Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 24 maja 2025 16:07
  • Data zakończenia: 24 maja 2025 16:20

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. odbicie fal i skierowanie ich ku konwerterowi
B. ukierunkowanie konwertera na wybrany satelita
C. umożliwienie odbioru określonych częstotliwości sygnału
D. umożliwienie zamontowania konwertera pod odpowiednim kątem
Głównym zadaniem czaszy anteny satelitarnej jest odbicie fal radiowych z satelity i skierowanie ich do konwertera, co jest kluczowe dla efektywnego odbioru sygnału. Czasza działa jak zwierciadło, które zbiera fale elektromagnetyczne i skupia je w jednym punkcie, gdzie znajduje się konwerter. Dzięki temu, sygnał jest poprawnie przetwarzany i przesyłany do odbiornika. Przykładem zastosowania tego rozwiązania może być antena paraboliczna, która jest powszechnie stosowana w telekomunikacji satelitarnej, umożliwiając odbiór wysokiej jakości sygnału telewizyjnego. Warto zauważyć, że odpowiednie ustawienie kąta nachylenia czaszy oraz jej średnicy mają znaczący wpływ na jakość sygnału. W standardach branżowych, takich jak ITU-R, podkreśla się znaczenie precyzyjnego montażu anteny oraz jej dopasowania do parametrów satelity, co zapewnia optymalną wydajność systemu. Wiedza o roli czaszy w antenie satelitarnej jest zatem fundamentalna dla każdej osoby zajmującej się instalacją i konserwacją systemów satelitarnych.

Pytanie 2

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. podnapięciowy
B. nadprądowy
C. różnicowoprądowy
D. czasowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 3

Firma zajmująca się pomiarami wydaje każdego roku 12 000 zł na legalizację sprzętu pomiarowego. Jaką kwotę zaoszczędzono, jeśli w drugim półroczu uzyskano 30% zniżki?

A. 1 200 zł
B. 3 600 zł
C. 1 000 zł
D. 1 800 zł
Wybór niepoprawnych odpowiedzi może wynikać z błędnej interpretacji danych dotyczących rabatu oraz niepełnego uwzględnienia rocznego kontekstu wydatków. Na przykład, odpowiedzi sugerujące kwoty w przedziale od 1 000 zł do 3 600 zł opierają się na mylnych obliczeniach. Często myśli się, że rabat powinien być stosowany do całkowitych wydatków rocznych, co jest błędne. Należy pamiętać, że rabat dotyczy tylko drugiego półrocza, co oznacza, że kluczowe jest uwzględnienie tylko połowy rocznych kosztów, a nie całkowitych. Ponadto, błędne odpowiedzi mogą też pochodzić z niepełnego zrozumienia pojęcia procentu i jego zastosowania w kontekście rabatów. Dla przykładu, obliczenie 30% z całkowitych wydatków rocznych 12 000 zł prowadzi do błędnych oszczędności w wysokości 3 600 zł, co nie ma zastosowania w danym przypadku. W obliczeniach finansowych istotne jest precyzyjne zrozumienie zakresu, na który ma wpływ rabat, a także umiejętność analizy wydatków w kontekście czasowym, co jest niezbędne dla właściwego zarządzania finansami w przedsiębiorstwie. Dobre praktyki w zarządzaniu kosztami podkreślają znaczenie dokładności oraz umiejętności modelowania scenariuszy, co pozwala na lepsze przewidywanie efektów finansowych działań biznesowych.

Pytanie 4

Jakie narzędzia są używane do określenia trasy przewodów na ścianie z betonu?

A. śruby i śrubokręt
B. ołówek i poziomica
C. wiertarka i kołki rozporowe
D. gwoździe oraz młot
Wybranie ołówka i poziomnicy do wyznaczenia trasy przewodów na ścianie betonowej jest najbardziej właściwym podejściem, ponieważ te narzędzia pozwalają na precyzyjne i estetyczne wykonanie pracy. Ołówek umożliwia zaznaczenie linii, po których będą prowadzone przewody, co jest kluczowe dla zachowania porządku i estetyki w instalacji. Poziomnica natomiast jest niezbędna do uzyskania dokładności w poziomie, co ma fundamentalne znaczenie dla zapewnienia prawidłowego ułożenia przewodów oraz ich prawidłowego funkcjonowania. Przykładowo, gdy przewody są prowadzone wzdłuż ściany, ich równe ułożenie nie tylko poprawia estetykę, ale również minimalizuje ryzyko uszkodzeń mechanicznych oraz ułatwia późniejsze prace konserwacyjne. Zgodnie ze standardami branżowymi, takie jak normy ISO dotyczące instalacji elektrycznych, precyzyjne wyznaczenie tras przewodów jest kluczowym elementem w zapewnieniu bezpieczeństwa i trwałości instalacji. Warto również pamiętać, że poprawnie wykonana instalacja nie tylko spełnia wymagania techniczne, ale również wpływa na komfort użytkowania przestrzeni.

Pytanie 5

Jakie narzędzie wykorzystuje się do weryfikacji poprawności zainstalowanej sieci komputerowej?

