Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 24 maja 2025 08:42
  • Data zakończenia: 24 maja 2025 09:01

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. przefiltrować przy użyciu węgla aktywnego
B. osuszyć z nadmiaru wody
C. odprowadzić bezpośrednio do ścieków
D. oczyścić z resztek oleju
Odpowiedzi sugerujące odprowadzenie kondensatu bezpośrednio do kanalizacji, osuszenie z wody lub przefiltrowanie za pomocą węgla aktywnego są niewłaściwe z kilku powodów. Przede wszystkim, bezpośrednie wprowadzenie kondensatu do kanalizacji jest ryzykowne, ponieważ może on zawierać substancje ropopochodne, które są zabronione w wielu systemach kanalizacyjnych. Takie działania mogą prowadzić do zanieczyszczenia wód gruntowych i naruszenia przepisów dotyczących ochrony środowiska. Osuszanie kondensatu z wody nie ma sensu, ponieważ najważniejszym problemem są zanieczyszczenia olejowe, a nie stała obecność wody. Węgiel aktywny jest skuteczny w usuwaniu niektórych zanieczyszczeń chemicznych, jednak nie jest optymalnym rozwiązaniem w przypadku kondensatu, który zawiera cząstki olejowe. Proces filtracji węgla aktywnego wymaga odpowiedniej konfiguracji i często jest kosztowny w zastosowaniu. Typowe błędy myślowe, prowadzące do takich niepoprawnych wniosków, polegają na nieuwzględnieniu specyfiki zanieczyszczeń oraz nieznajomości regulacji prawnych związanych z gospodarowaniem odpadami. Właściwe podejście do zarządzania kondensatami wymaga dokładnej analizy składników zanieczyszczenia oraz zastosowania odpowiednich technologii oczyszczania zgodnych z normami branżowymi.

Pytanie 2

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. łożyskach kulkowych
B. hamulcach tarczowych
C. łożyskach ślizgowych
D. zaworach kulowych
Wybór hamulców klockowych, zaworów kulowych czy łożysk kulkowych jako odpowiedzi błędnej opiera się na ich zasadach działania, które nie są zgodne z koncepcją smarowania hydrostatycznego. Hamulce klockowe działają na zasadzie tarcia między klockiem a tarczą hamulcową, co nie wymaga smarowania w sposób, jaki ma miejsce w łożyskach ślizgowych. W przypadku hamulców, kluczową rolę odgrywa generowanie siły tarcia, a nie separacja części roboczych. Zawory kulowe wykorzystują kulkę do regulowania przepływu cieczy lub gazu, co również nie ma związku z tworzeniem klina smarnego, a ich działanie opiera się na mechanicznym zamykaniu lub otwieraniu przepływu. Łożyska kulkowe z kolei wykorzystują kulki do rozdzielenia powierzchni, co pozwala na ruch obrotowy, ale opierają się na mechanicznym tarciu oraz smarowaniu, które różni się od hydrostatycznego. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia zasad działania tych mechanizmów. W praktyce smarowanie hydrostatyczne ma zastosowanie wyłącznie w specyficznych aplikacjach, gdzie kluczowe jest unikanie bezpośredniego kontaktu metal-metal oraz redukcja tarcia, co jest typowe dla łożysk ślizgowych. Zrozumienie tych różnic jest istotne dla prawidłowego doboru elementów w systemach mechanicznych.

Pytanie 3

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór dławiąco zwrotny
B. przełącznik obiegu
C. zawór szybkiego spustu
D. zawór podwójnego sygnału
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 4

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. siłownik nurnikowy
B. siłownik teleskopowy
C. silnik tłokowy
D. silnik zębaty
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 5

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. zwiększyć obciążenie
B. podłączyć przewód neutralny
C. obniżyć częstotliwość zasilania
D. zamienić miejscami dwa dowolne fazowe przewody zasilające
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 6

Który z zaworów powinno się zastosować w układzie pneumatycznym, aby przyspieszyć wysuw tłoczyska w siłowniku dwustronnego działania?

