Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 20 marca 2025 14:19
  • Data zakończenia: 20 marca 2025 14:43

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. skrobi
B. chromianu(VI) potasu
C. oranżu metylowego
D. fenoloftaleiny
Fenoloftaleina jest wskaźnikiem, którego zmiana koloru zachodzi w wyższym zakresie pH, co czyni ją nieodpowiednią do miareczkowania kwasu solnego w obecności wodorotlenku sodu. Fenoloftaleina zmienia barwę z bezbarwnej na różową w zakresie pH 8,2 – 10,0, co oznacza, że nie jest w stanie sygnalizować punktu końcowego reakcja kwasu z zasadą, ponieważ reakcja neutralizacji między HCl a NaOH kończy się w znacznie niższym pH. Wybierając wskaźnik, istotne jest, aby zrozumieć zarówno chemiczne właściwości substancji, jak i zakres pH, w którym zachodzą reakcje. Błędem jest również wybór chromianu(VI) potasu jako wskaźnika – substancja ta nie jest wskaźnikiem pH, a raczej reagentem stosowanym w innych reakcjach chemicznych, co może prowadzić do mylnych wniosków, jeśli chodzi o jego zastosowanie w kontekście miareczkowania. Stosowanie skrobi jako wskaźnika także mija się z celem, ponieważ skrobia reaguje z jodkiem, co nie ma związku z miareczkowaniem kwasów i zasad. Te błędne odpowiedzi odzwierciedlają typowe nieporozumienia dotyczące podstawowych zasad analizy chemicznej, gdzie odpowiedni dobór wskaźników jest kluczowy dla uzyskania precyzyjnych wyników.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. skorzystać z amoniaku
B. polać 3% roztworem wody utlenionej
C. zastosować 5% roztwór wodorowęglanu sodu
D. zmyć bieżącą wodą
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. twarde
B. rzadkie
C. średnio gęste
D. bardzo gęste
Odpowiedź 'rzadkie' jest poprawna, ponieważ do sączenia osadów kłaczkowatych, takich jak osady z procesu oczyszczania ścieków czy osady w laboratoriach chemicznych, najczęściej stosuje się sączki rzadkie, które charakteryzują się większymi porami. Rzadkie sączki pozwalają na skuteczne oddzielanie cząstek stałych od cieczy, minimalizując przy tym ryzyko zatykania się materiału filtracyjnego. Stosowane są w różnych aplikacjach, w tym w analizach chemicznych oraz w przemyśle, gdzie kluczowe jest szybkie i efektywne usuwanie osadów. Zgodnie z normami ISO 4788, które dotyczą sprzętu laboratoryjnego, dobór odpowiedniego sączka jest istotny dla uzyskania precyzyjnych wyników analitycznych. Przykładem zastosowania mogą być laboratoria zajmujące się badaniem wody, gdzie osady kłaczkowate mogą wpływać na jakość wyników analizy i dlatego ważne jest, aby używać sączków o odpowiedniej gęstości, aby uniknąć błędów w pomiarach.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. obniżają temperaturę wrzenia cieczy
B. przyspieszają proces wrzenia cieczy
C. przyspieszają przebieg destylacji
D. umożliwiają równomierne wrzenie cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 11

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 16,0 g
B. 1,6 g
C. 9,6 g
D. 8,0 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Którego z poniższych naczyń laboratoryjnych nie powinno się używać do podgrzania 100 cm3wody?

A. Kolby stożkowej o pojemności 200 cm3
B. Zlewki o pojemności 150 cm3
C. Kolby miarowej o pojemności 100 cm3
D. Zlewki o pojemności 200 cm3
Kolby miarowe, ze względu na swoją konstrukcję i przeznaczenie, nie są odpowiednie do stosowania jako naczynia do ogrzewania cieczy, w tym przypadku 100 cm³ wody. Ich główną funkcją jest dokładne mierzenie objętości cieczy, a nie ich podgrzewanie. Kolby miarowe wykonane są z cienkiego szkła, co sprawia, że są bardziej wrażliwe na zmiany temperatury i mogą łatwo pęknąć pod wpływem ciepła. W praktyce laboratoryjnej, do ogrzewania cieczy zaleca się używanie naczyń takich jak zlewki czy kolby stożkowe, które są zaprojektowane do wytrzymywania wysokich temperatur. Na przykład, zlewki wykonane z borokrzemowego szkła, które charakteryzuje się wysoką odpornością na temperaturę, są powszechnie stosowane do takich zadań. Dobre praktyki laboratoryjne nakazują wybieranie naczyń dostosowanych do specyficznych zastosowań, aby zapewnić bezpieczeństwo i efektywność pracy.