A. testera wytrzymałości dielektrycznej
B. multimetru z pomiarem R
C. analizatora sieci strukturalnych
D. miernika z pomiarem MER
Analizator sieci strukturalnych to zaawansowane narzędzie, które jest kluczowe do oceny poprawności instalacji sieci komputerowej. Dzięki zastosowaniu tego urządzenia, technicy mogą przeprowadzać kompleksową analizę parametrów, takich jak tłumienie, refleksja mocy oraz jakość sygnału w sieciach telekomunikacyjnych. Analizatory te są zgodne z normami branżowymi, takimi jak TIA/EIA-568, które określają wymagania dotyczące instalacji kabli strukturalnych. W praktyce, analizator pozwala na diagnostykę problemów, które mogą wystąpić w trakcie użytkowania sieci, co wpływa na jej wydajność i stabilność. Przykładowo, podczas instalacji sieci w biurze, technik może użyć analizatora do sprawdzenia, czy wszystkie kable są prawidłowo podłączone i czy nie występują straty sygnału, co mogłoby prowadzić do problemów z połączeniami internetowymi. Tego typu narzędzia są niezbędne dla zapewnienia wysokiej jakości usług oraz minimalizacji ryzyka awarii sieci.

Pytanie 6

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. symetryczne (balanced)
B. sygnalizacyjne YKSwXs
C. sygnalizacyjne YKSY
D. niesymetryczne (unbalanced)
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 7

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
B. sterowanie wskaźnikiem 7-segmentowym
C. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
D. liczenie oraz przechowywanie impulsów
Multiplekser to taki ważny element w układach cyfrowych. Jego głównym zadaniem jest przekazywanie jednego sygnału spośród wielu wejść na wyjście. Dzięki sygnałom sterującym możemy wybrać, który sygnał chcemy wysłać. Przykładowo, w systemach komunikacyjnych, gdy mamy różne źródła danych, multipleksery pomagają zarządzać tymi sygnałami. To pozwala na lepsze wykorzystanie pasma i zwiększenie przepustowości. W telekomunikacji czy przetwarzaniu sygnałów, multipleksery są kluczowe do multiplexingu, czyli łączenia kilku sygnałów w jeden. Warto też wiedzieć, że są różne typy multiplekserów, jak MUX 2:1, MUX 4:1 czy MUX 8:1, które różnią się liczbą wejść i zastosowaniem.

Pytanie 8

W jakim czujniku do działania wykorzystuje się efekt zmiany pola magnetycznego?

A. Bimetalicznym
B. Kontaktronowym
C. Pojemnościowym
D. Tensometrycznym
Czujnik kontaktronowy wykorzystuje zjawisko zmiany pola magnetycznego do zadziałania, co jest kluczowe w jego działaniu. Kontaktrony składają się z dwóch metalowych styków zamkniętych w hermetycznej obudowie. Kiedy pole magnetyczne jest obecne, stykają się one, co powoduje zamknięcie obwodu elektrycznego. To zjawisko jest szeroko stosowane w automatyce budynkowej, systemach alarmowych oraz w różnych czujnikach i przełącznikach. Przykładem zastosowania kontaktronów jest detekcja otwarcia drzwi i okien w systemach zabezpieczeń, gdzie obecność lub brak pola magnetycznego sygnalizuje stan zamknięcia lub otwarcia. Warto również zaznaczyć, że czujniki te są preferowane ze względu na swoją niezawodność, długą żywotność oraz odporność na warunki zewnętrzne, co czyni je zgodnymi z normami ISO w zakresie jakości i trwałości urządzeń elektronicznych.

Pytanie 9

Aby zmierzyć natężenie prądu w układzie automatyki przemysłowej bez odłączania zasilania, należy użyć amperomierza

A. stacjonarny
B. lampowy
C. cęgowy
D. wychyłowy
Amperomierz cęgowy to narzędzie pomiarowe, które umożliwia pomiar natężenia prądu w obwodach elektrycznych bez konieczności ich przerywania. Działa na zasadzie pomiaru pola magnetycznego, które powstaje w wyniku przepływu prądu przez przewodniki. Często stosowany w instalacjach automatyki przemysłowej, gdzie niezawodność i bezpieczeństwo są kluczowe, amperomierz cęgowy pozwala na szybkie i bezpieczne pomiary w działających obwodach. Przykładem jego zastosowania może być monitorowanie prądu w silnikach elektrycznych lub w zasilaczach, gdzie nieprzerwane działanie systemu jest istotne. Praktyczne aspekty użycia cęgów pomiarowych obejmują również ich mobilność oraz łatwość w obsłudze, co jest zgodne z dobrą praktyką w branży elektroenergetycznej, polegającej na minimalizowaniu ryzyka w miejscu pracy. Cęgowe amperomierze są także zgodne z normami bezpieczeństwa, co czyni je preferowanym wyborem w wielu zastosowaniach przemysłowych oraz w diagnostyce instalacji elektrycznych.

