Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 czerwca 2025 11:45
  • Data zakończenia: 7 czerwca 2025 11:54

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednej godziny
B. jednej zmiany
C. jednego tygodnia
D. jednego dnia
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 2

W celu przygotowania zapraw cementowo-wapiennych zimą, zaleca się wykorzystanie jako spoiwa

A. cementu hutniczego
B. wapna hydraulicznego
C. cementu portlandzkiego
D. wapna hydratyzowanego
Wybór wapna hydraulicznego jako spoiwa do zapraw cementowo-wapiennych w warunkach zimowych nie jest właściwy, gdyż tego typu wapno, mimo że posiada zdolność do twardnienia w wodzie, nie radzi sobie dobrze w niskich temperaturach. Wapno hydrauliczne wymaga określonej temperatury i wilgotności do skutecznego wiązania, a w zimowych warunkach może prowadzić do osłabienia struktury zaprawy. Z kolei cement hutniczy, który jest produktem ubocznym przemysłu stalowego, ma zastosowanie głównie w specjalistycznych konstrukcjach, ale jego użycie w standardowych zaprawach cementowo-wapiennych jest rzadkie i wymaga szczegółowych badań wytrzymałościowych, co czyni go niewłaściwym wyborem na zimę. Cement portlandzki, choć powszechnie stosowany w budownictwie, również nie jest idealnym rozwiązaniem na zimę, ponieważ jego proces schnięcia i twardnienia jest uzależniony od temperatury otoczenia, co w zimnych warunkach może prowadzić do problemów z utwardzeniem i trwałością. W praktyce błędne wnioski mogą wynikać z mylnego przekonania, że wszystkie rodzaje wapna i cementu mogą być stosowane zamiennie, co prowadzi do niedoceniania ich specyficznych właściwości oraz wpływu temperatury na procesy chemiczne zachodzące w zaprawach.

Pytanie 3

Proces docieplania metodą lekką mokrą zaczyna się od

A. instalacji listwy startowej
B. przymocowania siatki zbrojącej
C. przytwierdzenia materiału izolacyjnego
D. nałożenia tynku cienkowarstwowego
Wprowadzenie w błąd podczas planowania docieplenia metodą lekką mokrą może prowadzić do wielu problemów technicznych, które mogą wpłynąć na efektywność energetyczną budynku. Wklejenie siatki zbrojącej, choć istotne, nie powinno być pierwszym krokiem, ponieważ wymaga wcześniejszego przygotowania podłoża oraz ustabilizowania materiału izolacyjnego. Mieszanie kolejności czynności prowadzi do ryzyka, że siatka nie zostanie odpowiednio osadzone, co może skutkować jej odklejaniem się lub pękaniem tynku. Mocowanie materiału izolacyjnego powinno następować po stabilizacji listwy startowej. W przeciwnym razie, istnieje ryzyko, że izolacja nie będzie trwale przymocowana i może ulegać odkształceniom. Wykonanie tynku cienkowarstwowego jako pierwszego kroku jest nie tylko niemożliwe, ale także niezgodne z ogólnymi zasadami wykonywania prac budowlanych. Tynk wymaga solidnej podstawy, jaką zapewnia właściwie zamontowana listwa startowa oraz izolacja. Zrozumienie tych etapów jest kluczowe dla uniknięcia problemów z izolacyjnością oraz trwałością całej konstrukcji budowlanej, dlatego należy ściśle stosować się do sprawdzonych praktyk budowlanych.

Pytanie 4

Jeśli w dokumentacji technicznej stwierdzono: "(...) ściany zewnętrzne jednowarstwowe z ceramiki poryzowanej łączonej na pióro i wpust na zaprawie ciepłochronnej (T)(...)", to co to oznacza dla wykonywanego muru w kontekście spoin?

A. poziome oraz pionowe w pierwszej warstwie, a w wyższych jedynie pionowe
B. poziome w każdej warstwie
C. poziome oraz pionowe w miejscach łączenia bloczków
D. pionowe w każdej warstwie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W odpowiedzi wskazano, że w miejscach docięcia bloczków należy wykonać zarówno spoiny poziome, jak i pionowe, co jest zgodne z zasadami budowy murów z ceramiki poryzowanej. W przypadku jednowarstwowych ścian zewnętrznych wykonanych z bloczków łączonych na pióro i wpust, szczególne znaczenie ma prawidłowe wykonanie spoin, aby zapewnić odpowiednią nośność oraz szczelność muru. Spoiny poziome w miejscach docięcia bloczków są niezbędne, aby zminimalizować ryzyko powstawania mostków termicznych, które mogą negatywnie wpływać na efektywność energetyczną budynku. W miejscach, gdzie bloczki są cięte, spoiny pionowe również powinny być wykonane, aby zachować integralność muru oraz zapewnić odpowiednią stabilność konstrukcji. Dobre praktyki budowlane, takie jak te opisane w normie PN-EN 1996, zalecają stosowanie zaprawy ciepłochronnej w takich połączeniach, co dodatkowo poprawia właściwości izolacyjne i akustyczne ściany. Przykładem zastosowania tej zasady może być budowa domów jednorodzinnych, gdzie poprawne wykonanie spoin wpływa na komfort cieplny mieszkańców.

Pytanie 5

Na podstawie informacji podanych w instrukcji producenta oblicz, ile kg suchej zaprawy należy wsypać do 25 dm3 wody, aby zachować właściwe proporcje składników mieszanki.

Instrukcja producenta
Proporcje mieszania
woda/sucha mieszanka
0,2 dm3/kg
Wydajność1,5 kg/m2/mm
Czas zużycia zaprawyok. 2 godzin

A. 37,5 kg
B. 50 kg
C. 125 kg
D. 112,5 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 125 kg, ponieważ zgodnie z instrukcją producenta, na każdy kilogram suchej zaprawy potrzeba 0,2 dm³ wody. Obliczając ilość potrzebnej suchej zaprawy, dzielimy objętość wody (25 dm³) przez proporcję wody do suchej zaprawy (0,2 dm³/kg). W ten sposób uzyskujemy 25 dm³ / 0,2 dm³/kg = 125 kg. Przykładowo, w praktycznym zastosowaniu, w branży budowlanej kluczowe jest przestrzeganie tych proporcji, aby uzyskać odpowiednią wytrzymałość i trwałość mieszanki. Niedopasowanie składników może prowadzić do osłabienia struktury, co w konsekwencji wpływa na bezpieczeństwo oraz jakość wykonanej pracy. Dobre praktyki zakładają zawsze dokładne przeliczenie ilości składników przed przystąpieniem do mieszania, aby uniknąć strat materiałowych oraz czasowych. Przestrzeganie tych zasad jest istotne nie tylko w budownictwie, ale także w innych dziedzinach przemysłu, gdzie precyzyjne proporcje składników mają kluczowe znaczenie dla uzyskania pożądanych właściwości finalnego produktu.