Pytanie 14

Skuteczny środek do osuszania

A. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
B. powinien być rozpuszczalny w cieczy, która jest suszona.
C. powinien działać wolno.
D. nie powinien przyspieszać rozkładu suszonej substancji.
Wybór środka suszącego wymaga zrozumienia jego funkcji oraz potencjalnych skutków, jakie może wywołać w procesie suszenia. Odpowiedź sugerująca, że dobry środek suszący powinien suszyć powoli, nie bierze pod uwagę, że szybkość procesu suszenia jest często kluczowa w wielu zastosowaniach. W praktyce, wolne suszenie może prowadzić do nieefektywności, a w przypadkach, takich jak suszenie materiałów biologicznych, może sprzyjać rozwojowi mikroorganizmów. Dlatego odpowiednie środki suszące powinny zapewniać optymalną szybkość suszenia, co jest zgodne z zasadami inżynierii materiałowej. Inną nieprawidłową koncepcją jest twierdzenie, iż środek suszący powinien reagować z substancją suszoną. Takie podejście prowadzi do niepożądanych interakcji, które mogą zmieniać chemiczną strukturę materiału, co jest nie do zaakceptowania w przemyśle spożywczym czy farmaceutycznym, gdzie jakakolwiek zmiana składu chemicznego może mieć poważne konsekwencje zdrowotne. Ponadto, stwierdzenie, że środek suszący powinien rozpuszczać się w cieczy suszonej, jest błędne, ponieważ substancje te powinny działać na zasadzie adsorpcji, a nie rozpuszczania, aby skutecznie usunąć wilgoć z materiału. Te błędne założenia często wynikają z mylnego postrzegania roli środków suszących i ich interakcji z substancjami, co prowadzi do nieefektywności procesów technologicznych.

Pytanie 15

Reakcja neutralizacji wodorotlenku sodu z kwasem solnym zrealizowana jest zgodnie z równaniem:
NaOH + HCl → NaCl + H2O Masy molowe: MNaOH = 40 g/mol, MHCl = 36,5 g/mol Aby zneutralizować 10 g wodorotlenku sodu, wymagane jest

A. 10 g roztworu kwasu solnego o stężeniu 38%
B. 36,5 g roztworu kwasu solnego o stężeniu 38%
C. 9,125 g roztworu kwasu solnego o stężeniu 38%
D. 24,013 g roztworu kwasu solnego o stężeniu 38%
Aby zobojętnić 10 g wodorotlenku sodu (NaOH), najpierw musimy obliczyć liczbę moli NaOH. Liczba moli obliczana jest ze wzoru n = m/M, gdzie m to masa, a M to masa molowa substancji. Masy molowe NaOH wynoszą 40 g/mol, więc liczba moli NaOH to 10 g / 40 g/mol = 0,25 mol. Reakcja zobojętniania NaOH z kwasem solnym (HCl) jest jednoczynnikowa, co oznacza, że jeden mol NaOH reaguje z jednym molem HCl. Zatem potrzebujemy 0,25 mola HCl do zobojętnienia 0,25 mola NaOH. Masy molowe HCl wynoszą 36,5 g/mol, więc masa HCl potrzebna do reakcji wynosi 0,25 mol * 36,5 g/mol = 9,125 g. Roztwór kwasu solnego o stężeniu 38% oznacza, że w 100 g roztworu znajduje się 38 g HCl. Aby obliczyć masę roztworu potrzebnego do uzyskania 9,125 g HCl, można skorzystać ze wzoru: masa roztworu = masa HCl / (stężenie HCl/100) = 9,125 g / (38/100) = 24,013 g. Tak więc do zobojętnienia 10 g NaOH potrzeba 24,013 g roztworu kwasu solnego o stężeniu 38%. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne dawkowanie reagentów jest niezbędne dla uzyskania dokładnych wyników.