Pytanie 10

Przyczyną chwilowego znikania obrazu (zamrożenia) podczas odbioru sygnału z satelity mogą być

A. nieprawidłowości w synchronizacji
B. uszkodzenia systemu odchylania
C. awarie układu synchronizacji
D. warunki atmosferyczne
Warunki atmosferyczne są jednym z najważniejszych czynników wpływających na jakość sygnału satelitarnego. W szczególności opady deszczu, śniegu oraz intensywne chmury mogą powodować osłabienie sygnału, co może prowadzić do czasowego zaniku obrazu. Zjawisko to jest znane jako „attenuacja”, czyli osłabienie sygnału, które zwiększa się przy zwiększonej wilgotności powietrza lub podczas wystąpienia burz. W praktyce, techniki takie jak stosowanie większych anten satelitarnych, które mogą lepiej odbierać sygnał w trudnych warunkach, są powszechnie przyjęte w branży. Zgodnie z dobrymi praktykami, zaleca się również monitorowanie prognoz pogody i dostosowywanie systemów do zmieniających się warunków. Użytkownicy powinni być świadomi, że podczas intensywnych opadów lub burz mogą wystąpić czasowe zakłócenia w odbiorze, a zrozumienie tego zjawiska może pomóc w lepszym planowaniu korzystania z technologii satelitarnych.

Pytanie 11

Aby połączyć kartę sieciową komputera PC z routerem, należy użyć kabla z wtykami

A. BNC
B. RJ-45
C. DIN
D. JACK
Odpowiedź RJ-45 jest poprawna, ponieważ wtyki RJ-45 są standardowo używane do łączenia komputerów z routerami w sieciach lokalnych (LAN). RJ-45 to złącze, które obsługuje kable Ethernet, co umożliwia przesyłanie danych z dużymi prędkościami, typowo od 10 Mbps do 10 Gbps, w zależności od zastosowanego standardu (np. 10BASE-T, 100BASE-TX, 1000BASE-T). Wtyki te mają osiem styków, co pozwala na przesyłanie danych w formie zbalansowanej, co zwiększa odporność na zakłócenia elektromagnetyczne. Użycie kabla z wtykami RJ-45 jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801. W praktyce, RJ-45 jest najczęściej spotykanym złączem w domowych i biurowych sieciach komputerowych. Przykładem zastosowania jest podłączenie laptopa do routera, aby uzyskać stabilne połączenie internetowe. Warto również wspomnieć o różnych kategoriach kabli Ethernet, takich jak Cat5e, Cat6, które różnią się prędkościami transferu oraz zakresem częstotliwości, co również wpływa na ich zastosowanie w różnych sieciach.

Pytanie 12

Aby prawidłowo wykonać zakładanie wtyku RJ45, należy użyć

A. narzędzia LSA typu KRONE
B. płaskiego śrubokręta
C. zaciskarki do złączy
D. nóż monterskiego
Zaciskarka złącz to narzędzie kluczowe w procesie instalacji wtyków RJ45, które służy do trwałego połączenia przewodów z wtykiem. Jej konstrukcja umożliwia precyzyjne wciśnięcie metalowych pinów w wtyku w przewody, co zapewnia stabilne i niezawodne połączenie. W przypadku użycia wtyków RJ45, które są powszechnie stosowane w sieciach Ethernet, fundamentalne jest, aby przewody były odpowiednio ułożone w standardzie T568A lub T568B przed ich zaciskiem. Właściwie użyta zaciskarka zapewnia nie tylko poprawne połączenie, ale także minimalizuje ryzyko zakłóceń sygnału, co jest kluczowe dla utrzymania wysokiej wydajności sieci. Dodatkowo, stosowanie zaciskarki z funkcją automatycznego cięcia może przyspieszyć proces instalacji oraz poprawić jakość końcowego połączenia. Znajomość i umiejętność posługiwania się tym narzędziem są niezbędne w pracy technika sieciowego oraz elektrotechnika, co czyni je istotnym elementem szkolenia w tej dziedzinie.

Pytanie 13

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. przerwanie jednej z żył
B. błędne podłączenie kabla
C. uszkodzenie izolacji
D. zbyt dużą rezystancję pętli
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 14

Metalowa obudowa urządzenia elektronicznego powinna być połączona z przewodem ochronnym instalacji zasilającej poprzez przewód o izolacji w odcieniu

A. czerwonym
B. czarno-białym
C. niebieskim
D. żółto-zielonym
Metalowa obudowa urządzeń elektronicznych powinna być połączona z żyłą ochronną instalacji elektrycznej za pomocą przewodu o izolacji w kolorze żółto-zielonym, co wynika z europejskich norm dotyczących instalacji elektrycznych, takich jak norma PN-EN 60446. Kolor żółto-zielony jednoznacznie identyfikuje przewody ochronne, które mają na celu zabezpieczenie przed porażeniem prądem elektrycznym poprzez odprowadzenie ewentualnego prądu upływowego do ziemi. W praktyce, połączenie metalowej obudowy z żyłą ochronną minimalizuje ryzyko uszkodzenia ciała ludzkiego w przypadku awarii urządzenia. W kontekście praktycznym, stosowanie odpowiednich kolorów przewodów ułatwia identyfikację ich funkcji, co jest kluczowe przy konserwacji i naprawach. Przykładowo, w przypadku modernizacji instalacji w budynku, stosowanie przewodów o standardowej kolorystyce zapewnia bezpieczeństwo techniczne i zgodność z przepisami, co jest niezbędne do przeprowadzenia skutecznych prac instalacyjnych. Zrozumienie tej zasady jest kluczowe dla każdego elektryka, ponieważ nieprzestrzeganie norm może prowadzić do poważnych konsekwencji prawnych oraz zagrożeń zdrowotnych.

