Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 9 kwietnia 2025 15:23
  • Data zakończenia: 9 kwietnia 2025 15:38

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas holowania uszkodzonego samochodu z automatyczną skrzynią biegów należy

A. spuścić olej ze skrzyni biegów
B. ustawić dźwignię zmiany biegów w pozycji D (jazda)
C. odłączyć system sterowania skrzynią biegów
D. unosić oś napędzaną pojazdu
Podczas holowania uszkodzonego pojazdu wyposażonego w automatyczną skrzynię biegów kluczowe jest uniesienie osi napędzanej, co zapobiega uszkodzeniu skrzyni biegów. Automatyczne skrzynie biegów są zaprojektowane do pracy w ruchu i ich elementy, takie jak pompa olejowa, wymagają ruchu, aby prawidłowo smarować wewnętrzne części. Jeśli pojazd jest holowany w sposób, który nie unosi osi napędzanej, istnieje ryzyko, że olej smarujący nie będzie krążył, co może prowadzić do przegrzania lub uszkodzenia skrzyni biegów. Przykładem prawidłowego postępowania jest użycie platformy holowniczej, która unosi cały przód lub tył pojazdu, co zapewnia, że skrzynia biegów pozostaje w bezpiecznej i odpowiedniej pozycji. W branży motoryzacyjnej standardowym podejściem jest unikanie holowania pojazdów z automatycznymi skrzyniami biegów na kołach napędzanych, co może być zgodne z wytycznymi producentów pojazdów. Warto także zapoznać się z instrukcją obsługi pojazdu, gdzie często znajdziemy informacje dotyczące holowania.

Pytanie 2

Które z poniższych działań nie jest wymagane po wymianie klocków oraz tarcz hamulcowych?

A. Dokręcenie śrub mocujących zaciski hamulcowe z odpowiednim momentem.
B. Odtłuszczenie tarcz hamulcowych
C. Odpowietrzenie układu hamulcowego.
D. Przeprowadzenie testu działania hamulców.
Odpowietrzenie układu hamulcowego jest kluczowym procesem, który nie jest konieczny po wymianie klocków i tarcz hamulcowych, o ile nie były wcześniej wymieniane również przewody hamulcowe lub nie doszło do ich uszkodzenia. W większości przypadków, jeśli układ hamulcowy nie został otwarty, nie ma potrzeby jego odpowietrzania, ponieważ powietrze nie dostaje się do układu. Praktycznym przykładem może być sytuacja, w której dokonujesz jedynie wymiany klocków i tarcz, a układ hamulcowy był wcześniej prawidłowo odpowietrzony. W takim przypadku wystarczy jedynie dokręcić śruby mocujące zaciski hamulcowe odpowiednim momentem oraz wykonać próbę działania hamulców, aby upewnić się, że wszystko działa jak należy. Zgodnie z dobrymi praktykami branżowymi powinno się zawsze upewnić, że wszystkie elementy są w dobrym stanie przed przystąpieniem do jazdy. Warto również zaznaczyć, że nieodpowiednie odpowietrzenie układu hamulcowego może prowadzić do niepełnej skuteczności hamulców, co jest niebezpieczne w codziennym użytkowaniu pojazdu.

Pytanie 3

Układ przeniesienia napędu w klasycznej wersji składa się

A. z silnika, skrzyni biegów, mechanizmu różnicowego
B. ze skrzyni biegów, wału, piast
C. ze sprzęgła, skrzyni biegów, wału, przekładni głównej, mechanizmu różnicowego, półosi oraz piast kół
D. ze sprzęgła, skrzyni biegów, półosi oraz piast kół
Klasyczny układ przeniesienia napędu w autach to naprawdę ważny temat. W skrócie, to taki system, który przenosi moment obrotowy z silnika na koła. Składa się z paru kluczowych elementów, takich jak sprzęgło, skrzynia biegów, wał napędowy, przekładnia główna, mechanizm różnicowy, półosie i piasty kół. Sprzęgło to ten element, który pozwala na rozłączenie silnika, co jest szczególnie przydatne przy zmianie biegów. Skrzynia biegów z kolei dostosowuje prędkość silnika do prędkości jazdy, co jest mega ważne, żeby auto działało oszczędnie i miało dobre osiągi. Wał napędowy przenosi tę moc do kół – w autach z napędem tylnym do tylnych, a w 4x4 do wszystkich. Przekładnia główna i mechanizm różnicowy są kluczowe, żeby koła mogły obracać się w odpowiednich prędkościach, szczególnie w zakrętach. Półosie i piasty kół zamieniają ten moment obrotowy na ruch kół. W codziennej jeździe na pewno doceniasz, jak ważne jest, żeby każdy z tych elementów działał jak należy, bo to zapewnia bezpieczeństwo i komfort. Te układy są zgodne z normami ISO, co daje pewność ich niezawodności i efektywności.

Pytanie 4

Jaki składnik spalin generowanych przez silniki ZS występuje w największym procencie?

A. Węglowodory
B. Azot
C. Tlenek węgla
D. Cząstki stałe
Wybór tlenku węgla jako składnika spalin z silników ZS jest mylny, ponieważ ta substancja występuje w znacznie mniejszych ilościach, często poniżej 1% objętości. Tlenek węgla jest rezultatem niepełnego spalania paliwa, co w praktyce wskazuje na nieefektywność procesu. W normach emisji, takich jak normy Euro, istotne jest ograniczenie emisji tlenku węgla, co skłania producentów do wdrażania technologii poprawiających proces spalania. Cząstki stałe, z kolei, również są szkodliwe, ale ich udział w spalinach jest mniejszy i znacząco zależy od rodzaju paliwa. W przypadku oleju napędowego, cząstki stałe mogą być bardziej widoczne, jednak w silnikach benzynowych ich udział jest znacznie niższy. Węglowodory, chociaż wytwarzane podczas spalania, również nie dominują w składzie spalin. Zrozumienie tych składników jest kluczowe w kontekście analizy emisji i ich wpływu na środowisko. Często popełnianym błędem jest mylenie składów spalin, co prowadzi do fałszywych wniosków co do efektywności działania silników oraz ich wpływu na jakość powietrza. Dobrze zaprojektowane systemy kontroli emisji powinny uwzględniać wszystkie te aspekty, aby minimalizować negatywne skutki działalności silników spalinowych.