Pytanie 6

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. betoniarki wolnospadowej
B. agregatu tynkarskiego
C. węzła betoniarskiego
D. wiertarki z mieszadłem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Betoniarka wolnospadowa jest odpowiednim narzędziem do sporządzania zapraw murarskich ogólnego przeznaczenia, szczególnie na małych budowach. Jej konstrukcja pozwala na efektywne mieszanie składników zaprawy, takich jak cement, piasek i woda, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. W betoniarce wolnospadowej materiały są wprowadzane do bębna, który obraca się, umożliwiając ich swobodne mieszanie. To podejście jest zgodne z najlepszymi praktykami budowlanymi, które podkreślają znaczenie używania odpowiednich narzędzi do uzyskania wysokiej jakości materiałów budowlanych. W sytuacjach, gdzie wydajność i jakość mieszanki są kluczowe, betoniarka wolnospadowa staje się idealnym wyborem, pozwalając na produkcję większej ilości zaprawy w krótkim czasie, co jest szczególnie istotne w przypadku prac wymagających dużej ilości zaprawy, takich jak murowanie. Dodatkowo, użycie betoniarki zmniejsza ryzyko błędów ludzkich w procesie mieszania, co przyczynia się do lepszej jakości końcowego produktu.

Pytanie 7

Podczas budowy ściany o wysokości do 2,5 m konieczne jest użycie rusztowania

A. na kozłach
B. ramowego
C. na wysuwnicach
D. wiszącego
Odpowiedź 'na kozłach' jest poprawna, ponieważ rusztowania tego typu są najczęściej stosowane przy murowaniu ścian o wysokości do 2,5 m. Kozły zapewniają stabilność i umożliwiają swobodne poruszanie się pracowników podczas prac budowlanych. W przypadku murowania, gdzie precyzja i kontrola są kluczowe, kozły umożliwiają łatwe dostosowanie wysokości oraz zapewniają wystarczającą powierzchnię roboczą na materiał. Dobrze zbudowane kozły powinny posiadać odpowiednie certyfikaty zgodności z normami bezpieczeństwa, takimi jak PN-EN 12811, co gwarantuje ich wytrzymałość i bezpieczeństwo użytkowania. Przykładem zastosowania może być budowa domu jednorodzinnego, gdzie robotnicy mogą łatwo ustawiać kozły w różnych miejscach, co przyspiesza i ułatwia proces murowania. Dodatkowo, korzystając z kozłów, można efektywnie wykorzystać przestrzeń roboczą, co jest niezwykle istotne na małych placach budowy.

Pytanie 8

Na podstawie danych z tabeli oblicz ilość piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,85304
1 : 0,25 : 3,75M20293340,93284

A. 0,47 m3
B. 0,93 m3
C. 0,95 m3
D. 0,45 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 0,47 m3, co wynika z zastosowania odpowiedniej proporcji do obliczenia ilości piasku potrzebnego do wykonania 0,5 m3 zaprawy cementowo-wapiennej M2. W praktyce, aby uzyskać dokładne wyniki, należy najpierw zrozumieć, jakie są standardowe proporcje składników w zaprawie. Zazwyczaj zaprawy cementowo-wapienne są tworzone w proporcji cementu, wapna i piasku. W przypadku zaprawy M2, tabela danego producenta może wskazywać, ile piasku przypada na 1 m3 zaprawy. Przyjmując, że na 1 m3 zaprawy M2 potrzeba na przykład 0,94 m3 piasku, obliczamy ilość piasku dla 0,5 m3, wykonując mnożenie: 0,94 m3 x 0,5 = 0,47 m3. Ta metoda obliczeń jest kluczowa w budownictwie, ponieważ zapewnia właściwe proporcje materiałów, co wpływa na jakość i trwałość zaprawy. Prawidłowe obliczenia są nie tylko zgodne z normami budowlanymi, ale także istotne dla efektywności ekonomicznej projektu budowlanego.

Pytanie 9

Stosunek objętościowy 1:3:12 określa składniki zaprawy cementowo-glinianej M 0,6:

A. cement: zawiesina gliniana: woda
B. cement: zawiesina gliniana: piasek
C. cement: woda: zawiesina gliniana
D. cement: piasek: zawiesina gliniana
Odpowiedź 'cement: zawiesina gliniana: piasek' jest prawidłowa, ponieważ proporcja objętościowa 1:3:12 odnosi się do składników zaprawy cementowo-glinianej M 0,6, gdzie cement jest jednym z głównych składników, a jego ilość w mieszance wynosi 1 część. Zawiesina gliniana, będąca materiałem wiążącym, ma 3 części, a piasek, który pełni rolę wypełniacza, stanowi 12 części. Zastosowanie takiej proporcji jest zgodne z najlepszymi praktykami w budownictwie, gdzie kluczowe jest uzyskanie odpowiednich właściwości mechanicznych oraz trwałości zaprawy. Przykładowo, w kontekście budowy murów czy tynków, stosowanie zaprawy o takiej proporcji przyczynia się do lepszej przyczepności i wytrzymałości na czynniki atmosferyczne. Zgodnie z normami, właściwe stosunki składników mogą znacznie wpłynąć na jakość konstrukcji, co podkreśla znaczenie przestrzegania tych proporcji w praktyce budowlanej.

Pytanie 10

Ze względu na swoje właściwości, zaprawa cementowa powinna być używana do realizacji

A. murów o charakterze tymczasowym
B. silnie obciążonych murów konstrukcyjnych
C. tynków w pomieszczeniach mieszkalnych
D. tynków o właściwościach ciepłochronnych
Zaprawa cementowa to naprawdę solidny materiał, który ma świetne właściwości, jeśli chodzi o wytrzymałość na ściskanie i odporność na warunki pogodowe. Dlatego używamy jej głównie w miejscach, gdzie ściany muszą dźwigać spore obciążenie, jak na przykład w wielopiętrowych budynkach. W takich przypadkach ważne jest, żeby zaprawa miała odpowiednią klasę wytrzymałości oraz dobrze przylegała do różnych powierzchni. Mury nośne w takich budynkach muszą być dobrze przygotowane, bo to klucz do bezpieczeństwa i trwałości całej konstrukcji. Jak mówi norma PN-EN 998-1, dobór zaprawy murarskiej powinien być zależny od specyficznych potrzeb projektu, więc dobrze wybrana zaprawa cementowa to naprawdę podstawa, żeby budowla przetrwała jak najdłużej i była funkcjonalna.