Pytanie 15

Aby umożliwić niezależny odbiór sygnałów satelitarnych przez dwa odbiorniki satelitarne, używa się konwertera

A. Twin
B. Unicable
C. Quad
D. Monoblock
Odpowiedzi jak Monoblock, Quad i Unicable mają swoje konkretne zastosowania, które są trochę inne niż konwerter Twin. Monoblock na przykład, umożliwia odbiór sygnałów z dwóch satelitów, ale nie może działać dla dwóch odbiorników na raz. To znaczy, że jak jeden odbiornik korzysta z sygnału, to drugi już nie ma dostępu. To może być dość problematyczne, jeśli chcemy oglądać różne programy. Konwerter Quad ma cztery wyjścia, więc można podłączyć cztery odbiorniki, ale i w tym przypadku nie ma możliwości niezależnego korzystania jak w Twin. A system Unicable, chociaż ciekawy, wymaga specjalnych dekoderów, które łączą się z jednym wyjściem konwertera, przez co nie jest tak elastyczny jak Twin. Wiele osób myśli, że wszystkie konwertery są takie same i można je zamieniać, ale to nie tak. Fajnie jest zrozumieć, co każdy z tych konwerterów potrafi, żeby uniknąć nieprzyjemnych niespodzianek i cieszyć się wygodnym dostępem do telewizji satelitarnej.

Pytanie 16

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Grubość ścian oraz stropów
B. Temperatura otoczenia
C. Liczba użytkowników
D. Poziom wilgotności powietrza
Wielu użytkowników może błędnie sądzić, że ilość użytkowników ma bezpośredni wpływ na zasięg sieci WLAN. Choć rzeczywiście, gdy zbyt wielu użytkowników korzysta z jednej sieci, może to wpłynąć na prędkość i jakość połączenia, nie ma to jednak bezpośredniego wpływu na zasięg sygnału, który jest bardziej związany z właściwościami fizycznymi kanałów transmisyjnych. Inne czynniki, takie jak wilgotność powietrza i temperatura, również są często mylnie uważane za mające istotny wpływ na zasięg WLAN. Choć zmienne te mogą teoretycznie wpływać na propagację fal radiowych, ich wpływ jest znacznie mniejszy w porównaniu do przeszkód fizycznych, takich jak ściany czy stropy. W rzeczywistości, zmiany warunków atmosferycznych mają znaczenie głównie w kontekście długodystansowych transmisji radiowych, a nie w zamkniętych pomieszczeniach. Błędem jest także pomijanie wpływu architektury budynku na sygnał WLAN; projektanci sieci powinni przede wszystkim zwrócić uwagę na to, jak layout budynku oraz zastosowane materiały budowlane mogą wpłynąć na jakość sygnału. Dlatego kluczowe jest uwzględnienie tych aspektów podczas planowania i projektowania sieci bezprzewodowej, aby zapewnić jej efektywne działanie.

Pytanie 17

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wyładowań atmosferycznych
B. ograniczonej widoczności
C. wietrznej pogody
D. niskiej temperatury
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 18

Aby uzyskać najlepszą precyzję pomiaru napięcia wynoszącego około 110 mV, należy ustawić woltomierz na zakres

A. 150 mV
B. 1000 mV
C. 300 mV
D. 100 mV
Ustawienie zakresu woltomierza na 150 mV dla pomiaru napięcia o wartości około 110 mV zapewnia optymalne warunki do uzyskania najwyższej dokładności pomiaru. Woltomierze mają różne zakresy, które determinują ich czułość oraz dokładność. Ustawiając zakres na 150 mV, jesteśmy w stanie skorzystać z pełnej rezolucji instrumentu, co oznacza, że pomiar 110 mV będzie dokładnie reprezentowany w skali woltomierza. W praktyce, jeśli napięcie jest bliskie granicy zakresu, na przykład 100 mV, instrument może nie być w stanie dokładnie zarejestrować drobnych zmian w napięciu. Kolejnym aspektem jest minimalizacja błędów pomiarowych, które mogą występować przy pomiarze na wyższych zakresach, np. 1000 mV, gdzie rozdzielczość jest niższa, a pomiar może być obarczony większymi błędami. Takie podejście jest zgodne z dobrą praktyką pomiarową, która zaleca, aby zakres pomiarowy był jak najbliższy rzeczywistemu wartościowanemu napięciu, co pozwala na uzyskanie lepszej jakości pomiaru oraz precyzji.