Pytanie 5

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 20 V DC
B. 2 V AC
C. 20 V AC
D. 2 V DC
Odpowiedź 20 V DC to trafny wybór. Kiedy mierzysz spadek napięcia na akumulatorze, który działa w trybie stałoprądowym, to woltomierz musi być przystosowany do napięcia stałego (DC). Wartość 20 V powinna być wystarczająca do uchwycenia typowych spadków napięcia, które mogą wystąpić podczas uruchamiania silnika. W praktyce, warto zmierzyć napięcie przed uruchomieniem i w trakcie rozruchu, żeby upewnić się, że akumulator działa jak należy. Jeśli wskazania spadają poniżej 12 V, to raczej coś jest nie tak. W branży mamy standardy, jak SAE J537, które podkreślają, jak ważne jest monitorowanie napięcia akumulatora, żeby zapobiegać różnym awariom w systemach elektrycznych pojazdu. Z kolei prawidłowe pomiary to klucz do diagnostyki i planowania konserwacji akumulatorów – bez tego ciężko będzie utrzymać efektywność zasilania.

Pytanie 6

Termostat aktywuje przepływ płynu chłodzącego do dużego obiegu

A. po uruchomieniu ogrzewania wnętrza
B. gdy temperatura płynu chłodzącego jest wysoka
C. gdy temperatura płynu chłodzącego jest niska
D. tuż po uruchomieniu silnika
Termostat pełni kluczową rolę w zarządzaniu obiegiem cieczy chłodzącej w silniku. Otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy osiąga odpowiedni, wysoki poziom. Wysoka temperatura jest wskaźnikiem, że silnik osiągnął optymalną temperaturę pracy, co zapobiega jego przegrzewaniu. Dzięki temu, gdy temperatura cieczy chłodzącej wzrasta, termostat pozwala na cyrkulację cieczy przez chłodnicę, co skutkuje efektywnym odprowadzaniem ciepła. Przykładem zastosowania tego mechanizmu jest samochód osobowy, w którym termostat otwiera się przy około 90-95°C, co jest zgodne z normami branżowymi dla większości silników spalinowych. Umożliwia to utrzymanie temperatury roboczej silnika na stałym poziomie, co jest istotne dla jego wydajności i żywotności. Zrozumienie tego procesu jest kluczowe dla każdego, kto zajmuje się diagnostyką i naprawą systemów chłodzenia w pojazdach.

Pytanie 7

Siłą hamowania hamulca zasadniczego określamy

A. suma sił hamowania wszystkich kół pojazdu względem jego masy dopuszczalnej
B. różnicę siły hamowania pomiędzy kołami tylnej osi
C. suma sił hamowania w jednej sekcji
D. różnicę siły hamowania pomiędzy kołami przedniej osi
Współczynnik siły hamowania hamulca zasadniczego to kluczowy parametr w ocenie skuteczności systemu hamulcowego pojazdu. Oznacza on stosunek sumy sił hamowania wszystkich kół do masy dopuszczalnej pojazdu. Taki współczynnik jest istotny dla zapewnienia bezpieczeństwa na drodze, ponieważ pozwala na określenie, czy pojazd jest w stanie zatrzymać się w odpowiednim czasie. W praktyce, im wyższy współczynnik, tym lepsza skuteczność hamulców. Na przykład, w pojazdach osobowych standardowy współczynnik siły hamowania wynosi zazwyczaj od 0,5 do 0,7, co oznacza, że pojazd może zatrzymać się w znacznie krótszym czasie niż wynosi jego długość. Przykładowo, jeżeli masa pojazdu wynosi 1500 kg, a suma sił hamowania wynosi 9000 N, to współczynnik siły hamowania wynosi 6, co sugeruje bardzo dobrą efektywność. Dobrze zrozumiany i obliczony współczynnik siły hamowania jest niezbędny w procesie projektowania hamulców oraz oceny ich wydajności zgodnie z normami branżowymi, takimi jak ECE R13 czy FMVSS 105, które regulują wymagania dotyczące systemów hamulcowych.

Pytanie 8

W trakcie pracy w warsztacie powłoki ochronne, stosowane na powierzchni elementów karoserii pojazdu, uzyskuje się poprzez

A. metalizowanie ogniowe
B. platerowanie
C. fosforanowanie
D. natryskiwanie
Natryskiwanie jest jedną z najskuteczniejszych metod aplikacji powłok antykorozyjnych na powierzchnie elementów nadwozia pojazdów. Proces ten polega na rozpylaniu materiału zabezpieczającego, zwykle w postaci proszku lub cieczy, na przygotowaną powierzchnię. Dzięki temu można uzyskać równomierną i trwałą powłokę, która skutecznie chroni metal przed działaniem czynników atmosferycznych, takich jak wilgoć i sole. W praktyce, natryskiwanie może być stosowane do różnych materiałów, takich jak farby epoksydowe, poliuretanowe czy proszki metaliczne, co pozwala na dobór odpowiedniego rozwiązania w zależności od wymagań technicznych. Standardy branżowe, takie jak ISO 12944, dotyczące ochrony przed korozją, podkreślają znaczenie odpowiedniego przygotowania powierzchni oraz zastosowania metod natryskowych w zapewnieniu wysokiej jakości powłok. Zastosowanie tej metody w przemyśle motoryzacyjnym nie tylko zwiększa żywotność pojazdu, ale również przyczynia się do zmniejszenia kosztów napraw i konserwacji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zmiana koloru cieczy stosowanej do identyfikacji nieszczelności uszczelki pod głowicą jest spowodowana gazem obecnym w spalinach