Pytanie 11

Jeśli koszty robocizny związane z ręcznym nałożeniem tynku szlachetnego nakrapianego na ścianach wynoszą 99,70 r-g na 100 m2, a ustalona stawka godzinowa to 15,00 zł, to całkowity koszt robocizny za 300 m2 wynosi?

A. 4 500,00 zł
B. 1 495,50 zł
C. 4 486,50 zł
D. 1 500,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie kosztu robocizny przy tynku szlachetnym nakrapianym można przeprowadzić na podstawie podanych danych. Jeśli nakłady robocizny wynoszą 99,70 zł na 100 m², to dla 300 m² koszt robocizny można obliczyć mnożąc tę stawkę przez trzy. Obliczenia wyglądają następująco: 99,70 zł * 3 = 299,10 zł. Następnie, aby uzyskać całkowity koszt robocizny, musimy policzyć liczbę godzin pracy. Przy stawce godzinowej wynoszącej 15,00 zł, całkowity koszt robocizny wynosi 299,10 zł * 15,00 zł = 4 486,50 zł. Taki sposób obliczania kosztów robocizny jest zgodny z praktykami branżowymi, które zalecają dokładne oszacowanie nakładów na podstawie jednostkowych stawek robocizny na określone powierzchnie. Zrozumienie tych obliczeń jest kluczowe w zarządzaniu kosztami i planowaniu budżetu w projektach budowlanych.

Pytanie 12

Przed przystąpieniem do nakładania tynku kategorii III na ścianę należy

A. oczyścić i nawilżyć obrzutkę
B. oczyścić i nawilżyć podłoże
C. zastosować preparat gruntujący na obrzutkę
D. wyrównać podłoże oraz pokryć je preparatem gruntującym
Wybór odpowiedzi, który sugeruje oczyszczenie i zwilżenie podłoża, jest nieadekwatny, ponieważ podłoże nie jest tym samym co obrzutka. Obrzutka, jako pierwsza warstwa tynku, wymaga szczególnej uwagi, a jej przygotowanie przed nałożeniem kolejnej warstwy jest kluczowe. Zastosowanie odpowiednich procedur przygotowawczych, takich jak oczyszczenie i zwilżenie obrzutki, jest fundamentem dla uzyskania prawidłowych właściwości tynku. Również pokrycie obrzutki preparatem gruntującym jest niewłaściwe, gdyż gruntowanie powinno być stosowane na odpowiednio przygotowane podłoże, a nie bezpośrednio na obrzutkę. Tego rodzaju działania mogą prowadzić do obniżenia przyczepności oraz jakości wykonania tynku. W przypadku wyrównania podłoża, należy pamiętać, że tego rodzaju prace powinny być przeprowadzone przed nałożeniem obrzutki, a nie po jej wykonaniu. Typowe błędy obejmują mylne rozumienie kolejności prac tynkarskich oraz niewłaściwe podejście do przygotowania powierzchni, co może skutkować poważnymi problemami w późniejszym etapie, takimi jak odspajanie się tynku czy pojawianie się pęknięć. Dlatego tak istotne jest, aby przed przystąpieniem do tynkowania mieć pełne zrozumienie procesu oraz stosować się do najlepszych praktyk w budownictwie.

Pytanie 13

Aby zmniejszyć ilość wody w betonie przy temperaturze otoczenia od +5°C do +10°C, warto zastosować dodatek

A. uszczelniającą
B. uplastyczniającą
C. napowietrzającą
D. przeciwmrozową
Odpowiedź "uplastyczniającą" jest prawidłowa, ponieważ domieszki uplastyczniające są stosowane w celu poprawy plastyczności mieszanki betonowej, co pozwala na zmniejszenie ilości wody potrzebnej do uzyskania odpowiedniej konsystencji. W temperaturach od +5°C do +10°C, co jest dość chłodnym zakresem, woda w mieszance betonowej może mieć tendencję do zamarzania lub opóźnienia w związaniu. Dodając domieszkę uplastyczniającą, możemy zredukować stosunek wody do cementu, co z kolei poprawia moc i trwałość betonu. Przykłady zastosowania domieszek uplastyczniających obejmują produkcję betonów architektonicznych, gdzie estetyka i jednorodność mieszanki są kluczowe, oraz w sytuacjach, gdy wymagane są wyspecjalizowane właściwości, takie jak odporność na mrozy. Zgodnie z normami PN-EN 206 oraz PN-EN 934-2, użycie domieszek powinno być poparte odpowiednimi badaniami, aby zapewnić zgodność z wymaganiami projektowymi oraz trwałością konstrukcji.

Pytanie 14

Perlit to lekkie materiał budowlany, używany do wytwarzania zapraw

A. kwasoodpornych
B. ciepłochronnych
C. szamotowych
D. krzemionkowych
Perlit to materiał o doskonałych właściwościach izolacyjnych, który znajduje szerokie zastosowanie w budownictwie, zwłaszcza w produkcji zapraw ciepłochronnych. Dzięki swojej porowatej strukturze, perlit skutecznie zatrzymuje ciepło, co przyczynia się do poprawy efektywności energetycznej budynków. W praktyce, dodawanie perlitu do zapraw murarskich i tynków zwiększa ich zdolności izolacyjne, co jest szczególnie ważne w kontekście budownictwa pasywnego i energooszczędnego. Stosowanie perlitu w zaprawach ciepłochronnych pozwala także na redukcję masy materiału budowlanego, co przekłada się na łatwiejszy transport i aplikację. Ponadto, perlit jest materiałem niepalnym, co zwiększa bezpieczeństwo budynków. Warto podkreślić, że w branży budowlanej często korzysta się z norm i standardów dotyczących izolacji termicznej, takich jak PN-EN 13162, które uwzględniają właściwości materiałów izolacyjnych, w tym perlitu.