Pytanie 19

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Tranzystor bipolarny
B. Rezystor mocy
C. Tranzystor z izolowaną bramką
D. Dioda prostownicza
Rezystory mocy, diody prostownicze i tranzystory bipolarne są mniej wrażliwe na uszkodzenia spowodowane wyładowaniami elektrostatycznymi w porównaniu do tranzystorów z izolowaną bramką. Rezystory mocy są zaprojektowane do rozpraszania dużych ilości energii i nie mają złożonej struktury elektronicznej jak IGBT, dlatego ich uszkodzenie wskutek ESD jest mniej prawdopodobne. Dioda prostownicza, choć również istotna w obwodach, ma prostą budowę i jest odporna na uszkodzenia statyczne, co czyni ją bardziej odporną na przypadkowe uszkodzenia podczas wymiany. Tranzystory bipolarne, mimo że mogą być uszkodzone przez ESD, nie są tak wrażliwe jak IGBT, ponieważ mają mniej skomplikowane struktury. Warto jednak pamiętać, że brak odpowiednich środków ochrony, takich jak opaski uziemiające, oznacza ryzyko uszkodzeń dla wszystkich komponentów elektronicznych. Użytkownicy powinni być świadomi znaczenia ESD i stosować odpowiednie procedury ochronne, aby uniknąć przypadkowych uszkodzeń, co jest zgodne z najlepszymi praktykami w branży elektronicznej.

Pytanie 20

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. S-VHS
B. EUROSCART
C. DIN 5
D. JACK
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 21

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. woltomierza
B. oscyloskopu
C. omomierza
D. wobulatora
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 22

Na diagramie blokowym struktury wewnętrznej mikroprocesora symbol ALU oznacza

A. zewnętrzną pamięć operacyjną
B. mikroprocesor wykonany w technologii krzemowo-aluminiowej
C. jednostkę arytmetyczno-logiczną
D. rejestr akumulatora
Odpowiedź 'jednostka arytmetyczno-logiczna' (ALU) jest prawidłowa, ponieważ ALU stanowi kluczowy komponent mikroprocesora odpowiedzialny za wykonywanie operacji arytmetycznych, takich jak dodawanie i odejmowanie, oraz operacji logicznych, takich jak AND, OR i NOT. ALU przyjmuje dane wejściowe, wykonuje na nich odpowiednie operacje, a następnie zwraca wyniki. Przykładowo, w procesach obliczeniowych, takich jak obliczanie wartości matematycznych lub przetwarzanie logiki warunkowej w programach, ALU odgrywa nieodzowną rolę. Standardy projektowania mikroprocesorów, takie jak architektura von Neumanna, uwzględniają ALU jako centralny element, co podkreśla jego znaczenie w nowoczesnych systemach komputerowych. Również w kontekście programowania niskopoziomowego, zrozumienie działania ALU pozwala na efektywniejsze pisanie kodu maszynowego i optymalizację algorytmów obliczeniowych.

Pytanie 23

Osoba zajmująca się trawieniem płytek drukowanych w dziedzinie elektroniki może być narażona na

A. zatrucie pokarmowe
B. porażenie prądem elektrycznym
C. pylicę płuc
D. poparzenie środkiem chemicznym
Zatrucie pokarmowe, mimo że może być problemem zdrowotnym w różnych środowiskach pracy, nie jest typowym zagrożeniem dla elektroników zajmujących się trawieniem płytek drukowanych, które są procesem technologicznym, a nie kulinarnym. W przypadku pracy z chemikaliami, ryzyko związane z zatruciem pokarmowym jest znacznie niższe niż ryzyko oparzeń chemicznych. Porażenie prądem elektrycznym również nie jest bezpośrednio związane z procesem trawienia płytek, choć ogólnie jest to istotne zagrożenie w obszarze elektroniki. W tej branży standardowe procedury bezpieczeństwa obejmują stosowanie izolowanych narzędzi i przestrzeganie zasad pracy z urządzeniami elektrycznymi. Pylica płuc jest schorzeniem, które wynika z długotrwałej ekspozycji na pyły, ale w kontekście trawienia płytek drukowanych, ryzyko to jest ograniczone, jeśli przestrzegane są odpowiednie procedury odprowadzania powietrza i użycia filtrów. Typowe błędy myślowe, prowadzące do wyboru niepoprawnych odpowiedzi, mogą wynikać z niepełnej wiedzy na temat zagrożeń specyficznych dla danej branży, co podkreśla znaczenie edukacji w zakresie BHP i używania odpowiednich środków ochrony osobistej.

Pytanie 24

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Mostek Thomsona
B. Mostek Wiena
C. Induktor
D. Wobulator
Wybór wobulatora, mostka Thomsona lub mostka Wiena jako narzędzi do pomiaru rezystancji izolacji kabli oparty jest na nieporozumieniu dotyczącym funkcji tych urządzeń. Wobulator jest narzędziem stosowanym głównie do analizy i pomiarów częstotliwościowych oraz badania jakości sygnałów elektrycznych, a nie do oceny rezystancji izolacyjnej. Mostek Thomsona służy do pomiaru rezystancji, ale jest przeznaczony do zastosowań w sytuacjach, gdzie izolacja nie jest kluczowym czynnikiem, a jego zastosowanie w kontekście kabli z izolacją może prowadzić do błędnych odczytów. Z kolei mostek Wiena jest używany w pomiarach impedancji, szczególnie w dziedzinie analizy częstotliwości, a jego zastosowanie w pomiarach izolacji jest ograniczone i nieodpowiednie, ponieważ nie uwzględnia specyfiki testowania izolacji. Typowym błędem myślowym jest mylenie różnych typów pomiarów elektrycznych i ich przeznaczenia. Kluczowe jest zrozumienie, że pomiar rezystancji izolacji wymaga zastosowania dedykowanych narzędzi, które są zgodne z odpowiednimi normami i standardami, a nie ogólnych przyrządów do analizy sygnałów czy impedancji.