A. NOx
B. CO2
C. O2
D. CO
Odpowiedź CO2 jest prawidłowa, ponieważ dwutlenek węgla jest jednym z głównych produktów spalania paliw w silnikach spalinowych. W przypadku nieszczelności uszczelki pod głowicą, spaliny mogą przedostawać się do układu chłodzenia, co prowadzi do zmiany zabarwienia płynu chłodniczego. Wykrywanie nieszczelności jest kluczowe dla zapewnienia prawidłowego funkcjonowania silników, a stosowanie wskaźników zabarwienia płynu opartych na obecności CO2 jest szeroko przyjętą praktyką. Standardy branżowe, takie jak SAE J1349, podkreślają konieczność monitorowania emisji spalin i ich składników, co jest istotne dla ochrony środowiska. Przykładem zastosowania jest test szczelności, w którym płyn zmienia kolor na żółty lub zielony w obecności CO2, co ułatwia diagnostykę i zapobiega dalszym uszkodzeniom silnika.

Pytanie 11

Czym jest prąd elektryczny?

A. uporządkowany ruch ładunków elektrycznych
B. swobodny ruch ładunków ujemnych
C. ukierunkowany przepływ ładunków neutralnych
D. chaotyczny ruch ładunków elementarnych
Prąd elektryczny to uporządkowany ruch ładunków elektrycznych, co oznacza, że w danym kierunku poruszają się ładunki naładowane elektrycznie, głównie elektrony. W praktyce odnosi się to do przepływu prądu w obwodach elektrycznych, gdzie elektrony poruszają się od ujemnego bieguna źródła zasilania do dodatniego. To uporządkowanie odzwierciedla nie tylko zjawisko fizyczne, ale także zastosowanie w projektowaniu urządzeń elektrycznych, takich jak silniki, generatory czy układy scalone. W przypadku silników elektrycznych, na przykład, uporządkowany ruch elektronów w przewodnikach generuje pole magnetyczne, które działa na elementy wirujące, co prowadzi do wykonywania pracy mechanicznej. Zrozumienie, że prąd elektryczny jest uporządkowanym ruchem, pozwala inżynierom i technikom na projektowanie bardziej efektywnych systemów oraz na przewidywanie zachowania obwodów w różnych warunkach. Wiedza ta jest kluczowa w kontekście standardów branżowych takich jak IEC 60038, które regulują parametry napięcia i prądu w urządzeniach elektrycznych.

Pytanie 12

W samochodzie osobowym, aby zabezpieczyć koło przed samoczynnym odkręceniem, używa się

A. podkładek płaskich
B. nakrętek samohamownych
C. podkładek sprężystych
D. nakrętek z kołnierzem stożkowym
Nakrętki z kołnierzem stożkowym są stosowane w samochodach osobowych do zabezpieczenia kół przed odkręceniem, ponieważ ich konstrukcja zapewnia lepsze połączenie z powierzchnią felgi. Kołnierz stożkowy umożliwia równomierne rozłożenie siły docisku, co skutkuje lepszą stabilnością i zmniejsza ryzyko luzów. Dzięki temu, w przypadku wibracji, które mogą wystąpić podczas jazdy, nakrętki te lepiej trzymają się na miejscu. W praktyce to oznacza, że kierowcy mogą być spokojni o bezpieczeństwo jazdy, gdyż odpowiednio zainstalowane koła nie odkręcą się w trakcie eksploatacji. Stosowanie tego typu nakrętek jest zgodne z zaleceniami producentów pojazdów oraz normami branżowymi, co podkreśla ich znaczenie w zapewnieniu prawidłowego funkcjonowania układu jezdnego. Ważne jest również, aby stosować odpowiedni moment dokręcania, co zapewnia optymalne działanie nakrętek z kołnierzem stożkowym.

Pytanie 13

Zamiana klocków hamulcowych na tylnej osi w pojazdach z EPB lub SBC wiąże się z

A. dezaktywacją zacisków hamulcowych
B. jednoczesną wymianą tarcz i klocków hamulcowych
C. odpowietrzeniem układu hamulcowego
D. wymianą płynu hamulcowego
Dezaktywacja zacisków hamulcowych jest niezbędnym krokiem przy wymianie klocków hamulcowych w pojazdach wyposażonych w systemy EPB (elektroniczna ręczna sprężyna) lub SBC (inteligentny system hamulcowy). Przy tych rozwiązaniach, zaciski hamulcowe są sterowane elektronicznie, co oznacza, że przed przystąpieniem do wymiany klocków, konieczne jest ich odłączenie. Proces ten pozwala na prawidłowe usunięcie zużytych klocków bez ryzyka uszkodzenia systemu hamulcowego. W praktyce, aby dezaktywować zaciski, należy skorzystać z odpowiedniego narzędzia diagnostycznego, które umożliwia komunikację z jednostką sterującą systemu hamulcowego. Tego typu działania są zgodne z zaleceniami producentów i są kluczowe dla zachowania integralności układu hamulcowego. W przypadku nieprzeprowadzenia dezaktywacji, może dojść do uszkodzenia elementów zacisku lub niewłaściwej pracy hamulców po wymianie, co stwarza zagrożenie dla bezpieczeństwa jazdy. Prawidłowa procedura wymiany klocków hamulcowych, z uwzględnieniem dezaktywacji zacisków, jest zgodna z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jaką funkcję pełni amortyzator w układzie zawieszenia pojazdu?