Pytanie 16

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 1 g
B. 0,001 g
C. 0,1 g
D. 0,01 g
Wybór wagi o dokładności 0,001 g (1 mg) jest uzasadniony, gdyż do przygotowania miany kwasu solnego potrzebna jest odważka węglanu sodu o masie około 400 mg. Wymagana dokładność przy ważeniu substanacji chemicznych jest kluczowa dla uzyskania precyzyjnych wyników analitycznych. W analityce chemicznej, zwłaszcza w titracji, precyzyjne ważenie reagentów jest niezbędne, aby uniknąć błędów pomiarowych, które mogą prowadzić do fałszywych wniosków. Przyjęcie dokładności na poziomie 0,001 g pozwala na dokładniejsze przygotowanie roztworu, co jest istotne w kontekście późniejszych obliczeń i analiz. Stosowanie wag analitycznych jest standardem w laboratoriach chemicznych, ponieważ umożliwiają one kontrolowanie jakości analizowanego materiału i zapewniają zgodność z zasadami dobrej praktyki laboratoryjnej (GLP). Przykładowo, w przypadku przygotowywania roztworów wzorcowych, dokładność ważenia jest kluczowa dla uzyskania odpowiednich stężeń, co jest niezbędne w dalszych etapach analizy.

Pytanie 17

Który z etapów przygotowania próbek do analizy opisano w ramce?

Proces polegający na usuwaniu wody z zamrożonego materiału na drodze sublimacji lodu, tzn. bezpośredniego jego przejścia w stan pary z pominięciem stanu ciekłego.

A. Utrwalanie.
B. Oznaczanie wilgoci.
C. Liofilizację.
D. Wstępne suszenie.
Liofilizacja jest procesem, który polega na sublimacji lodu z zamrożonego materiału, co oznacza, że woda przechodzi bezpośrednio w stan pary, omijając fazę ciekłą. Jest to kluczowa technika stosowana w wielu dziedzinach, w tym w biologii komórkowej, farmacji oraz produkcji żywności. Liofilizacja pozwala na zachowanie struktury oraz właściwości chemicznych materiału, co czyni ją idealnym rozwiązaniem dla preparatów, które są wrażliwe na temperaturę oraz wilgoć. Proces ten jest często stosowany do konserwacji próbek biologicznych, takich jak komórki, białka czy enzymy. Przykładowo, w przemyśle farmaceutycznym, liofilizowane leki są bardziej stabilne i mają dłuższy okres przydatności do spożycia. Dodatkowo, liofilizacja ułatwia transport i przechowywanie próbek, gdyż zmniejsza ich masę i objętość, co jest korzystne w logistyce. Zgodnie ze standardami branżowymi, dobry proces liofilizacji powinien być ściśle kontrolowany, aby zminimalizować ryzyko degradacji cennych substancji.

Pytanie 18

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 0,75 g
B. 0,05 g
C. 5,00 g
D. 7,50 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 19

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli
B. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
C. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
D. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
Podawane koncepcje, wskazujące na możliwość mieszania roztworów kwasów i zasad bez neutralizacji, są nieprawidłowe. W rzeczywistości, choć teoretycznie takie mieszanie może prowadzić do ich wzajemnego zobojętnienia, w praktyce niesie ze sobą wiele zagrożeń. Po pierwsze, niekontrolowane łączenie silnych kwasów z mocnymi zasadami może prowadzić do gwałtownych reakcji, wydzielania dużych ilości ciepła oraz potencjalnego rozprysku niebezpiecznych substancji. Mieszanie powinno być przeprowadzane w kontrolowanych warunkach, z odpowiednim sprzętem ochronnym i w pojemnikach przeznaczonych do tego celu. Kolejnym błędem jest sugerowanie, że odpady te można wylewać do kanalizacji, co jest absolutnie niedopuszczalne. Wylanie roztworów chemicznych do kanalizacji może spowodować zanieczyszczenie wód gruntowych oraz systemu wodociągowego, co jest sprzeczne z przepisami ochrony środowiska. Również stwierdzenie, że odpady należy silnie zatężyć i zobojętniać stężonymi roztworami NaOH i HCl jest niebezpieczne. Tego typu praktyki mogą prowadzić do powstawania niebezpiecznych oparów oraz reakcji egzotermicznych, które mogą być trudne do kontrolowania. Aby zapewnić bezpieczeństwo i zgodność z przepisami, najlepiej jest stosować procedury ustalone przez organizacje zajmujące się ochroną zdrowia i środowiska, które przewidują odpowiednie metody neutralizacji i przechowywania odpadów chemicznych.