Pytanie 15

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 10,125 kg
B. 10 125 kg
C. 1 012,5 kg
D. 101,25 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.

Pytanie 16

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100

A. ok. 1200 kg
B. ok. 400 kg
C. ok. 1920 kg
D. ok. 4800 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 17

Jaką wytrzymałość ma klasa zaprawy na

A. ugięcie
B. przesuwanie
C. ściśnięcie
D. rozciąganie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 18

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Przesuwając gąbką po tynku
B. Uderzając w powierzchnię delikatnym młotkiem
C. Pocierając powierzchnię tynku dłonią
D. Zarysowując powierzchnię przy pomocy gwoździa
Prawidłowa odpowiedź opiera się na metodzie oceny gładkości tynków, która polega na bezpośrednim pocieraniu powierzchni dłonią. Ta technika pozwala na bezpośrednie odczucie ewentualnych nierówności, chropowatości czy innych defektów, które mogą być niewidoczne dla oka. Umożliwia to sprawdzenie, czy tynk spełnia wymagania w zakresie estetyki i funkcjonalności, które są kluczowe w branży budowlanej. W praktyce, podczas odbioru robót tynkarskich, inspektorzy często stosują tę metodę, aby szybko ocenić jakość wykonania. Gdy powierzchnia jest gładka, tynk jest zazwyczaj uznawany za właściwie nałożony, co jest zgodne ze standardami branżowymi określającymi dopuszczalne odchylenia i wymagania dotyczące gładkości. Warto również zauważyć, że odpowiednia gładkość tynków ma wpływ na późniejsze procesy malarskie czy tapetowania, dlatego kontrola ta jest niezbędna w każdym etapie budowy.

Pytanie 19

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. na kozłach
B. ramowe
C. wiszące
D. stojakowe
Odpowiedzi stojakowe, wiszące oraz ramowe nie są najlepszym wyborem do zastosowania podczas rozbiórki ścianek działowych z kilku istotnych powodów. Rusztowania stojakowe, choć stabilne, zazwyczaj zajmują więcej miejsca i mogą ograniczać dostęp do obszaru pracy, co jest niepraktyczne w wąskich korytarzach czy pomieszczeniach biurowych. Ich konstrukcja nie pozwala na elastyczne dostosowanie wysokości, co może prowadzić do ograniczeń w efektywności wykonywanych prac. Rusztowania wiszące, z kolei, są dedykowane do zastosowań na elewacjach budynków lub pracach na wysokościach, co czyni je nieodpowiednimi w sytuacjach, gdy prace odbywają się blisko podłoża. W sytuacjach, gdy konieczne jest wykonywanie precyzyjnych cięć lub demontażu ścianek działowych, rusztowania wiszące mogą stwarzać niebezpieczeństwo i utrudniać kontrolę nad wykonywanymi zadaniami. Ostatecznie, rusztowania ramowe, choć popularne w różnych zastosowaniach budowlanych, nie zawsze zapewniają pożądaną elastyczność i łatwość dostępu do zróżnicowanych wysokości, co jest istotne w przypadku prac związanych z demontażem ścianek działowych. Właściwe zrozumienie zastosowań różnych typów rusztowań jest kluczowe, aby uniknąć nieefektywności i ryzyka podczas realizacji projektów budowlanych.

Pytanie 20

Jakie są zasady bezpiecznej rozbiórki muru według przepisów?

A. Mur należy rozbierać warstwami od góry do dołu, a cegły spuszczać zsypem
B. Pas muru o wysokości do 50 cm należy podciąć, a pokruszone fragmenty spuszczać za pomocą suwnicy pochyłej
C. Mur należy rozbierać w pionowych pasach, a odzyskane cegły układać na stropie
D. Mur o wysokości kondygnacji należy przewrócić na strop, a pokruszone materiały spuszczać specjalną rynną
Rozbiórka ściany warstwami od góry do podłogi jest najbezpieczniejszą i najbardziej zalecaną metodą, ponieważ minimalizuje ryzyko upadku materiałów i zapewnia lepszą kontrolę nad procesem demontażu. Pracownicy mogą od razu usuwać każdą warstwę, co pozwala na dokładne sprawdzenie struktury podczerwonej, eliminując ryzyko zawalenia się niekontrolowanych fragmentów. Zsyp do transportu cegieł dalej obniża ryzyko - umożliwia bezpieczne usuwanie materiałów bez potrzeby ich przenoszenia w sposób ręczny, co z kolei ogranicza ryzyko kontuzji. Tego typu technika jest zgodna z normami BHP i praktykami inżynieryjnymi, które zalecają ograniczenie kontaktu pracowników z opadającymi materiałami. Przykłady zastosowania tej metody można znaleźć w projektach renowacyjnych, gdzie kluczowe jest zachowanie bezpieczeństwa oraz ograniczenie uszkodzenia istniejącej struktury budynku, co jest szczególnie istotne w obszarach miejskich z gęstą zabudową.

Pytanie 21

Do wypełnienia luk w ścianach z pełnej cegły należy zastosować

A. pustaków ceramicznych
B. cegieł pełnych
C. cegieł z otworami
D. bloczków gazobetonowych
Cegły pełne są materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością i trwałością, co czyni je idealnym rozwiązaniem do uzupełniania ubytków w ścianach z cegły pełnej. Użycie cegieł pełnych zapewnia spójność strukturalną oraz estetyczną, ponieważ ich właściwości mechaniczne i kolorystyka są zbliżone do oryginalnych materiałów. W praktyce, przy renowacji lub naprawie starych budynków, cegły pełne stosuje się w miejscach, gdzie wymagana jest wysoka nośność i odporność na czynniki atmosferyczne. Dodatkowo, stosowanie tego samego rodzaju cegły w naprawie zapobiega pojawieniu się różnic w rozszerzalności cieplnej między różnymi materiałami, co może prowadzić do pęknięć. W budownictwie zaleca się przestrzeganie standardów, takich jak PN-EN 771-1, które określają wymagania dla cegieł i innych elementów murowych, co podkreśla znaczenie stosowania odpowiednich materiałów.

Pytanie 22

Jakie jest spoiwo w zaprawach mineralnych?