A. powiększania ugięcia elementów sprężystych zawieszenia
B. ograniczania ugięcia elementów sprężystych zawieszenia
C. podnoszenia sztywności zawieszenia
D. tłumienia drgań elementów zawieszenia
Amortyzatory w zawieszeniu to naprawdę ważny element, który zapewnia komfort i stabilność podczas jazdy. Ich głównym zadaniem jest tłumienie drgań, co oznacza, że jak jedziemy po nierównościach, to one pomagają wchłonąć te wstrząsy. Dzięki temu mniej drgań trafia do nadwozia, co sprawia, że podróż jest przyjemniejsza. Często wyczytałem, że dobrze jest regularnie sprawdzać i wymieniać amortyzatory, żeby działały na optymalnym poziomie. Co ciekawe, jeśli dobierzesz odpowiednie amortyzatory, to może to naprawdę poprawić właściwości jezdne twojego auta, co jest kluczowe w sportowych maszynach, gdzie liczy się precyzja prowadzenia. Warto też pamiętać, że amortyzatory muszą spełniać normy bezpieczeństwa, żeby były niezawodne i trwałe na dłużej.

Pytanie 16

Skrót TPMS na desce rozdzielczej samochodu oznacza, że pojazd jest wyposażony w

A. system monitorowania ciśnienia w oponach kół
B. system sterowania aktywnym zawieszeniem
C. układ przeciwpoślizgowy
D. diagnostyczne złącze komunikacyjne
Skrót TPMS, czyli Tire Pressure Monitoring System, oznacza system monitorowania ciśnienia w oponach kół. Jego głównym celem jest zapewnienie bezpieczeństwa i optymalnej wydajności pojazdu poprzez monitorowanie ciśnienia w oponach podczas jazdy. Niski poziom ciśnienia w oponach może prowadzić do zwiększonego zużycia paliwa, pogorszenia przyczepności oraz większego ryzyka uszkodzenia opon. W przypadku wykrycia niskiego ciśnienia, system TPMS aktywuje kontrolkę na tablicy rozdzielczej, co informuje kierowcę o konieczności sprawdzenia i ewentualnego uzupełnienia ciśnienia. Zgodnie z regulacjami prawnymi w wielu krajach, w tym w Unii Europejskiej i Stanach Zjednoczonych, nowe pojazdy muszą być wyposażone w takie systemy, co podkreśla ich znaczenie w poprawie bezpieczeństwa na drogach. W praktyce, regularne monitorowanie ciśnienia opon za pomocą TPMS może przyczynić się do przedłużenia ich żywotności i poprawy komfortu jazdy, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 17

Zleceniodawca poprosił o wymianę osłony przegubu znajdującego się na półosi napędowej. Przed odłączeniem przegubu z półosi specjalista powinien zaznaczyć ich wzajemne położenie w celu

A. zamontowania przegubu w kole
B. zachowania równowagi zespołu półoś-przegub
C. odpowiedniego umiejscowienia opasek zaciskowych
D. poprawnego ustawienia osłony na półosi
W kontekście wymiany osłony przegubu na półosi napędowej, istotne jest zrozumienie, że zachowanie wyważenia układu jest kluczowe dla prawidłowego funkcjonowania pojazdu. Wiele osób może myśleć, że odpowiednie umieszczenie opasek zaciskowych, zamontowanie przegubu w piaście koła lub prawidłowe umieszczenie osłony na półosi mają równie duże znaczenie. Jednak te aspekty są bardziej wtórne w stosunku do zachowania równowagi układu. Odpowiednie umiejscowienie opasek zaciskowych jest ważne, ale nie wpływa bezpośrednio na wyważenie układu, a ich głównym celem jest zapewnienie szczelności osłony, co zapobiega przedostawaniu się zanieczyszczeń. Montaż przegubu w piaście koła jest również istotny, jednak jego wyważenie jest najpierw determinowane przez relację pomiędzy półosią a przegubem. Kolejną kwestią jest umiejscowienie osłony, które w przypadku błędów niekoniecznie wpłynie na wyważenie, ale może w znacznym stopniu wpłynąć na trwałość osłony i wydajność całego układu. Dlatego, choć wszystkie te aspekty są ważne w kontekście serwisowania pojazdu, kluczowym punktem jest jednak zachowanie wyważenia układu, co powinno być zawsze na pierwszym miejscu podczas takich działań.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Przed przystąpieniem do pomiaru składu spalin w silniku ZI należy

A. skalibrować dymomierz
B. odłączyć akumulator
C. rozgrzać silnik pojazdu do osiągnięcia temperatury roboczej
D. usunąć nagar z układu wydechowego silnika
Rozgrzewanie silnika pojazdu do temperatury eksploatacyjnej przed rozpoczęciem pomiaru składu spalin jest kluczowym krokiem, który zapewnia wiarygodność i dokładność uzyskiwanych wyników. Silniki spalinowe, w tym silniki ZI (zapłon iskrowy), osiągają optymalną efektywność operacyjną oraz właściwe parametry spalania dopiero po osiągnięciu określonej temperatury. W niskich temperaturach, w których silnik nie jest w pełni rozgrzany, proces spalania może być nieefektywny, co prowadzi do zwiększonej emisji szkodliwych substancji, takich jak tlenki azotu (NOx) czy węglowodory niespalone (HC). Praktyczne zastosowanie tej wiedzy jest szczególnie istotne podczas diagnostyki, kontroli emisji spalin oraz przeglądów technicznych. Zgodnie z normami jakości powietrza i przepisami dotyczącymi emisji spalin, takie jak Euro 6, pomiar powinien być przeprowadzany w warunkach rzeczywistych, co obliguje do uwzględnienia pracy silnika w normalnej temperaturze eksploatacyjnej, aby uzyskać rzetelne dane do analizy i oceny stanu technicznego pojazdu.