Pytanie 25

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Kondensatora elektrolitycznego
B. Diody prostowniczej
C. Fotodiody
D. Kondensatora ceramicznego
Fotodiody, diody prostownicze oraz kondensatory elektrolityczne to elementy elektroniczne, które wymagają uwzględnienia polaryzacji podczas ich montażu. Fotodiody działają na zasadzie efektu fotoelektrycznego, gdzie ich struktura jest wrażliwa na kierunek przepływu prądu, co sprawia, że błędne podłączenie może prowadzić do ich uszkodzenia. W przypadku diod prostowniczych, ich funkcja polegająca na przepuszczaniu prądu tylko w jednym kierunku również czyni je wrażliwymi na niewłaściwe podłączenie. Błędne ustawienie diody w obwodzie może skutkować zwarciem lub uszkodzeniem innych komponentów. Natomiast kondensatory elektrolityczne wymagają szczególnej uwagi z uwagi na ich polaryzację, co wynika z budowy ich wewnętrznych elektrod. Niewłaściwe podłączenie kondensatora elektrolitycznego może prowadzić do ich eksplozji, co jest nie tylko niebezpieczne, ale również może zniszczyć pozostałe elementy układu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, obejmują zrozumienie, że wszystkie kondensatory są niepolaryzowane, co jest błędne. Wiedza na temat polaryzacji komponentów jest kluczowa dla projektowania bezpiecznych i efektywnych układów elektronicznych.

Pytanie 26

Generator funkcyjny został skonfigurowany na sygnał o częstotliwości 1 kHz oraz maksymalnej wartości szczytowej wynoszącej 1 V. Po podłączeniu woltomierza AC, jego wskazanie wyniosło 0,707 V. Jaki kształt ma badany sygnał?

A. sinusoidalny
B. trójkątny
C. prostokątny
D. impulsowy
Odpowiedź 'sinusoidalny' jest prawidłowa, ponieważ przebieg sinusoidalny charakteryzuje się tym, że jego wartość szczytowa wynosi 1 V, co jest zgodne z ustawieniami generatora. Woltomierz AC wskazał 0,707 V, co odpowiada wartości skutecznej (RMS) dla sygnału sinusoidalnego. Wartość skuteczna sygnału sinusoidalnego można obliczyć jako wartość szczytowa podzieloną przez pierwiastek z dwóch, co potwierdza, że dla 1 V wartości szczytowej wartość skuteczna wynosi 1 V / √2 ≈ 0,707 V. Przebiegi sinusoidalne są powszechnie stosowane w zastosowaniach audio oraz w systemach zasilania AC. W inżynierii elektronicznej, zrozumienie charakterystyki sygnałów sinusoidalnych jest kluczowe dla projektowania układów oraz analizy ich działania zgodnie z normami IEC. Ponadto, w zastosowaniach praktycznych, takich jak telekomunikacja, sygnały sinusoidalny są wykorzystywane do modulacji, co wpływa na jakość przesyłanych informacji.

Pytanie 27

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. ogniwach fotowoltaicznych
B. matrycach LED RGB
C. matrycach LCD
D. światłowodach
Nieprawidłowe odpowiedzi wskazują na nieporozumienia związane z zastosowaniem reflektometrów optycznych. W przypadku ogniw fotowoltaicznych, technologia ta nie jest stosowana w diagnostyce, ponieważ ogniwa te opierają się na zjawisku fotoelektrycznym, a ich sprawność ocenia się przy użyciu mierników prądu i napięcia. Matryce LCD i LED RGB to technologie wyświetlania, które nie korzystają z systemu światłowodowego, a ich naprawa i diagnostyka wymagają zupełnie innych narzędzi, takich jak multimetry, testery luminancji czy analizy obrazu. Ponadto, błędne podejście do reflektometrii optycznej może wynikać z mylnego przekonania, że technologia ta jest uniwersalna dla wszelkich typów urządzeń elektronicznych. Reflektometria optyczna jest ściśle związana z systemami światłowodowymi, a jej zastosowanie w innych dziedzinach jest ograniczone. Dlatego istotne jest zrozumienie, że różne technologie wymagają odpowiednich narzędzi diagnostycznych, a zamienianie ich miejscami prowadzi do nieefektywności i wydłużenia czasu napraw.

Pytanie 28

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. zwiększyć napięcie zasilania elektrozaczepu
B. zwiększyć poziom głośności w unifonie
C. dostosować poziom głośności w zasilaczu
D. dostosować napięcie w kasecie rozmownej
Podwyższenie głośności w unifonie wydaje się logiczne, gdy dźwięk jest słabo słyszalny, ale nie zawsze to działa. Unifon to końcowe urządzenie w systemie i jego głośność powinna być dostosowana do tego, co zasilacz może wysłać. Jak zasilacz nie ma wystarczającej mocy, to raczej nic nie zdziałasz na unifonie. Podwyższenie napięcia zasilania elektrozaczepu też raczej nie pomoże w sprawie dźwięku. Elektrozaczep działa na innym poziomie i nie wpływa na to, co słychać w słuchawce. Regulacja napięcia w kasecie rozmownej to też nie najlepszy pomysł, bo ona ma swoje normy i nie powinna być zmieniana na siłę, bo to może tylko zepsuć. Takie myślenie może prowadzić do błędnych wniosków, że problem z dźwiękiem można rozwiązać na poziomie unifonu, a w rzeczywistości trzeba się skupić na zasilaniu, bo to podstawowa rzecz dla całego systemu.

