Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 01:28
  • Data zakończenia: 7 czerwca 2025 01:42

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. fartuch ochronny
B. buty na gumowej podeszwie
C. kask ochronny
D. okulary ochronne
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. zmiany w układzie kostnym
B. uszkodzenie skóry dłoni
C. porażenie prądem elektrycznym
D. uszkodzenie narządu słuchu
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Podczas użytkowania urządzenia zaobserwowano wzrost hałasu spowodowany przez łożysko toczne. Naprawa sprzętu polega na

A. wymianie osłony łożyska
B. wymianie całego łożyska
C. zmniejszeniu luzów łożyska
D. redukcji nadmiaru smaru w łożysku
Wybór odpowiedzi, takich jak zmniejszenie nadmiaru smaru w łożysku, wymiana osłony łożyska czy zmniejszenie luzów łożyska, nie adresuje źródła problemu. Zmniejszenie nadmiaru smaru może prowadzić do zjawiska zwanego "suchym tarciem", co z kolei może zwiększyć zużycie łożyska i pogłębić hałas. Utrzymanie odpowiedniego poziomu smaru jest kluczowe dla minimalizowania tarcia oraz zjawiska przegrzewania się łożysk, co obniża ich trwałość. Z kolei wymiana osłony łożyska nie rozwiązuje problemu samego łożyska, które wymaga naprawy lub wymiany. Większość łożysk tocznych jest skonstruowana w taki sposób, że ich uszkodzenie wymaga pełnej wymiany, aby przywrócić prawidłowe funkcjonowanie maszyny. Zmniejszenie luzów łożyska również nie jest wystarczającym rozwiązaniem, ponieważ luz powinien być dostosowany zgodnie z wymaganiami producenta i specyfikacjami technicznymi. Nieprawidłowe dostosowanie luzów może prowadzić do zjawiska przegrzewania, wibracji oraz zwiększonego hałasu. Aby zapobiec awariom i zapewnić długotrwałe działanie osprzętu, kluczowe jest przestrzeganie zasad konserwacji i wymiany łożysk zgodnie z ich stanem technicznym oraz specyfikacjami producenta.

Pytanie 8

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Codzienna wymiana filtra powietrza
B. Codzienna wymiana oleju w smarownicy
C. Usuwanie kondensatu wodnego
D. Okresowe wyłączanie sprężarki
Codzienna wymiana oleju w smarownicy, okresowe wyłączanie sprężarki oraz codzienna wymiana filtra powietrza to działania, które mogą być istotne w utrzymaniu systemów pneumatycznych, jednak nie są one typowe dla konserwacji układów pneumatycznych jako całości. Wymiana oleju w smarownicy jest ważna dla zachowania odpowiedniego smarowania elementów mechanicznych, ale nie jest kluczowym działaniem związanym bezpośrednio z układami pneumatycznymi, które operują głównie na sprężonym powietrzu. Podobnie, okresowe wyłączanie sprężarki może być praktyką w celu konserwacji, ale nie należy do rutynowych działań konserwacyjnych układów pneumatycznych. Filtr powietrza ma z kolei na celu usuwanie zanieczyszczeń, ale jego codzienna wymiana nie jest wymagana, chyba że jest on szczególnie narażony na zanieczyszczenia. W rzeczywistości, w wielu systemach stosuje się strategie konserwacji oparte na harmonogramach, które są dostosowane do warunków pracy, a nie na codziennych wymianach. Typowe błędy myślowe polegają na przeoczeniu kluczowego aspektu, jakim jest usuwanie kondensatu, które jest bardziej krytyczne dla stabilności i efektywności całego systemu.

Pytanie 9

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. drukarka laserowa
C. chłodziarko-zamrażarka z cyfrowym sterowaniem
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/Y
B. DC
C. AC
D. X/T
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. klucz dynamometryczny
B. młotek
C. ściągacz
D. palnik gazowy
Użycie młotka do demontażu łożysk kulkowych jest podejściem niezalecanym, ponieważ może prowadzić do poważnych uszkodzeń zarówno łożyska, jak i elementów maszyny, z którymi ma się ono kontakt. Młotek generuje dużą siłę uderzenia, która może nie tylko zniszczyć łożysko, ale również uszkodzić wał lub obudowę, co skutkuje koniecznością kosztownej wymiany tych komponentów. Ponadto, stosowanie młotka nie spełnia standardów bezpieczeństwa, ponieważ może prowadzić do urazów rąk czy wzroku w przypadku niekontrolowanego uderzenia. W przypadku palnika gazowego, jego zastosowanie do demontażu łożysk jest jeszcze bardziej niebezpieczne. Wysokie temperatury mogą spowodować deformację elementów oraz zniszczenie łożyska, a także stwarzać ryzyko pożaru, zwłaszcza w warsztatach pełnych materiałów łatwopalnych. Z kolei klucz dynamometryczny jest narzędziem przeznaczonym do dokręcania śrub z określoną siłą, a nie do demontażu. Użycie klucza w tym kontekście jest nieodpowiednie, ponieważ nie ma on zastosowania w procesie wyciągania łożysk. Dobrą praktyką jest zawsze stosowanie odpowiednich narzędzi zgodnych z zaleceniami producentów, co pozwala na efektywne i bezpieczne wykonywanie prac serwisowych.