A. żywica
B. cement
C. akryl
D. silikon
Silikon, akryl i żywica to materiały, które mają różne zastosowania w budownictwie i innych dziedzinach, jednak nie są one spoiwami zapraw mineralnych. Silikon jest przede wszystkim stosowany jako materiał uszczelniający i wypełniający, charakteryzujący się elastycznością oraz odpornością na działanie wody. Jest używany do uszczelniania połączeń w miejscach narażonych na ruch lub ściskanie, ale nie ma właściwości twardnienia jak cement. Akryl, z kolei, to materiał, który ma zastosowanie w produkcji farb, uszczelniaczy oraz jako składnik w niektórych zaprawach, jednak jego zastosowanie jest bardziej ograniczone w kontekście budownictwa, a jego właściwości nie są porównywalne z cementem w kontekście tworzenia trwałych struktur. Żywica to materiał, który jest wykorzystywany w różnych technologiach, w tym w wytwarzaniu kompozytów, ale jej zastosowanie jako spoiwo w zaprawach mineralnych jest niewłaściwe. Często powodem błędnego wyboru materiału jest mylenie funkcji zaprawy z innymi rodzajami materiałów budowlanych. Różnorodność spoiw budowlanych sprawia, że kluczowe jest zrozumienie ich właściwości oraz odpowiednie ich dobieranie do konkretnych zastosowań w budownictwie. W przypadku zapraw mineralnych, cement jest niezastąpiony ze względu na swoje właściwości wiążące oraz zdolność do tworzenia mocnych, trwałych połączeń w strukturze.

Pytanie 23

Fabrycznie przygotowane tynki akrylowe w pojemnikach wymagają przed zastosowaniem

A. dodania utwardzacza
B. wymieszania bez dodatków
C. wymieszania z wodą
D. dodania pigmentu
Dodawanie utwardzacza do tynków akrylowych jest niewłaściwe, ponieważ te produkty są już zoptymalizowane do użycia w formie gotowej i nie wymagają dodatkowego utwardzenia. Utwardzacze są często stosowane w systemach epoksydowych czy poliuretanowych, gdzie ich rola polega na przyspieszaniu procesu utwardzania materiału. W przypadku tynków akrylowych, ich skład chemiczny został zaprojektowany tak, aby zapewnić odpowiednią twardość i elastyczność bez dodatkowych modyfikacji. Również dodawanie wody do tynków akrylowych może prowadzić do zmniejszenia ich lepkości oraz właściwości przyczepnych, co jest przeciwwskazane w zastosowaniach budowlanych. Woda może wprowadzać zmiany w proporcjach substancji czynnych, co negatywnie wpłynie na końcowy efekt oraz trwałość powłok. Dodawanie pigmentu przed użyciem jest również niewskazane, ponieważ tynki akrylowe są często już pigmentowane w procesie produkcyjnym, a dodatkowe ilości pigmentu mogą prowadzić do niejednorodności koloru oraz zmiany właściwości aplikacyjnych. Dlatego kluczowe jest przestrzeganie zaleceń producenta dotyczących przygotowania i stosowania tynków akrylowych, aby uniknąć powszechnych błędów, które mogą wpłynąć na jakość i trwałość wykonania.

Pytanie 24

Jaką część konstrukcyjną należy umieścić bezpośrednio nad otworem okiennym?

A. Nadproże
B. Ławę podokaenną
C. Filar międzyokienny
D. Gzyms
Nadproże to naprawdę istotny element w budowie, który montujemy tuż nad oknem. Jego głównym zadaniem jest przenoszenie obciążeń z góry, żeby ściana była stabilna i nie zaczęły się robić pęknięcia. Z praktyki wiem, że najczęściej robimy je z betonu, stali, a czasami też z drewna, zależnie od tego, co jest w projekcie. Ważne, żeby nadproże było dobrze zaprojektowane, bo jego rozmiar i nośność muszą pasować do obciążeń, które będzie musiało wytrzymać. W budownictwie mamy takie normy, jak Eurokody, które podkreślają, że trzeba przeprowadzić obliczenia, aby upewnić się, że wszystko będzie bezpieczne i trwałe. Dobrze też pamiętać o izolacji termicznej nadproża, bo to znacznie poprawia efektywność energetyczną budynku.

Pytanie 25

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Ceglane
B. Drewniane
C. Z betonu zwykłego
D. Z betonu komórkowego
Odpowiedź dotycząca podłoża drewnianego jest prawidłowa, ponieważ przed otynkowaniem należy stosować stalową siatkę podtynkową w celu zapewnienia lepszej przyczepności tynku do powierzchni. Drewno, w przeciwieństwie do innych materiałów budowlanych, posiada właściwości, które mogą prowadzić do odkształceń i pęknięć. Stalowa siatka działa jako stabilizator, zapobiegając pękaniu tynku, co jest szczególnie istotne w przypadku drewnianych konstrukcji. Zastosowanie siatki podtynkowej jest również zgodne z normami budowlanymi, które zalecają takie rozwiązania w sytuacjach, gdy tynk ma być aplikowany na materiałach, które mogą się kurczyć lub rozszerzać. Przykładowo, w budownictwie mieszkaniowym, gdzie często stosuje się drewno jako materiał konstrukcyjny, zastosowanie siatki podtynkowej zwiększa trwałość i estetykę wykończenia. Dobrą praktyką jest także wykorzystanie siatek o odpowiedniej gęstości otworów, co jeszcze bardziej podnosi ich efektywność.

Pytanie 26

Tynki przeznaczone do użytku na zewnątrz obiektów powinny wyróżniać się wysoką

A. mrozoodpornością
B. nasiąkliwością
C. kapilarnością
D. higroskopijnością
Zaprawy tynkarskie przeznaczone do stosowania na zewnątrz budynków muszą charakteryzować się mrozoodpornością, aby zapewnić trwałość i ochronę elewacji przed szkodliwym wpływem niskich temperatur oraz zjawisk atmosferycznych. Mrozoodporność oznacza, że materiał jest odporne na cykle zamrażania i rozmrażania, co jest kluczowe w klimacie, gdzie występują takie warunki. W praktyce, użycie zaprawy mrozoodpornej minimalizuje ryzyko pęknięć, łuszczenia się tynku oraz innych uszkodzeń, które mogą prowadzić do konieczności kosztownych napraw. W standardach budowlanych, takich jak PN-EN 998-1, określone są wymagania dotyczące zapraw tynkarskich, w tym odporności na działanie mrozu. Przykładem zastosowania są budynki jednorodzinne oraz wielorodzinne, gdzie elewacja narażona jest na działanie zmiennych warunków atmosferycznych. Osoby budujące lub odnawiające elewacje powinny zawsze wybierać materiały certyfikowane pod kątem mrozoodporności, aby zagwarantować wysoką jakość i trwałość wykończenia."