Pytanie 29

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 100 Ω
B. 120 Ω
C. 50 Ω
D. 75 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 30

Aby połączyć kable współosiowe o impedancji 75 Ω, należy

A. połączyć przewody poprzez ich skręcenie, a następnie zaizolować
B. użyć tzw. beczki do zestawienia dwóch wtyków typu F
C. połączyć kable stosując kostkę zaciskową
D. zlutować przewody główne, zaizolować je, a następnie połączyć ekran
Wybór tzw. beczki do połączenia dwóch wtyków typu F jest najlepszym rozwiązaniem w przypadku kabli współosiowych o impedancji 75 Ω. Beczkę stosuje się, aby zapewnić ciągłość sygnału oraz minimalizację strat, co jest kluczowe dla utrzymania jakości transmisji, zwłaszcza w zastosowaniach telewizyjnych czy w systemach transmisji danych. Wtyki typu F są powszechnie używane w instalacjach antenowych oraz w kablowych systemach telewizji. Beczkę można łatwo zainstalować, co czyni ją praktycznym rozwiązaniem, a także pozwala na łatwiejszą wymianę komponentów w razie potrzeby. Ważne jest, aby połączenie było dobrze wykonane, z uwzględnieniem odpowiednich technik montażowych, takich jak zabezpieczenie połączenia przed wilgocią i uszkodzeniami mechanicznymi. Używanie beczki do połączeń współosiowych jest zgodne z normami branżowymi, co zapewnia niezawodność i trwałość instalacji.

Pytanie 31

Aby podłączyć sygnalizator optyczno-akustyczny z syreną, należy zastosować złącze śrubowe. Mając na uwadze, że syrena działa na napięciu 24 V i zużywa prąd 3,45 A, wskaż odpowiednie złącze spełniające te parametry?

A. 12 V; 9 A; 0,75 mm2
B. 30 V; 9 A; 0,75 mm2
C. 230 V; 1,25 A; 0,4 mm2
D. 30 V; 3 A; 0,5 mm2
Złącze, które wybrałeś, czyli 30 V; 9 A; 0,75 mm2, jest całkiem spoko pod względem wymagań dla syreny. Ta syrena działa przy napięciu 24 V i bierze prąd 3,45 A. Chodzi o to, żeby prąd, który złącze przenosi, był co najmniej równy temu, co potrzeba, albo lepiej, żeby był większy. W tym przypadku 9 A daje nam zapas, co jest zgodne z zasadami bezpieczeństwa i zapobiega przeciążeniom. Przewód 0,75 mm2 też jest w porządku, bo zgodnie z normami, powinno się dobierać przewody wg maksymalnego prądu, żeby zredukować straty energii i odpowiednio odprowadzić ciepło. Dobrym przykładem mogą być instalacje alarmowe, gdzie sygnalizatory muszą działać bez problemów, więc ważne jest, żeby wszystkie komponenty były dobrze dobrane do obciążeń. Moim zdaniem, lepiej mieć coś z zapasem, bo wtedy to wszystko dłużej posłuży i będzie bezpieczniejsze.

Pytanie 32

Jakie urządzenia należy wykorzystać do strojenia toru pośredniej częstotliwości w radiowych odbiornikach?

A. mostek pomiarowy
B. miernik magnetoelektryczny
C. wobulator i oscyloskop
D. multimetr cyfrowy
Wobulator i oscyloskop to naprawdę ważne sprzęty, gdy mówimy o strojeniu toru pośredniej częstotliwości w radiu. Wobulator generuje różne sygnały, co jest super przydatne do testowania i dostrajania obwodów. Działa to na zasadzie modulacji sygnału, więc można bardzo precyzyjnie ustawić częstotliwość odbioru. Oscyloskop natomiast to narzędzie, które pozwala nam widzieć sygnały elektroniczne na bieżąco. Dzięki temu inżynierowie mogą dostrzegać problemy z jakością sygnału, na przykład szumy czy zniekształcenia. Weźmy na przykład sytuację, kiedy stroimy tor pośredniej częstotliwości – wobulator może wprowadzić sygnał o znanej częstotliwości, a oscyloskop pokazuje, czy odbiornik to dobrze demoduluje. Takie podejście jest naprawdę zgodne z tym, co robią specjaliści w branży i podkreśla, jak ważna jest dokładna analiza sygnałów podczas strojenia.

Pytanie 33

Jaką jednostką określa się moc czynną?