Pytanie 20

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. powietrznych
B. piaskowych
C. olejowych
D. wodnych
Ogrzewanie cieczy żrących na łaźniach powietrznych to raczej zła decyzja. Powód jest prosty – takie rozwiązanie nie daje stabilności termicznej. Ciecze żrące mogą reagować w dziwny sposób, więc nagłe zmiany temperatury mogą być niebezpieczne. Łaźnie powietrzne mogą ogrzewać w sposób nierównomierny, co może prowadzić do punktowego przegrzewania i różnych reakcji chemicznych, co wcale nie jest fajne dla zdrowia ludzi. Łaźnie olejowe z drugiej strony, mimo że lepiej regulują temperaturę, potrafią stworzyć ryzyko pożaru, jeśli dojdzie do kontaktu z tymi substancjami. Olej też potrafi reagować z niektórymi chemikaliami, co zwiększa niebezpieczeństwo. Łaźnie wodne z kolei to też kłopot, bo woda działa raczej jako chłodziwo, a nie grzałka. Zdarzają się też reakcje egzotermiczne, co może naprawdę pokrzyżować plany. Właściwie w każdej sytuacji ważne jest, żeby rozumieć, jakie substancje się używa i jakie mogą być ich ryzyka. Dobrze jest stosować najlepsze praktyki w chemii, by zapewnić sobie bezpieczeństwo i zdrowie. Jak się zaniedba te zasady, to można wpaść w spore kłopoty, które dałoby się prosto wyeliminować, stosując łaźnię piaskową.

Pytanie 21

Aby zebrać próbki gazów, wykorzystuje się

A. butelki z plastikowym wieczkiem
B. miarki cylindryczne
C. detektory gazów
D. aspiratory
Aspiratory są urządzeniami zaprojektowanymi specjalnie do pobierania próbek gazowych w kontrolowanych warunkach. Ich działanie polega na wykorzystaniu podciśnienia do zasysania gazów z określonego otoczenia, co pozwala na zbieranie reprezentatywnych prób do dalszej analizy. W laboratoriach chemicznych oraz w przemyśle petrochemicznym aspiratory są niezbędne do monitorowania jakości powietrza, a także do wykrywania zanieczyszczeń gazowych. Przykładem zastosowania aspiratorów jest ich użycie w badaniach środowiskowych, gdzie ocenia się stężenie szkodliwych substancji w atmosferze. Standardy, takie jak ISO 16000, określają metody pobierania próbek gazowych, a stosowanie aspiratorów jest zgodne z najlepszymi praktykami w tej dziedzinie, zapewniając dokładność i wiarygodność wyników analitycznych. Ponadto, aspiratory mogą być używane do analizy gazów wydechowych w przemyśle motoryzacyjnym, co jest kluczowe dla oceny emisji i przestrzegania norm ekologicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Naczynia miarowe kalibrowane "na wlew" mają oznaczenie w postaci symbolu

A. In
B. Ex
C. B
D. A
Naczynia miarowe kalibrowane "na wlew" oznaczone symbolem "In" są przeznaczone do pomiaru objętości cieczy, które pozostają w naczyniu po ich napełnieniu. Oznaczenie to wskazuje, że naczynie powinno być uzupełnione do wyznaczonego poziomu, a dokładność pomiaru zależy od właściwego zastosowania naczynia. W praktyce, naczynia te są używane w laboratoriach do precyzyjnego odmierzania reagentów, gdzie ważne jest, aby cała objętość została wykorzystana w procesie chemicznym. Warto zauważyć, że zgodnie z normami ISO oraz wymaganiami dotyczącymi jakości w laboratoriach, stosowanie naczyń miarowych kalibrowanych „na wlew” pozwala na uzyskanie wiarygodnych wyników pomiarów. Używając naczyń oznaczonych symbolem „In”, laboranci mogą zminimalizować błędy związane z pozostałością cieczy, co jest istotne w kontekście analizy danych i powtarzalności badań.

Pytanie 26

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. komora laminarna
B. dygestorium
C. zespół powietrzny
D. urządzenie do sterylizacji
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 27

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 20%
B. 15%
C. 87,5%
D. 12,5%
Aby obliczyć zawartość zanieczyszczeń w kwasie szczawiowym, należy zastosować prostą formułę. Zawartość zanieczyszczeń można obliczyć jako różnicę między masą początkową a masą uzyskanego produktu, podzieloną przez masę początkową, a następnie pomnożoną przez 100%: Zanieczyszczenia = ((Masa początkowa - Masa produktu) / Masa początkowa) * 100% Zanieczyszczenia = ((120 g - 105 g) / 120 g) * 100% = (15 g / 120 g) * 100% = 12,5%. Zatem, zanieczyszczenia stanowią 12,5% masy początkowej kwasu. Taki proces oczyszczania i określania zawartości zanieczyszczeń jest kluczowy w chemii analitycznej i przemysłowej, gdzie czystość substancji chemicznych jest niezbędna do uzyskania wysokiej jakości produktów. Praktyka ta ma zastosowanie w różnych dziedzinach, od farmacji po przemysł spożywczy, gdzie substancje muszą spełniać określone normy czystości, aby były bezpieczne i skuteczne w zastosowaniu.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. fartucha, okularów ochronnych, rękawic odpornych na kwasy
B. okularów ochronnych, rękawic lateksowych, maski ochronnej
C. rękawic odpornych na kwasy, maski ochronnej
D. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Piktogram nie jest konieczny dla