Pytanie 20

W oznaczeniu opony 205/55 R15 82 T symbol T wskazuje na

A. indeks nośności
B. wysokość bieżnika
C. indeks prędkości
D. oponę bezdętkową
Symbol T w oznaczeniu opony 205/55 R15 82 T odnosi się do indeksu prędkości, co oznacza maksymalną prędkość, z jaką dana opona może być użytkowana. W przypadku symbolu T, maksymalna prędkość wynosi 190 km/h. Właściwy dobór indeksu prędkości jest kluczowy dla bezpieczeństwa i wydajności jazdy. Używając opon z odpowiednim indeksem prędkości, zapewniasz sobie stabilność i kontrolę pojazdu, szczególnie w warunkach wysokich prędkości. W praktyce, jeżeli zamierzasz używać pojazdu do jazdy szybko, ważne jest, aby opony miały odpowiedni indeks prędkości, dostosowany do stylu jazdy oraz przepisów ruchu drogowego. Przykładem zastosowania wiedzy o indeksach prędkości może być sytuacja, gdy planujesz dłuższą trasę autostradową; wybór opon z niższym indeksem prędkości może prowadzić do niebezpieczeństwa ich uszkodzenia oraz pogorszenia komfortu jazdy. Zgodnie z normami europejskimi, każdy producent opon jest zobowiązany do oznaczania indeksu prędkości na etykietach, co ułatwia konsumentom podejmowanie świadomych decyzji zakupowych.

Pytanie 21

Masa własna pojazdu to?

A. masa pojazdu razem z masą osób i przedmiotów, które się w nim znajdują
B. masa pojazdu z typowym wyposażeniem: paliwem, olejami, smarami oraz cieczami w ilościach nominalnych, bez kierowcy
C. maksymalna masa ładunku oraz osób, którą pojazd może przewozić
D. masa pojazdu z osobami oraz ładunkiem, gdy jest dopuszczony do ruchu na drodze
Masa własna pojazdu, określana jako masa pojazdu z jego normalnym wyposażeniem (paliwem, olejami, smarami i cieczami w ilościach nominalnych, bez kierującego), jest kluczowym parametrem w kontekście bezpieczeństwa i efektywności użytkowania pojazdu. Zdefiniowanie masy własnej jest niezbędne dla odpowiedniego obliczania parametrów eksploatacyjnych, takich jak maksymalna ładowność, która uwzględnia dodatkowe osoby i ładunek. Przykładowo, znając masę własną, można precyzyjnie obliczyć, ile dodatkowego ładunku pojazd może bezpiecznie przewieźć, co jest szczególnie ważne w branży transportowej, gdzie przekroczenie dozwolonej masy całkowitej pojazdu może prowadzić do poważnych konsekwencji prawnych oraz zwiększonego ryzyka wypadków. Standardy dotyczące obliczania masy własnej są regulowane przez przepisy prawa, które precyzują, jakie składniki muszą być uwzględnione, aby zapewnić jednolitość i bezpieczeństwo na drogach. Praktyczne zastosowanie tej wiedzy pozwala na optymalizację kosztów operacyjnych oraz zwiększenie efektywności transportu.

Pytanie 22

Jak dokonuje się bezkontaktowego pomiaru temperatury elementów silnika?

A. pirometrem
B. stroboskopem
C. multimetrem
D. refraktometrem
Pirometr to urządzenie, które umożliwia bezdotykowy pomiar temperatury obiektów, co czyni go idealnym narzędziem w kontekście monitorowania elementów silnika. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekty, co pozwala na ocenę ich temperatury bez fizycznego kontaktu. Przykładowo, w silnikach spalinowych, pirometry wykorzystywane są do kontrolowania temperatury głowicy cylindrów oraz układu wydechowego, co jest kluczowe dla optymalizacji wydajności silnika oraz zapobiegania uszkodzeniom spowodowanym przegrzaniem. Obecnie pirometry są standardem w diagnostyce silników, ponieważ pozwalają na szybkie i dokładne pomiary, eliminując ryzyko uszkodzenia komponentów. W przemyśle motoryzacyjnym, stosowanie pirometrów zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ISO 9001, zapewnia nie tylko wysoką jakość procesów, ale także bezpieczeństwo operacyjne. Dodatkowo, nowoczesne pirometry często wyposażone są w funkcje umożliwiające rejestrowanie i analizowanie danych, co wspiera procesy predykcyjnego utrzymania ruchu, zmniejszając koszty eksploatacji.

Pytanie 23

Optymalna grubość powłoki lakierniczej na elementach karoserii pojazdu to około

A. 250 µm
B. 150 µm
C. 0,1 mm
D. 0,01 mm
Grubość powłoki lakierniczej na nadwoziu powinna wynosić około 150 µm. To jest zgodne z tym, co mówią producenci i normy, takie jak ISO 2808. W praktyce to dość ważne, bo właściwa grubość lakieru naprawdę chroni auto przed korozją i innymi szkodliwymi czynnikami. Jak dajemy za cienki lakier, to auto szybko traci ładny wygląd, a takie zbyt grube mogą pękać i się łuszczyć. Warto też pamiętać, że podczas lakierowania dobrze jest używać natryskiwania elektrostatycznego, żeby uzyskać równą grubość. No i przygotowanie powierzchni przed malowaniem jest kluczowe, to na pewno wpływa na trwałość lakieru. Specjalistyczne laboratoria sprawdzają grubość powłok, żeby wszystko było na poziomie, co jest ważne dla długowieczności auta.