Pytanie 27

Oblicz płatność dla tynkarza za nałożenie tynku zwykłego z obu stron ściany o wymiarach 5×3 m, jeśli stawka za godzinę pracy tynkarza wynosi 15,00 zł, a norma wykonania tego tynku to
1,2 r-g/m2.

A. 450,00 zł
B. 270,00 zł
C. 540,00 zł
D. 225,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wynagrodzenie tynkarza za wykonanie tynku zwykłego, należy najpierw określić powierzchnię ściany, którą należy otynkować. Ściana o wymiarach 5 m na 3 m ma powierzchnię wynoszącą 15 m². Ponieważ tynk ma być nałożony po obu stronach ściany, całkowita powierzchnia do tynkowania wynosi 30 m² (15 m² x 2). Następnie, patrząc na normę pracy, która wynosi 1,2 r-g/m², możemy obliczyć, ile roboczogodzin jest potrzebnych do wykonania tynku na tej powierzchni. Obliczamy to mnożąc 30 m² przez 1,2 r-g/m², co daje 36 roboczogodzin. Przy stawce 15,00 zł za godzinę, całkowite wynagrodzenie tynkarza wyniesie 36 r-g x 15,00 zł/r-g, co daje 540,00 zł. Praktyczne zastosowanie tej wiedzy jest istotne w zakresie budownictwa i wykończeń wnętrz, gdzie precyzyjne obliczenia kosztów pracy i materiałów są kluczowe dla efektywnego zarządzania projektem.

Pytanie 28

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Budowle z konstrukcją szkieletową
B. Konstrukcje mostowe
C. Świątynie
D. Obiekty przemysłowe
Mosty to takie specjalne budowle, które zostały zaprojektowane po to, żebyśmy mogli przejeżdżać nad różnymi przeszkodami, jak rzeki czy doliny. W budowie mostów wykorzystuje się różne materiały, takie jak stal czy beton, bo muszą być mocne i trwałe. W inżynierii transportowej mosty są bardzo ważne, bo ułatwiają nam przemieszczanie się. Weźmy na przykład Most Golden Gate w San Francisco czy Most Millau we Francji - oba są nie tylko funkcjonalne, ale też piękne pod względem architektury. Kiedy projektuje się mosty, to trzeba wziąć pod uwagę różne normy i standardy, na przykład Eurokod, które mówią, jak powinny być bezpieczne i solidne. Budowa mostów to niełatwa sprawa, bo trzeba analizować różne czynniki, takie jak obciążenia, warunki gruntowe czy wpływ środowiska. Dlatego mosty są dość skomplikowanymi konstrukcjami, które wymagają wiedzy z różnych dziedzin.

Pytanie 29

Jakie materiały są wymagane do naprawy pojedynczych pęknięć w murze o głębokości przekraczającej 30 mm?

A. Cięgna z prętów stalowych i kątowniki mocujące
B. Klamry stalowe Ø6-8 mm oraz zaczyn gipsowy
C. Kotwy stalowe rozporowe gwintowane oraz mieszanka betonowa
D. Klamry stalowe Ø15-18 mm oraz zaczyn cementowy
Wybór klamr stalowych Ø15-18 mm oraz zaczynu cementowego do naprawy pęknięć muru o głębokości większej niż 30 mm jest uzasadniony ze względu na wysoką wytrzymałość materiałów oraz ich zdolność do zapewnienia stabilności strukturalnej. Klamry stalowe są stosowane w celu wzmocnienia połączeń w murze, co jest kluczowe w przypadku głębokich pęknięć. Dzięki odpowiedniej średnicy klamr, możliwe jest efektywne przeniesienie obciążeń na otaczające materiały. Zaczyn cementowy, z kolei, charakteryzuje się doskonałymi właściwościami wiążącymi oraz odpornością na działanie czynników atmosferycznych. W praktyce, taka kombinacja materiałów pozwala nie tylko na skuteczne wypełnienie pęknięć, ale także na ich długotrwałe zabezpieczenie przed dalszymi uszkodzeniami. Stosowanie klamr stalowych w połączeniu z zaczynem cementowym jest zgodne z dobrymi praktykami budowlanymi, które wskazują na konieczność używania wytrzymałych materiałów w przypadku napraw strukturalnych.

Pytanie 30

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1/2 cegły
B. 2 cegieł
C. 1 cegły
D. 1/4 cegły
Wykorzystanie pustek w murze jest kluczowym zagadnieniem w budownictwie, jednak odpowiedzi sugerujące głębokości 1/2 cegły, 1 cegłę oraz 2 cegły są błędne. W przypadku głębokości 1/2 cegły, można napotkać problemy związane z nadmiernym osłabieniem struktury muru, co prowadzi do zwiększonego ryzyka pęknięć i zniekształceń. Tego rodzaju pustki mogą powodować nierównomierne osiadanie budynku, a także wpływać negatywnie na jego trwałość. Głębsze pustki, takie jak 1 cegła czy 2 cegły, w ogóle nie spełniają zamierzonej funkcji, gdyż eliminują zasadniczą korzyść, jaką jest kontrolowanie ruchów konstrukcji. Zbyt duże pustki mogą wprowadzać do muru nadmierne luki, które osłabiają spójność materiałów budowlanych i prowadzą do problemów z izolacją termiczną oraz akustyczną. Ponadto, błędne przekonanie o tym, że większe pustki mogą zwiększać wentylację muru, jest mylne, gdyż może to prowadzić do niekontrolowanego przepływu powietrza i w konsekwencji do zawilgocenia. Znajomość właściwych standardów i praktyk budowlanych, w tym zasad dotyczących głębokości pustek, jest kluczowa dla osiągnięcia stabilności i trwałości obiektów budowlanych.