A. VA
B. V
C. W
D. var
Jednostką mocy czynnej jest wat (W), który jest powszechnie stosowaną jednostką w elektrotechnice i energetyce. Moc czynna to ta część mocy, która jest rzeczywiście wykorzystana do wykonania pracy w obwodach elektrycznych, a jej wartość można obliczyć jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego między nimi (P = U * I * cos(φ)). W praktyce oznacza to, że moc czynna odzwierciedla efektywność działania urządzeń elektrycznych, takich jak silniki, grzejniki czy oświetlenie. Wyższa moc czynna oznacza lepsze wykorzystanie energii elektrycznej. Przykładem jest silnik elektryczny, który może mieć moc podaną w watach – informuje to użytkownika o maksymalnej mocy, jaką może dostarczyć. Standardy takie jak IEC 60038 definiują wartości nominalne dla mocy w różnych zastosowaniach, co jest kluczowe w projektowaniu instalacji elektrycznych, zapewniając ich bezpieczeństwo i efektywność działania.

Pytanie 34

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. Z80
B. SN74151
C. UL7805
D. NE555
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 35

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. direktory
B. fidery
C. dipole
D. symetryzatory
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 36

Podczas hibernacji komputera zachodzi

A. reset systemu.
B. przełączanie na zasilanie z UPS.
C. zapisanie zawartości pamięci na dysku twardym.
D. zamknięcie systemu.
Hibernacja systemu komputerowego jest często mylona z innymi procesami związanymi z zarządzaniem energią, dlatego ważne jest zrozumienie różnic między nimi. Resetowanie systemu to całkowite ponowne uruchomienie, które nie zachowuje żadnych otwartych programów ani danych w pamięci operacyjnej. Takie działanie prowadzi do utraty wszelkich niezapisanych postępów i jest używane głównie w przypadku awarii lub potrzeby zakończenia pracy systemu. Z kolei przełączanie na zasilanie z UPS, czyli zasilacza awaryjnego, dotyczy sytuacji kryzysowych, takich jak przerwy w dostawie prądu, i nie ma związku z hibernacją. W przypadku zamykania systemu, użytkownik decyduje się na całkowite zakończenie pracy komputera, co również skutkuje utratą otwartych aplikacji, chyba że zostały one wcześniej zapisane. Wiele osób może mieć mylne przekonanie, że hibernacja i usypianie są tym samym, jednak usypianie polega jedynie na tymczasowym przechowywaniu danych w pamięci, co wymaga ciągłego zasilania. Dlatego istotne jest rozróżnienie tych procesów oraz zrozumienie ich zastosowania w praktyce, aby skutecznie zarządzać energią i wydajnością systemu. Zrozumienie tych koncepcji jest kluczowe dla efektywnego użytkowania komputerów w różnych scenariuszach operacyjnych.

Pytanie 37

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 150 zł
B. 2 500 zł
C. 500 zł
D. 750 zł
W przypadku odpowiedzi, które nie wskazują poprawnego kosztu zakupu materiałów, istnieje kilka typowych błędów myślowych, które mogą mylić. Niektórzy mogą na przykład mylnie obliczyć ogólną liczbę radiatorów produkowanych dziennie, biorąc pod uwagę tylko część z pracowników lub błędnie interpretując dzienną produkcję jednego pracownika. Inni mogą popełnić błąd przy obliczaniu liczby potrzebnych kształtowników, co prowadzi do nieprawidłowego oszacowania kosztów. Kluczowe jest zrozumienie, że każdy kształtownik jest odpowiedzialny za produkcję określonej ilości produktów (w tym przypadku 10 radiatorów), a zatem dokładne podział zadań w zespole i znajomość wydajności są kluczowe. Również, błędna interpretacja kosztów jednostkowych kształtowników może prowadzić do nieprawidłowych obliczeń kosztów całkowitych. W praktyce, zdolność do precyzyjnego obliczania i analizowania tych kosztów jest niezbędna dla każdej firmy, aby zachować konkurencyjność na rynku i prawidłowo planować budżet produkcyjny.

Pytanie 38

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Wysoka temperatura powietrza
B. Intensywny opad atmosferyczny
C. Porywisty podmuch wiatru
D. Duża wilgotność powietrza
Intensywny opad atmosferyczny ma kluczowy wpływ na jakość odbioru sygnału telewizyjnego w standardzie DVB-T, ponieważ może prowadzić do znacznego osłabienia sygnału radiowego. Przeszkody atmosferyczne, w tym deszcz, mogą powodować tłumienie sygnału, co skutkuje zniekształceniem obrazu lub całkowitym brakiem sygnału. Na przykład, w przypadku silnych opadów deszczu, fale radiowe mogą być absorbowane i rozpraszane, co zmniejsza ich zasięg. W praktyce oznacza to, że użytkownicy, którzy znajdują się w obszarze o dużych opadach, mogą doświadczać problemów z jakością odbioru. W branży telekomunikacyjnej stosuje się różne metody, aby zminimalizować wpływ opadów na odbiór sygnału, takie jak stosowanie anten o wyższej czułości lub instalowanie wzmacniaczy sygnału. Zgodnie z normami DVB-T, projektowanie systemów nadawczych musi uwzględniać zmienne warunki atmosferyczne, aby zapewnić stabilność i jakość sygnału w różnych warunkach pogodowych, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 39

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. pole elektromagnetyczne
B. dyspersja chromatyczna
C. pole elektrostatyczne
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 40

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
B. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
C. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
D. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.