Pytanie 24

Do elementów systemu bezpieczeństwa pasywnego zalicza się

A. system stabilizacji toru jazdy
B. zestaw głośnomówiący do telefonu
C. asystent parkowania
D. pas bezpieczeństwa z napinaczem pasa
Pas bezpieczeństwa z napinaczem pasa jest kluczowym elementem biernego systemu bezpieczeństwa w pojazdach. Jego głównym zadaniem jest ochrona pasażerów przed skutkami nagłych zatrzymań oraz kolizji. Napinacz pasa działa w momencie zdarzenia, automatycznie napinając pas, co minimalizuje luz, a tym samym zmniejsza ryzyko obrażeń ciała. Dzięki temu pasażer jest lepiej utrzymywany w swoim miejscu, co ogranicza ruch ciała podczas zderzenia. W praktyce, zgodnie z normami bezpieczeństwa, każdy nowoczesny pojazd powinien być wyposażony w pasy bezpieczeństwa z napinaczami, co potwierdzają regulacje takie jak ECE R16. Warto również zaznaczyć, że pasy z napinaczami są często stosowane w połączeniu z innymi systemami, takimi jak poduszki powietrzne, co znacznie zwiększa poziom ochrony pasażerów w przypadku wypadku. Ich zastosowanie jest nie tylko standardem, ale również kluczowym elementem odpowiedzialności producentów samochodów za bezpieczeństwo użytkowników.

Pytanie 25

Areometr działa w oparciu o zmianę głębokości zanurzenia pływaka pomiarowego w elektrolicie w zależności od

A. temperatury krzepnięcia elektrolitu
B. gęstości elektrolitu
C. temperatury wrzenia elektrolitu
D. właściwości chemicznych elektrolitu
Areometr to takie fajne urządzenie, które mierzy gęstość cieczy, w której jest zanurzone. Działa to na zasadzie prawa Archimedesa, które mówi, że na ciało zanurzone w cieczy działa siła wyporu, równa ciężarowi wypartej cieczy. W praktyce, gdy pływak areometru zanużasz w jakimś płynie, jego głębokość zanurzenia zmienia się w zależności od gęstości tego płynu. Im cieplejsza ciecz, tym mniej pływak się zanurza, co pozwala na odczytanie gęstości na skali. Areometry są super popularne w laboratoriach chemicznych czy w przemyśle spożywczym, a także w elektrotechnice, gdzie pomagają w badaniach stężenia elektrolitów w akumulatorach. Ważne, żeby regularnie kalibrować te urządzenia, żeby były jak najdokładniejsze, co zresztą jest zgodne z normami ISO. Wiedza o tym, jak areometry funkcjonują w różnych elektrolitach, jest mega ważna w przemyśle, bo precyzyjny pomiar gęstości jest kluczowy dla jakości produktów.

Pytanie 26

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. DOHC
B. SOHC
C. OHV
D. OHC
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 27

Z wykorzystaniem popularnego czujnika zegarowego możliwe jest przeprowadzenie pomiaru z precyzją do

A. 0,001 mm
B. 0,1 mm
C. 0,01 mm
D. 0,0001 mm
Czujniki zegarowe, znane również jako mikrometry lub wskaźniki zegarowe, są kluczowymi narzędziami w inżynierii i metrologii, umożliwiającymi precyzyjne pomiary odchyleń w zakresie milimetra. Poprawna odpowiedź na pytanie dotyczące dokładności pomiaru, która wynosi 0,01 mm, jest zgodna z typowymi parametrami technicznymi stosowanych czujników. Te urządzenia często znajdują zastosowanie w przemyśle produkcyjnym, gdzie niezbędne jest kontrolowanie jakości wymiarów elementów mechanicznych. Na przykład, czujniki zegarowe są używane do pomiaru luzów w łożyskach, co pozwala na zapewnienie ich prawidłowego funkcjonowania i żywotności. W przypadku skomplikowanych konstrukcji inżynieryjnych, dokładność 0,01 mm jest wystarczająca do analizy i weryfikacji wymiarów, co jest zgodne z międzynarodowymi normami, takimi jak ISO 9001, które kładą nacisk na jakość procesów produkcyjnych. Użycie czujników zegarowych w połączeniu z innymi technikami pomiarowymi pozwala na uzyskanie rzetelnych danych, które są kluczowe dla optymalizacji procesów. Dodatkowo, znajomość zasad kalibracji tych czujników oraz ich regularne sprawdzanie jest istotne dla utrzymania dokładności pomiarów.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta wyprzedzenia sworznia zwrotnicy
B. zbieżności całkowitej
C. kąta pochylenia sworznia zwrotnicy
D. pochylenia koła jezdnego
Jak wiesz, jazda po płycie pomiarowej w stacji kontroli jest mega ważna dla sprawdzenia, jak dobrze ustawione są koła. Zbieżność całkowita to różnica w kącie kół przednich i to naprawdę wpływa na to, jak jedzie auto. Kiedy zbieżność jest źle ustawiona, opony szybciej się zużywają, auto gorzej się prowadzi, a paliwa idzie więcej. Na przykład, jeżeli zbieżność jest ujemna, to może się zdarzyć, że koła będą się ze sobą stykać, co jest niebezpieczne. Producent zawsze zaleca, żeby kontrolować te ustawienia regularnie, a szczególnie po wymianie opon czy naprawie zawieszenia. Dzięki tym pomiarom można wydłużyć życie opon i układu kierowniczego, co w dłuższej perspektywie się na pewno opłaca.

