzić do błędnych wyników pomiarów. Na przykład w titracji, gdzie miano substancji analitycznej jest określane na podstawie reakcji z roztworem wzorcowym, jakiekolwiek zanieczyszczenie może wpływać na ilość środka titrującego potrzebnego do reakcji. Dodatkowo, standardy takie jak ISO czy ASTM podkreślają znaczenie użycia reagentów wysokiej czystości dla zapewnienia powtarzalności i dokładności analiz, co jest niezbędne w badaniach jakościowych i ilościowych. Dlatego stosowanie reagentów o czystości cz.d.a. jest nie tylko praktyką laboratoryjną, ale również wymogiem zgodności z międzynarodowymi standardami jakości.

Pytanie 31

W próbkach obecne są składniki, które znacznie różnią się pod względem zawartości. Składnik, którego procentowy udział w próbce jest niższy od 0,01%, nazywamy

A. domieszką
B. śladem
C. ultraśladem
D. matrycą
Termin 'ślad' odnosi się do składników, których stężenie w próbce jest bardzo niskie, wynoszące mniej niż 0,01%. W praktyce oznacza to, że substancje te mogą być trudne do wykrycia, ale mimo to mogą mieć istotny wpływ na właściwości analityczne próbki. Przykładem mogą być zanieczyszczenia w próbkach chemicznych, gdzie obecność nawet śladowych ilości metali ciężkich, takich jak ołów czy kadm, może prowadzić do poważnych konsekwencji zdrowotnych. W standardach takich jak ISO 17025, które dotyczą kompetencji laboratoriów badawczych, uwzględnia się konieczność analizy i raportowania takich śladowych składników, aby zapewnić pełną zgodność z normami jakości. W związku z tym, zrozumienie, co oznacza 'ślad', jest kluczowe dla analityków, którzy muszą być świadomi wpływu tych substancji na wyniki badań oraz jakość produktów końcowych. Warto także zwrócić uwagę, że w niektórych dziedzinach, takich jak toksykologia czy chemia środowiskowa, detekcja śladowych substancji jest kluczowa dla monitorowania zanieczyszczeń i ochrony zdrowia publicznego.

Pytanie 32

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wylew.
B. zimno.
C. wlew.
D. gorąco.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 33

Laboratoryjny stół powinien być zaopatrzony w instalację gazową oraz

A. elektryczną, próżniową oraz hydrantową
B. elektryczną i wodociągowo-kanalizacyjną
C. wodociągową i grzewczą
D. elektryczną oraz chłodniczą
Odpowiedź wskazująca na wyposażenie stołu laboratoryjnego w instalację elektryczną oraz wodociągowo-kanalizacyjną jest prawidłowa, ponieważ te dwa systemy są kluczowe dla funkcjonowania większości laboratoriów. Instalacja elektryczna zapewnia zasilanie dla urządzeń laboratoryjnych, takich jak mikroskopy, wirówki czy pipety elektroniczne, a także oświetlenie robocze, co jest niezbędne do przeprowadzania precyzyjnych eksperymentów. Z kolei instalacja wodociągowa jest niezbędna do przeprowadzania wielu procesów laboratoryjnych, takich jak mycie sprzętu, przygotowywanie roztworów czy chłodzenie aparatów. W laboratoriach stosuje się także systemy kanalizacyjne, które umożliwiają odprowadzenie zanieczyszczonych cieczy zgodnie z odpowiednimi normami ochrony środowiska. Wymagania te są zgodne z wytycznymi dotyczącymi projektowania i funkcjonowania laboratoriów, które przewidują zapewnienie odpowiednich instalacji, aby zagwarantować bezpieczeństwo i efektywność pracy. Przykładowo, w laboratoriach chemicznych niezwykle istotne jest, aby woda bieżąca była dostępna w łatwy sposób, co ułatwia codzienne czynności oraz zwiększa bezpieczeństwo pracy.

Pytanie 34

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - wymiana pojedyncza, II — analiza, III - synteza.
B. I - analiza, II - synteza, HI - wymiana podwójna.
C. I - synteza, II - analiza, HI - wymiana pojedyncza.
D. I - synteza, II - analiza, DI - wymiana podwójna.
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 35

Do przechowywania stężonego kwasu azotowego(V) w laboratorium należy stosować:

A. Otwarty plastikowy pojemnik
B. Szczelnie zamknięte butelki z ciemnego szkła
C. Metalową puszkę bez wieczka
D. Aluminiowy termos laboratoryjny
Kwas azotowy(V) to substancja wyjątkowo agresywna chemicznie i niebezpieczna. Przechowuje się go w szczelnie zamkniętych butelkach z ciemnego szkła, bo to materiał odporny na jego działanie oraz chroniący przed światłem. Światło przyspiesza rozkład kwasu azotowego, a ciemne szkło ogranicza ten proces, co ma kluczowe znaczenie dla zachowania jego właściwości. Dodatkowo szczelne zamknięcie zapobiega uwalnianiu się szkodliwych par oraz absorpcji wilgoci z powietrza, co mogłoby prowadzić do niepożądanych reakcji i obniżenia stężenia. To rozwiązanie zgodne z większością norm BHP i zaleceniami producentów odczynników chemicznych. W praktyce laboratoryjnej stosowanie ciemnych butelek jest po prostu standardem, bo minimalizuje ryzyko zarówno dla ludzi jak i samej substancji. Warto pamiętać, że kwas azotowy atakuje większość metali oraz niektóre tworzywa sztuczne, dlatego szkło jest tu najbezpieczniejsze. Dodatkowo – dobra praktyka to trzymać takie butelki w szafkach chemoodpornych, najlepiej z wentylacją. Moim zdaniem, jeśli ktoś planuje pracę w laboratorium, powinien znać te zasady na pamięć.

Pytanie 36

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. AgNO3
B. fenoloftaleiny
C. oranżu metylowego
D. BaCl2
BaCl2, czyli chlorek baru, to super reagent do sprawdzania siarczanów(VI) w roztworach. Dlaczego? Bo tworzy nierozpuszczalny osad siarczanu baru (BaSO4) w obecności jonów siarczanowych. W praktyce robisz filtrację, oddzielasz te nierozpuszczalne zanieczyszczenia, a potem przemywasz wodą destylowaną. Jak dodasz BaCl2 do tych resztek, to jeśli są tam jakieś siarczany, zobaczysz biały osad. To oznacza, że siarczany są obecne. Ten proces jest zgodny z tym, co się robi w laboratoriach analitycznych, gdzie ważna jest dokładna detekcja siarczanów, żeby ocenić czystość próbek. Warto znać tę metodę, zwłaszcza w kontekście badań środowiskowych, bo tu precyzyjne dane są kluczowe.

Pytanie 37

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
B. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
C. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
D. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
Reakcja między wodorotlenkiem baru a chlorkiem amonu jest przykładem reakcji chemicznej, w której zachowanie gazu amoniaku (NH3) odgrywa kluczową rolę. Proces ten jest endotermiczny, co oznacza, że absorbuje ciepło z otoczenia, co prowadzi do obniżenia temperatury mieszaniny. Mimo to, reakcja jest spontaniczna ze względu na wydzielanie gazu. Zgodnie z zasadą Le Chateliera, jeśli w układzie zachodzi reakcja chemiczna, to wszelkie zmiany w warunkach (takie jak ciśnienie, temperatura czy stężenie reagentów) spowodują przesunięcie równowagi w kierunku, który zredukuje te zmiany. Wydzielanie amoniaku do gazu zwiększa objętość układu i powoduje przesunięcie równowagi w kierunku produktów tej reakcji, co sprawia, że staje się ona nieodwracalna. Przykładem zastosowania tej wiedzy może być proces neutralizacji amoniaku w przemyśle chemicznym, gdzie kontroluje się reakcje gazów i ich wpływ na równowagę chemiczną.

Pytanie 38

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. Na2B4O7·10H2O
C. Na2C2O4
D. NaOH
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 39

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. obniżają temperaturę wrzenia cieczy
B. umożliwiają równomierne wrzenie cieczy
C. przyspieszają proces wrzenia cieczy
D. przyspieszają przebieg destylacji
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 40

Jaką objętość powinna mieć kolba miarowa, aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z analitycznej odważki, która zawiera 0,1 mola NaOH?

A. 2 dm3
B. 100 cm3
C. 1 dm3
D. 200 cm3
Aby przygotować mianowany roztwór NaOH o stężeniu 0,050 M z odważki analitycznej, musimy obliczyć odpowiednią objętość roztworu. Stężenie molowe (M) wyraża liczbę moli substancji w litrze roztworu. W tym przypadku, aby uzyskać roztwór o stężeniu 0,050 M, musimy użyć 0,050 mola NaOH w 1 litrze roztworu. Mając 0,1 mola NaOH, możemy przygotować 0,1 / 0,050 = 2 litry roztworu. W związku z tym, kolba miarowa powinna mieć pojemność 2 dm3, aby pomieścić przygotowany roztwór. Tego rodzaju obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów ma istotne znaczenie dla uzyskania wiarygodnych wyników eksperymentalnych. Przestrzeganie standardów przygotowania roztworów zapewnia ich jednorodność i dokładność, co jest niezbędne w badaniach analitycznych, a także w różnorodnych aplikacjach przemysłowych.