Pytanie 31

Po zakończeniu nakładania tynków gipsowych, ich odbiór może nastąpić najwcześniej po upływie

A. 5 dni
B. 7 dni
C. 4 dni
D. 2 dni
Odpowiedź 7 dni jest prawidłowa, ponieważ czas schnięcia tynków gipsowych w warunkach normalnych wynosi zazwyczaj od 5 do 7 dni. Zgodnie z normami budowlanymi, podczas odbioru tynków gipsowych istotne jest, aby materiał był odpowiednio utwardzony, co pozwala uniknąć późniejszych problemów, takich jak pęknięcia, odpadanie tynku czy problemy z przyczepnością farb i innych powłok. Przykładowo, w przypadku tynków wewnętrznych, zaleca się, aby przed malowaniem lub aplikacją innych wykończeń, tynki miały czas na pełne wyschnięcie. W praktyce, jeśli odbiór nastąpi zbyt wcześnie, może to prowadzić do katastrofalnych skutków, takich jak deformacje czy ogólne obniżenie jakości wykonania. Dobre praktyki budowlane podkreślają, że należy brać pod uwagę również warunki atmosferyczne, takie jak temperatura i wilgotność powietrza, które mogą wpływać na czas schnięcia tynku. W związku z tym, zdecydowanie warto przestrzegać zalecenia dotyczącego 7 dni, aby zapewnić trwałość i estetykę wykonania.

Pytanie 32

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. dziurawki
B. kratówki
C. pełnej
D. szczelinówki
Nadproża sklepione, czyli te łuki, są mega ważne w budowlance, bo przenoszą ciężar z góry na boki. W tym przypadku cegła pełna jest wręcz niezbędna, bo ma super właściwości. Jest gęsta i naprawdę wytrzymała na ściskanie, idealna do robienia nadproży, które muszą wytrzymać sporo ciężaru. Cegła pełna daje też lepszą izolację akustyczną i cieplną w porównaniu do innych cegieł. Przykładem mogą być stare budynki, gdzie często spotykamy nadproża z cegły pełnej – to zgodne z zasadami ochrony naszego dziedzictwa kulturowego, a przy tym dobre dla budowlanych praktyk. Normy budowlane też mówią, że trzeba używać materiałów o odpowiednich parametrach wytrzymałościowych w takich konstrukcjach nośnych.

Pytanie 33

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)

A. 225 cm
B. 150 cm
C. 250 cm
D. 200 cm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 250 cm jest prawidłowa, ponieważ zgodnie z zasadami projektowania konstrukcji, pręty zbrojeniowe powinny wystawać poza otwór okienny, aby zapewnić odpowiednią nośność oraz stabilność. W tym przypadku, otwór o szerokości 150 cm wymaga, aby pręty zbrojeniowe były dłuższe o 0,5 metra z każdej strony, co daje dodatkowe 100 cm. Suma długości otworu i wystających prętów zbrojeniowych wynosi więc 250 cm. W praktyce, właściwe zbrojenie jest kluczowe dla zapobiegania pękaniu betonu oraz zwiększenia trwałości konstrukcji. Dobre praktyki w budownictwie zalecają stosowanie prętów zbrojeniowych zgodnie z normami Eurokod, które definiują szczegółowe wymagania dotyczące ich długości i umiejscowienia. Ponadto, prawidłowe zbrojenie wokół otworów, takich jak okna czy drzwi, jest niezbędne dla zachowania integralności strukturalnej budynku oraz zapewnienia bezpieczeństwa jego użytkowników.

Pytanie 34

Aby naprawić uszkodzony narożnik muru, w którym konieczna jest wymiana cegieł, zbudowanego z cegły ceramicznej pełnej klasy 15 na zaprawie cementowo-wapiennej M15, należy użyć cegieł

A. ceramiczne pełne klasy 15
B. kratówki klasy 15
C. ceramiczne pełne klasy 20
D. klinkierowe klasy 20
Odpowiedź "ceramiczne pełne klasy 15" jest poprawna, ponieważ zachowuje spójność z materiałem, z którego został wykonany oryginalny mur. Cegły ceramiczne pełne klasy 15 charakteryzują się odpowiednimi właściwościami mechanicznymi i trwałością, co zapewnia ich kompatybilność z zaprawą cementowo-wapienną M15 używaną do budowy muru. Zastosowanie identycznego materiału jest kluczowe dla utrzymania jednorodności i stabilności strukturalnej. W praktyce, przy wymianie cegieł, szczególnie w narożnikach, kluczowe jest, aby nowo zastosowane cegły miały podobne właściwości, aby unikać problemów związanych z różnicami w rozszerzalności cieplnej czy absorpcji wilgoci. Ponadto, zachowanie klasy 15 w cegłach zapewnia odpowiednią nośność i odporność na czynniki zewnętrzne, co jest zgodne z normami budowlanymi. Warto pamiętać, że użycie cegieł o wyższej klasie, takich jak klasy 20, mogłoby wprowadzić niepożądane napięcia w strukturze muru, co w dłuższej perspektywie mogłoby prowadzić do uszkodzeń murów.

Pytanie 35

Jaki będzie koszt mieszanki betonowej potrzebnej do zbudowania dwóch słupów o wymiarach 60×60 cm i wysokości 3 m każdy, zakładając, że norma zużycia mieszanki betonowej wynosi 1,02 m3/m3, a cena 325,00 zł/m3?

A. 702,00 zł
B. 358,02 zł
C. 351,00 zł
D. 716,04 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczanie kosztu mieszanki betonowej do zrobienia dwóch słupów o wymiarach 60 na 60 cm i wysokości 3 metry zaczynamy od wyliczenia objętości jednego słupa. Tak więc 60 cm na 60 cm daje nam 0,6 metra na 0,6 metra, co w rezultacie to 0,36 metra kwadratowego. Potem mnożymy to przez wysokość, czyli 0,36 m² pomnożone przez 3 metry daje 1,08 metra sześciennego. Ponieważ mamy dwa słupy, całkowita objętość betonu wynosi 1,08 metra sześciennego razy 2, co daje 2,16 metra sześciennego. Właściwie licząc zużycie mieszanki betonowej, zakładając normę 1,02 m³/m³, wychodzi nam 2,16 metra sześciennego razy 1,02, co daje około 2,20 metra sześciennego mieszanki. Na końcu, żeby obliczyć koszt, mnożymy to przez cenę za m³ betonu, na przykład 2,20 m³ razy 325 zł za m³ wychodzi 716,04 zł. Dobre obliczenia i znajomość norm w budownictwie są na prawdę istotne, bo to pomaga zaplanować wydatki na materiały budowlane w projekcie.