Pytanie 30

Aby uzupełnić poziom płynu w systemie hamulcowym, należy zastosować płyn oznaczony symbolem

A. ŁT4
B. 30W10
C. DOT
D. 40W10
Prawidłowa odpowiedź to DOT, co odnosi się do standardu klasyfikacji płynów hamulcowych. Płyny te są klasyfikowane na podstawie temperatury wrzenia oraz właściwości chemicznych. DOT (Department of Transportation) to oznaczenie stosowane w Stanach Zjednoczonych, które wskazuje, że dany płyn spełnia wymagania określone w normach dotyczących wydajności i bezpieczeństwa. Płyny hamulcowe oznaczone jako DOT są dostępne w różnych klasach, takich jak DOT 3, DOT 4 i DOT 5.1, które różnią się między sobą temperaturą wrzenia oraz odpornością na wilgoć. W praktyce, używanie odpowiedniego płynu hamulcowego jest kluczowe dla zapewnienia optymalnej wydajności układu hamulcowego, a także bezpieczeństwa pojazdu. Na przykład, podczas wymiany płynu hamulcowego w samochodzie, zaleca się stosowanie płynu zgodnego z odpornością materiałów uszczelniających w układzie. Przykładowo, wiele nowoczesnych systemów hamulcowych, zwłaszcza w pojazdach sportowych, wymaga płynów klasy DOT 4 lub DOT 5.1 ze względu na ich wyższą temperaturę wrzenia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

W nowoczesnych systemach zasilania silnika o zapłonie samoczynnym typu Commonrail, paliwo ulega sprężeniu do ciśnienia wynoszącego

A. 18 MPa
B. 1000 atm
C. 2000 bar
D. 10 kPa
Odpowiedź 2000 bar jest prawidłowa, ponieważ w nowoczesnych systemach zasilania silnika z zapłonem samoczynnym typu Commonrail, ciśnienie sprężania paliwa osiąga wartości rzędu 2000 bar, co odpowiada około 200 MPa. Taka wartość ciśnienia jest kluczowa dla efektywnego rozpylania paliwa w komorze spalania, co z kolei zapewnia optymalne warunki do spalania, zwiększając wydajność silnika oraz redukując emisję zanieczyszczeń. Nowoczesne wtryskiwacze paliwa są zaprojektowane do pracy w tych ekstremalnych warunkach, co pozwala na precyzyjne dawkowanie paliwa i lepsze spalanie. Przy tak wysokim ciśnieniu, paliwo atomizuje się na drobne krople, co sprzyja lepszemu wymieszaniu z powietrzem, prowadząc do bardziej efektywnego procesu spalania. Przykładowo, w silnikach wysokoprężnych wykorzystywanych w pojazdach osobowych oraz dostawczych, zastosowanie systemu Commonrail z ciśnieniem na poziomie 2000 bar pozwala na znaczną redukcję zużycia paliwa oraz emisji tlenków azotu (NOx), co jest zgodne z normami ekologicznymi Euro 6.

Pytanie 33

Jak przeprowadza się pomiar gęstości elektrolitu?

A. przy użyciu areometru
B. za pomocą analizatora
C. z wykorzystaniem amperomierza
D. z użyciem aerografu
Pomiar gęstości elektrolitu wykonuje się areometrem, który jest prostym i skutecznym narzędziem stosowanym w laboratoriach oraz w zastosowaniach przemysłowych. Areometr działa na zasadzie wyporu, co oznacza, że jego pomiar opiera się na zasadzie Archimedesa. Przy pomiarze gęstości elektrolitu, areometr zanurza się w cieczy, a jego wynik odczytuje się na skali umieszczonej na jego korpusie. W praktyce, dokładność pomiarów gęstości elektrolitu jest istotna, szczególnie w przypadku akumulatorów kwasowo-ołowiowych, gdzie gęstość elektrolitu informuje o stanie naładowania akumulatora. Standardy branżowe, takie jak ISO 2871, zalecają stosowanie areometrów do tego typu pomiarów, gdyż zapewniają one powtarzalność i dokładność wyników. Warto również zwrócić uwagę na to, że gęstość elektrolitu jest parametrem krytycznym w ocenie jego właściwości elektrochemicznych, co ma kluczowe znaczenie dla efektywności i długowieczności systemów zasilania.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie materiały stosuje się do produkcji wysoko obciążonych pierścieni tłokowych?

A. z stali żaroodpornej
B. z żeliwa sferoidalnego
C. z stali nierdzewnej
D. z stopów aluminium
Pierścienie tłokowe wysoko obciążone wykonuje się z żeliwa sferoidalnego (inaczej nazywanego żeliwem sferoidalnym lub duktalnym) ze względu na jego korzystne właściwości mechaniczne oraz odporność na ścieranie. Żeliwo sferoidalne charakteryzuje się lepszą wytrzymałością na rozciąganie oraz większą plastycznością w porównaniu do innych typów żeliwa, co czyni je idealnym materiałem do zastosowań w silnikach spalinowych oraz innych urządzeniach pracujących pod dużym obciążeniem. Dzięki swojej strukturze, żeliwo sferoidalne jest w stanie wytrzymać wysokie ciśnienia i temperatury, co jest kluczowe w kontekście pracy silników. W przemyśle motoryzacyjnym stosuje się je do produkcji pierścieni tłokowych, które muszą skutecznie uszczelniać komorę spalania, a także minimalizować zużycie paliwa. Zgodnie z normami branżowymi, takie pierścienie powinny utrzymać swoje właściwości w trudnych warunkach eksploatacyjnych, co w przypadku żeliwa sferoidalnego jest gwarantowane przez jego unikalne właściwości fizyczne i chemiczne.