A. Szybkiego spustu
B. Przełącznika obiegu
C. Podwójnego sygnału
D. Dławiąco zwrotnego
Zastosowanie zaworu szybkiego spustu w układzie pneumatycznym ma na celu przyspieszenie procesu wysuwu tłoczyska siłownika dwustronnego działania poprzez umożliwienie szybkiego uwolnienia sprężonego powietrza. Zawór ten działa na zasadzie minimalizacji oporu w drodze powietrza, co pozwala na zwiększenie prędkości ruchu tłoczyska. Przykładem zastosowania może być automatyka przemysłowa, gdzie szybkie ruchy elementów roboczych są kluczowe dla wydajności linii produkcyjnych. Wybierając zawór szybkiego spustu, warto kierować się normami takimi jak ISO 4414, które definiują wymagania dotyczące systemów pneumatycznych. Dodatkowo, prawidłowy dobór i montaż tego typu zaworu może zmniejszyć zużycie energii, ponieważ ogranicza straty ciśnienia. W praktyce wykorzystywanie zaworu szybkiego spustu w aplikacjach, gdzie czas cyklu ma znaczenie, przynosi wymierne korzyści, poprawiając ogólną efektywność operacyjną systemu.

Pytanie 7

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zmniejszenia prędkości obrotowej
B. zwiększenia prędkości obrotowej
C. wzrostu rezystancji uzwojeń
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 8

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. ciśnienia cieczy
B. objętości cieczy
C. temperatury powietrza
D. napięcia elektrycznego
Czujnik Pt 100, znany jako czujnik rezystancyjny, jest powszechnie stosowany do pomiaru temperatury. Jego działanie opiera się na zasadzie, że oporność platyny zmienia się wraz z temperaturą. W przypadku Pt 100, oporność wynosi 100 Ω w temperaturze 0°C, a zmiana ta jest liniowa w szerokim zakresie temperatur. Czujniki te są wykorzystywane w różnych zastosowaniach przemysłowych, takich jak systemy HVAC, procesy chemiczne, a także w urządzeniach medycznych, gdzie dokładny pomiar temperatury jest kluczowy. Standardy takie jak IEC 60751 definiują charakterystyki czujników Pt 100, co zapewnia ich wymienność i precyzję. Dzięki swojej stabilności i odporności na korozję, czujniki te są preferowanym wyborem w wielu aplikacjach, gdzie wymagana jest wysoka dokładność i niezawodność pomiaru temperatury. Przykładem zastosowania Pt 100 może być monitorowanie temperatury w piecach przemysłowych, gdzie ekstremalne warunki pracy wymagają niezawodnych rozwiązań pomiarowych.

Pytanie 9

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Poliamid
B. Poliuretan
C. Silikon
D. Lateks
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 10

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 5 V
C. 25 V
D. 15 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 11

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 8-bitowym
B. 64-bitowym
C. 16-bitowym
D. 32-bitowym
Odpowiedź 8-bitowa jest właściwa, ponieważ przy maksymalnym napięciu wejściowym wynoszącym 10 V oraz rozdzielczości na poziomie 40 mV można obliczyć liczbę dostępnych poziomów pomiarowych dla wejścia analogowego. Wejście 8-bitowe może reprezentować 256 wartości (2^8), co pozwala na podział napięcia 10 V na 256 poziomów. Dlatego pojedynczy krok napięcia wynosi 10 V / 256 = około 39,06 mV. Taka wartość jest bardzo bliska podanej rozdzielczości 40 mV, co czyni tę odpowiedź poprawną. W praktycznych zastosowaniach systemów automatyki, 8-bitowe przetworniki A/C są często wystarczające do monitorowania podstawowych parametrów, takich jak temperatura czy ciśnienie. Pomimo postępu technologicznego, wiele starszych systemów nadal wykorzystuje przetworniki 8-bitowe, co czyni je ważnym elementem w analizie i modernizacji istniejących instalacji. Warto również zauważyć, że zgodnie z normami branżowymi, takich jak IEC 61131, stosowanie prostych rozwiązań w kontrolerach PLC jest często preferowane ze względu na ich niezawodność i łatwość w integracji.

Pytanie 12

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. PROFINET
B. SmartWire-DT
C. CAN
D. RS 485
Wybór RS 485 jako odpowiedzi jest błędny z powodu jego specyfiki projektowej. RS 485 jest standardem szeregowej komunikacji, który wymaga terminowania linii na obu końcach magistrali, aby zminimalizować odbicia sygnału i zapewnić integralność danych. Użytkownicy często mylą RS 485 z innymi protokołami, nie zdając sobie sprawy z wpływu terminacji na jakość sygnału. Z kolei CAN, czyli Controller Area Network, również wymaga rezystorów terminujących, co jest kluczowe dla jego działania w kontekście komunikacji w czasie rzeczywistym, zwłaszcza w aplikacjach motoryzacyjnych i przemysłowych. SmartWire-DT jest systemem komunikacyjnym, który również wymaga terminacji. Warto zauważyć, że nie wszyscy użytkownicy mają pełne zrozumienie zasad działania różnych magistrali, co prowadzi do błędnych odpowiedzi. W przypadku komunikacji w automatyce przemysłowej istotne jest, aby projektanci systemów dokładnie rozumieli parametry techniczne wykorzystywanych protokołów, aby unikać problemów z transmisją danych, które mogą prowadzić do awarii lub spadku wydajności systemów. Kluczowe jest przestrzeganie standardów branżowych oraz dobrej praktyki projektowej, co zapewnia stabilność i efektywność całego systemu komunikacyjnego.