Pytanie 36

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284

A. 145,5 kg cementu, 1,410 m3 piasku
B. 186,0 kg cementu, 1,425 m3 piasku
C. 160,5 kg cementu, 1,410 m3 piasku
D. 107,0 kg cementu, 1,425 m3 piasku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "160,5 kg cementu, 1,410 m3 piasku" jest prawidłowa, ponieważ została obliczona zgodnie z proporcjami podanymi w tabeli dla zaprawy cementowo-wapiennej M2. W celu określenia ilości cementu i piasku potrzebnych do wykonania 1,5 m3 zaprawy, należy najpierw ustalić wartości dla 1 m3, a następnie przemnożyć je przez 1,5. Dla zaprawy M2 standardowe proporcje to 107 kg cementu na 1 m3 i 0,94 m3 piasku. Przemnażając te wartości przez 1,5, uzyskujemy 160,5 kg cementu oraz 1,410 m3 piasku. Tego typu obliczenia są fundamentalne w budownictwie, gdzie precyzyjne określenie proporcji materiałów ma kluczowe znaczenie dla jakości i trwałości konstrukcji. Stosowanie odpowiednich norm, takich jak PN-EN 197-1, gwarantuje, że zaprawa osiągnie wymagane właściwości mechaniczne i trwałość. W praktyce, dokładne obliczenia i właściwe proporcje składników wpływają na zachowanie zaprawy w różnych warunkach atmosferycznych oraz jej odporność na czynniki zewnętrzne. Istotne jest również, aby przed rozpoczęciem prac budowlanych zasięgnąć porady specjalistów, którzy mogą wskazać właściwe proporcje i metody mieszania.

Pytanie 37

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
B. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
C. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
D. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji objętościowej 1:2,5:10,5 wymaga zastosowania odpowiednich ilości składników, które są kluczowe dla uzyskania właściwych właściwości mechanicznych i trwałości zaprawy. Cement, wapno i piasek odgrywają fundamentalną rolę w procesie wiązania i twardnienia zaprawy, a proporcje te są zgodne z normami budowlanymi, które zalecają stosunek tych składników w celu uzyskania optymalnych wyników. W praktyce stosowanie cementu, wapna i piasku w takich proporcjach pozwala na uzyskanie zaprawy o dobrej plastyczności, która może być łatwo aplikowana, a jednocześnie charakteryzuje się odpowiednią wytrzymałością na ściskanie i odpornością na działanie czynników atmosferycznych. Takie zaprawy znajdują zastosowanie w budownictwie, szczególnie przy murowaniu ścian, gdzie właściwa kompozycja jest kluczowa dla długowieczności konstrukcji.

Pytanie 38

Nałożenie tradycyjnego tynku na wyjątkowo gładką powierzchnię może prowadzić do

A. występowania plam i wykwitów na powierzchni ściany
B. łamania się tynku zaraz po jego wyschnięciu
C. powstawania rys skurczowych na powierzchni
D. odczepiania się tynku od podłoża
Jak się nałoży tradycyjny tynk na super gładką powierzchnię, to może się on odspajać. Dlaczego? Bo takie gładkie ściany, jak beton polerowany czy płyty gipsowo-kartonowe, mają mało szorstkości. A to utrudnia tynkowi dobrze się wgryźć. Dlatego przed tynkowaniem warto użyć gruntu albo jakiegoś specjalnego preparatu, żeby poprawić przyczepność. Poradziłbym też wybrać tynki, które są bardziej elastyczne i plastyczne, bo lepiej znoszą lekkie ruchy podłoża. To zmniejsza szanse na odspajanie się. No i ważne, żeby trzymać się standardów, jak normy PN-EN 998, bo to pomaga utrzymać jakość i trwałość efektu końcowego. Właściwe przygotowanie podłoża jest kluczowe, bo od tego wiele zależy.

Pytanie 39

Tynk dwu warstwowy składa się z jakich elementów?

A. obrzutki i gładzi
B. narzutu i gładzi
C. obrzutki i narzutu
D. gruntownika i narzutu
Wybór odpowiedzi wskazujących na inne kombinacje warstw tynku dwuwarstwowego, takie jak gruntownik oraz narzut, obrzutka i gładź, czy narzut i gładź, wynika z nieporozumienia co do terminologii i zastosowania tych materiałów. Gruntownik jest produktem używanym w przygotowaniu podłoża, ale nie stanowi samodzielnej warstwy w tynku dwuwarstwowym. Z kolei gładź, będąca materiałem wykończeniowym, jest stosowana głównie w celu uzyskania idealnie gładkiej powierzchni, ale nie pełni roli w systemie tynku dwuwarstwowego, który wymaga konkretnego układu warstw dla zapewnienia właściwej trwałości i estetyki. Obrzutka i gładź to połączenie, które może prowadzić do błędnego zrozumienia funkcji tych materiałów. Obrzutka ma bowiem za zadanie odpowiednie przygotowanie podłoża i jego zgrubnienie, podczas gdy gładź służy wyłącznie do estetycznych wykończeń. W praktyce, stosowanie niewłaściwych warstw może skutkować problemami, takimi jak złe przyczepności tynku do podłoża, co może prowadzić do jego odspajania czy pękania. W kontekście branżowych standardów, ważne jest, aby stosować się do określonych norm dotyczących aplikacji tynku, co zapewnia nie tylko estetykę, ale przede wszystkim funkcjonalność i trwałość konstrukcji.

Pytanie 40

Tynk należący do kategorii IV jest tynkiem

A. 1-warstwowym
B. 3-warstwowym
C. 2-warstwowym
D. 4-warstwowym
Tynk kategorii IV, znany jak tynk trzywarstwowy, to sprawdzony sposób na solidne i estetyczne wykończenie budynku. Składa się z trzech warstw: podkładowej, właściwej i końcowej. Ta pierwsza, zazwyczaj z zaprawy cementowo-wapiennej, daje mocny fundament, co jest ważne, żeby następne warstwy dobrze się trzymały. Warstwa właściwa, często z dodatkami, jak włókna szklane czy polipropylenowe, dodaje tynkowi wytrzymałości i sprawia, że jest odporny na pęknięcia. Na końcu mamy warstwę końcową, która odpowiada za wygląd tynku i może mieć różne faktury i kolory. W praktyce tynki trzywarstwowe używa się często w budynkach, które muszą stawić czoła trudnym warunkom atmosferycznym, co jest zgodne z normami PN-EN 998-1. To rozwiązanie jest polecane zarówno w budynkach publicznych, jak i mieszkalnych, bo znacznie zwiększa trwałość budynku i obniża koszty konserwacji.