Pytanie 36

Kiedy tłok silnika spalinowego znajduje się w górnym martwym punkcie, to przestrzeń nad nim określa objętość

A. całkowita cylindra
B. komory spalania
C. skokowa cylindra
D. skokowasilnika
Odpowiedź "komory spalania" jest prawidłowa, ponieważ w silniku spalinowym, gdy tłok znajduje się w Górnym Martwym Położeniu (GMP), przestrzeń nad tłokiem jest zdefiniowana jako komora spalania. Jest to miejsce, gdzie mieszanka paliwowo-powietrzna jest sprężana przed zapłonem oraz gdzie zachodzi proces spalania. Komora spalania ma istotny wpływ na wydajność silnika i jego osiągi. Właściwy kształt i objętość komory spalania mogą znacząco wpływać na efektywność spalania, co przekłada się na moc i moment obrotowy silnika. Przykładowo, w konstrukcji silników wyścigowych dąży się do optymalizacji komory spalania, aby maksymalizować moc oraz minimalizować emisję spalin. Zgodnie z dobrymi praktykami inżynieryjnymi, projektanci silników powinni zrozumieć dynamikę płynów oraz termodynamikę, aby osiągnąć najlepsze parametry pracy silnika i spełnić normy emisji spalin, co jest kluczowe w kontekście regulacji ochrony środowiska.

Pytanie 37

Duża ilość węglowodorów w spalinach sugeruje

A. o wysokiej liczbie oktanowej paliwa
B. o efektywnym spalaniu paliwa
C. o samozapłonie paliwa
D. o niewłaściwym spalaniu paliwa
Odpowiedzi sugerujące, że wysoka zawartość węglowodorów w spalinach świadczy o samozapłonie paliwa, dobrym spalaniu paliwa czy wysokiej liczbie oktanowej, są niepoprawne i opierają się na nieporozumieniach dotyczących procesu spalania. Samozapłon paliwa zachodzi, gdy temperatura i ciśnienie w cylindrze silnika są wystarczająco wysokie, co prowadzi do zapłonu mieszanki bez potrzeby użycia iskry. W takim przypadku nie oczekuje się, aby węglowodory były obecne w spalinach w dużych ilościach, ponieważ proces spalania jest całkowity. Z kolei dobre spalanie paliwa wiąże się z efektywną konwersją paliwa na energię, co powinno skutkować minimalizacją emisji węglowodorów. Wysoka liczba oktanowa paliwa oznacza, że jest ono bardziej odporne na samozapłon, co wprowadza zamieszanie w kontekście jakości spalania. W rzeczywistości, liczba oktanowa odnosi się do zdolności paliwa do opierania się przedwczesnemu zapłonowi w silnikach o zapłonie iskrowym, a nie do ilości węglowodorów w spalinach. Takie błędne rozumienie może prowadzić do niewłaściwej diagnozy problemów z silnikiem oraz nieefektywnego zarządzania emisjami. Warto zatem zgłębić temat procesów spalania, aby właściwie interpretować wyniki analizy spalin oraz wdrażać odpowiednie działania naprawcze.

Pytanie 38

Podczas inspekcji elementów systemu hamulcowego zauważono pęknięcia wentylowanych tarcz hamulcowych. W takim przypadku powinno się je

A. wymienić.
B. otrzeć.
C. zespawać.
D. przetoczyć.
Wymiana wentylowanych tarcz hamulcowych jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności układu hamulcowego. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów, takich jak nierównomierne hamowanie, drżenie kierownicy podczas hamowania, a nawet całkowita awaria hamulców. Zgodnie z normami branżowymi, tarcze hamulcowe powinny być wymieniane, gdy występują znaczące uszkodzenia, które mogą wpływać na ich funkcję. Przykładowo, w przypadku zauważenia pęknięć, które mogą rozwinąć się w większe uszkodzenia, nie należy ryzykować dalszej eksploatacji. W praktyce, technicy często dokumentują stan techniczny tarcz podczas przeglądów, co pozwala na szybkie podejmowanie decyzji o ich wymianie. Wymiana tarcz hamulcowych jest zatem nie tylko zgodna z dobrymi praktykami, ale także kluczowa dla bezpieczeństwa pojazdu i pasażerów. Tylko nowe, nieuszkodzone tarcze mogą zagwarantować odpowiednią wydajność hamowania oraz stabilność pojazdu w różnych warunkach drogowych.

Pytanie 39

W przypadku gdy u pracownika pojawią się pierwsze symptomy zatrucia tlenkiem węgla (ból głowy, uczucie zmęczenia, duszności oraz nudności), co należy zrobić w pierwszej kolejności?

A. umieścić poszkodowanego w bezpiecznej pozycji do momentu przybycia lekarza
B. wyprowadzić poszkodowanego na świeże powietrze
C. wywołać u poszkodowanego wymioty
D. podać poszkodowanemu leki przeciwbólowe
Wyprowadzenie poszkodowanego na świeże powietrze jest kluczowym działaniem w przypadku zatrucia tlenkiem węgla, ponieważ substancja ta jest bezbarwna i bezwonna, co utrudnia wczesne wykrycie zagrożenia. Objawy, takie jak ból głowy, duszności i nudności, są symptomami niedotlenienia organizmu, które mogą prowadzić do poważnych konsekwencji zdrowotnych, a nawet śmierci. Przeniesienie osoby poszkodowanej do dobrze wentylowanego pomieszczenia lub na zewnątrz zmniejsza stężenie tlenku węgla w organizmie, co może zminimalizować ryzyko poważnych uszkodzeń. Ważne jest, aby niezwłocznie wezwać pomoc medyczną, aby uzyskać profesjonalną opiekę. Zgodnie z wytycznymi organizacji zajmujących się zdrowiem i bezpieczeństwem, w takich sytuacjach należy zawsze priorytetowo traktować usunięcie osoby z miejsca zagrożenia. W praktyce, jeśli zauważysz objawy zatrucia tlenkiem węgla, natychmiast przystąp do ewakuacji poszkodowanego i zapewnij mu dostęp do świeżego powietrza, co jest kluczowym działaniem w ratowaniu zdrowia i życia.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.