Pytanie 15

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
B. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
C. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
D. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. szczotek.
B. łożysk.
C. uzwojenia.
D. komutatora.
Odpowiedzi takie jak wymiana łożysk, komutatora czy szczotek mogą wydawać się logiczne, jednak nie rozwiązują problemu zwarć międzyzwojowych. Łożyska, choć istotne dla prawidłowego funkcjonowania silnika, dotyczą przede wszystkim mechanicznego aspektu pracy silnika. Ich wymiana nie wpłynie na problemy elektryczne wynikające z uszkodzenia uzwojenia. Komutator w silniku komutatorowym odpowiada za przełączanie prądu w uzwojeniu wirnika, jednak jego wymiana nie eliminuje problemów z samym uzwojeniem, które są źródłem zwarć. W przypadku szczotek, ich rola polega na przewodzeniu prądu do komutatora, ale uszkodzenie uzwojenia wymaga bardziej kompleksowego podejścia, które nie ogranicza się do wymiany elementów pośrednich. Typowym błędem myślowym jest niepełna diagnoza usterki, co prowadzi do nieefektywnych napraw. Należy zrozumieć, że każdy z tych elementów ma swoją specyfikę oraz funkcję, a ich wymiana nie usuwa przyczyny problemu. Aby skutecznie naprawić silnik, konieczne jest skupienie się na rdzeniu problemu, a więc na uzwojeniu, które jest kluczowe dla jego właściwego działania. W praktyce, zignorowanie tego aspektu może prowadzić do powtarzających się awarii i większych kosztów eksploatacji.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tensometru
B. pirometru
C. tachometru
D. termometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. rękawic ochronnych i fartucha ochronnego
B. nienaruszonych narzędzi izolowanych
C. okularów ochronnych i fartucha ochronnego
D. szczypiec oraz zestawu wkrętaków
Wybór okularów i fartucha ochronnego, rękawic oraz szczypiec i kompletu wkrętaków, choć istotny dla ogólnego bezpieczeństwa w miejscu pracy, nie rozwiązuje problemu związanego z bezpiecznym posługiwaniem się urządzeniami mechatronicznymi, w których istnieje ryzyko wystąpienia napięcia elektrycznego. Okulary ochronne i fartuchy są ważnymi elementami odzieży ochronnej, jednak ich głównym celem jest ochrona przed mechanicznymi uszkodzeniami i substancjami chemicznymi, a nie przed porażeniem prądem. Rękawice, choć mogą oferować pewien poziom izolacji, nie są wystarczające, jeśli nie są specjalnie przystosowane do pracy z urządzeniami elektrycznymi. Ponadto, używanie narzędzi, które nie są odpowiednio izolowane, stwarza poważne zagrożenie. Typowym błędem myślowym jest założenie, że wystarczające jest posiadanie wyposażenia ochronnego bez uwzględnienia specyfiki pracy z napięciem elektrycznym. Aby skutecznie minimalizować ryzyko porażenia prądem, mechatronik powinien korzystać wyłącznie z narzędzi z odpowiednią izolacją, a także przestrzegać standardów bezpieczeństwa, takich jak zalecenia zawarte w normach IEC. Ignorowanie tej zasady może prowadzić do tragicznych konsekwencji, dlatego zawsze należy upewnić się, że narzędzia są właściwie dobrane do rodzaju wykonywanej pracy.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 3
B. 2
C. 1
D. 4
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. odległości między osią wału a podstawą uchwytów silnika
B. średnicy stojana
C. wysokości silnika
D. szerokości silnika oraz średnicy wirnika
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 32

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
B. zbliża się do linii punktu rosy
C. oddala się od linii punktu rosy
D. nie zmienia się w stosunku do linii punktu rosy
W przypadku wzrostu ciśnienia w zbiorniku sprężarki, odpowiedzi które sugerują, że stan pary wodnej w zgromadzonym powietrzu nie ulega zmianie lub oddala się od linii punktu rosy, opierają się na mylnych założeniach dotyczących zachowania wilgotności i ciśnienia. Po pierwsze, wilgotność względna, będąca stosunkiem aktualnego ciśnienia pary wodnej do ciśnienia pary nasyconej przy danej temperaturze, jest ściśle związana z ciśnieniem. Wzrost ciśnienia przy stałej temperaturze prowadzi do zwiększenia ciśnienia cząstkowego pary wodnej, co w efekcie zmienia dynamiczny balans pomiędzy stanem gazowym a stanem ciekłym w systemie. Odpowiedzi sugerujące, że wilgotność pozostaje bez zmian, ignorują fundamentalne zasady termodynamiki oraz charakterystykę zachowań gazów. Ponadto, odniesienia do „stałej wilgotności absolutnej” są nieprecyzyjne, ponieważ wilgotność absolutna jest miarą ilości pary wodnej w jednostce objętości powietrza, co nie wpływa na zmiany wynikające z wyższego ciśnienia. Typowe błędy w interpretacji tego zjawiska często są wynikiem braku zrozumienia pojęcia punktu rosy oraz wpływu ciśnienia na zachowanie pary wodnej w gazach. W praktyce inżynierskiej, zrozumienie tych zjawisk jest kluczowe, aby unikać problemów związanych z kondensacją, co może prowadzić do poważnych awarii w systemach sprężonego powietrza oraz innych procesów przemysłowych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. przerwą w jednej z faz.
B. błędną sekwencją faz.
C. zwarciem dwóch faz.
D. zwarciem jednej fazy z obudową.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, zawór redukcyjny, manometr
B. filtr, zawór dławiący, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. filtr, zawór redukcyjny, manometr, smarownica
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.