A. substancji, które powodują korozję metali
B. substancji, które działają drażniąco na skórę
C. substancji, które mają działanie drażniące na oczy
D. mieszanin samoreaktywnych typu G
Mieszaniny samoreaktywne typu G to substancje, które nie wymagają stosowania piktogramów, ponieważ są one klasyfikowane w inny sposób niż substancje drażniące. Zgodnie z rozporządzeniem CLP (Classification, Labelling and Packaging), piktogramy są stosowane do oznaczania substancji, które posiadają określone właściwości niebezpieczne, takie jak drażniące działanie na oczy czy skórę. Mieszaniny samoreaktywne typu G, do których zalicza się substancje mogące ulegać niekontrolowanym reakcjom chemicznym, są klasyfikowane na podstawie ich właściwości fizykochemicznych i nie są objęte wymaganiami dotyczącymi piktogramów. Przykładem może być pewien rodzaj azotanu, który, będąc samoreaktywnym, nie wymaga dodatkowego oznakowania ostrzegawczego, o ile nie wykazuje innych zagrożeń. Dobrą praktyką w obszarze zarządzania substancjami chemicznymi jest znajomość ich klasyfikacji oraz odpowiednich przepisów, co pozwala na bezpieczne ich stosowanie w przemyśle oraz laboratoriach.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu siarkowego(VI).
B. kwasu solnego.
C. kwasu fosforowego(V).
D. kwasu azotowego(V).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 34

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. titrantem
B. produktem
C. analitem
D. substratem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Czułość bezwzględna wagi definiuje się jako

A. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
B. największą masę, która powoduje wyraźne wychylenie wskazówki
C. największe dozwolone obciążenie wagi
D. najmniejsze dozwolone obciążenie wagi
Czułość bezwzględna wagi odnosi się do minimalnej masy, która jest w stanie wywołać zauważalne wychylenie wskazówki wagi. Oznacza to, że czułość wagi określa jej zdolność do wykrywania małych zmian w masie, co jest kluczowe w wielu zastosowaniach przemysłowych i laboratoryjnych. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, wagi analityczne mają bardzo wysoką czułość. Dzięki temu można precyzyjnie odmierzać małe ilości substancji. Czułość bezwzględna jest również istotna w kontekście kalibracji wag, co jest regulowane przez normy ISO i metodykę pomiarową, aby zapewnić, że wagi są zgodne z określonymi standardami jakości. W praktyce, zrozumienie czułości bezwzględnej pozwala na lepsze dobieranie wag do potrzeb danego pomiaru, co ma bezpośredni wpływ na jakość wyników eksperymentalnych oraz procesów produkcyjnych.

Pytanie 37

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
B. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
C. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
D. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
Reakcja między wodorotlenkiem baru a chlorkiem amonu jest przykładem reakcji chemicznej, w której zachowanie gazu amoniaku (NH3) odgrywa kluczową rolę. Proces ten jest endotermiczny, co oznacza, że absorbuje ciepło z otoczenia, co prowadzi do obniżenia temperatury mieszaniny. Mimo to, reakcja jest spontaniczna ze względu na wydzielanie gazu. Zgodnie z zasadą Le Chateliera, jeśli w układzie zachodzi reakcja chemiczna, to wszelkie zmiany w warunkach (takie jak ciśnienie, temperatura czy stężenie reagentów) spowodują przesunięcie równowagi w kierunku, który zredukuje te zmiany. Wydzielanie amoniaku do gazu zwiększa objętość układu i powoduje przesunięcie równowagi w kierunku produktów tej reakcji, co sprawia, że staje się ona nieodwracalna. Przykładem zastosowania tej wiedzy może być proces neutralizacji amoniaku w przemyśle chemicznym, gdzie kontroluje się reakcje gazów i ich wpływ na równowagę chemiczną.

Pytanie 38

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. destylacja
B. chromatografia cieczowa
C. ekstrakcja w systemie ciecz - ciecz
D. adsorpcja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 39

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
B. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
C. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
D. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 40

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w osiągnięciu równowagi dysocjacji
B. opóźnieniem w ustaleniu się kontrakcji objętości
C. koniecznością dokładnego wymieszania roztworu
D. potrzebą wyrównania temperatury roztworu z otoczeniem
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.