Pytanie 13

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 30
B. 60
C. 75
D. 24
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 14

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia

A. Wymiana filtra ssącego.
B. Wymiana paska klinowego.
C. Czyszczenie zaworu zwrotnego.
D. Kontrola stanu oleju.
Wybór odpowiedzi dotyczących wymiany paska klinowego, filtra ssącego lub czyszczenia zaworu zwrotnego wskazuje na niepełne zrozumienie zasad konserwacji sprężarek tłokowych. Wymiana paska klinowego oraz filtra ssącego są czynnościami, które powinny być przeprowadzane zgodnie z harmonogramem, a nie codziennie. W przypadku paska, jego zużycie może być oceniane na podstawie widocznych oznak uszkodzenia, co czyni tę czynność rzadziej wymaganą. Z kolei wymiana filtra ssącego jest kluczowa, ale powinna odbywać się co kilka miesięcy, w zależności od intensywności użytkowania sprężarki i jakości powietrza. Czyszczenie zaworu zwrotnego również nie jest czynnością rutynową, a jego częstotliwość zależy od warunków pracy i stanu urządzenia. Ignorowanie fundamentalnej roli kontroli stanu oleju może prowadzić do mylnych wniosków, że inne czynności są bardziej krytyczne. W rzeczywistości, olej jest odpowiedzialny za smarowanie, chłodzenie i usuwanie zanieczyszczeń, a jego odpowiedni stan jest kluczowy dla wydajności całego układu. Dlatego istotne jest, aby zrozumieć, że codzienna kontrola stanu oleju ma bezpośredni wpływ na niezawodność i ciągłość pracy urządzenia.

Pytanie 15

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnetooptyczne (Faradaya)
B. piezoelektryczne
C. zwane efektem Dopplera
D. magnotorezystancji (Gaussa)
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 16

Efektor umieszczony na końcu ramienia robota pełni przede wszystkim funkcję

A. ochrony ramienia robota przed przeciążeniem
B. chwytania elementu z odpowiednią siłą
C. ochrony ramienia robota przed zderzeniem z operatorem
D. umieszczania elementu w odpowiedniej lokalizacji
Efektor umieszczony na końcu ramienia robota odgrywa kluczową rolę w procesie manipulacji obiektami, a jego podstawową funkcją jest chwytanie elementu z odpowiednią siłą. Efektory, w zależności od ich konstrukcji i przeznaczenia, mogą być wyposażone w różnorodne mechanizmy, takie jak szczęki, przyssawki czy chwytaki pneumatyczne, które umożliwiają precyzyjne uchwyty. Na przykład, w branży produkcyjnej, roboty stosowane do montażu często wykorzystują efektory do chwytania i manipulacji drobnymi komponentami, co zwiększa efektywność i precyzję procesu. Dobrą praktyką jest dostosowywanie siły chwytu do specyfiki materiałów – w przypadku delikatnych obiektów stosuje się mniejsze siły, aby uniknąć uszkodzeń. Efektory są również zaprojektowane zgodnie z normami bezpieczeństwa, co zapewnia, że ich działanie nie będzie zagrażać operatorom ani innym pracownikom. Wybór odpowiedniego efektora i jego parametrów jest zatem kluczowym elementem w projektowaniu systemów automatyzacji procesów.

Pytanie 17

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
C. sztuczne oddychanie oraz masaż serca
D. ustawienie na boku, sztuczne oddychanie
Odpowiedź "udrożnienie dróg oddechowych, sztuczne oddychanie" jest prawidłowa, ponieważ w sytuacji, gdy osoba porażona prądem elektrycznym nie oddycha, ale krążenie jest zachowane, priorytetem jest zapewnienie prawidłowego przepływu powietrza do płuc. Procedura ta jest zgodna z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie udrożnienia dróg oddechowych jako pierwszego kroku w każdym przypadku zatrzymania oddechu. Udrożnienie dróg oddechowych można osiągnąć poprzez odpowiednią pozycję ciała poszkodowanego (np. metoda odchylenia głowy do tyłu, unieś podbródek) oraz usunięcie ewentualnych przeszkód, takich jak ciała obce. Następnie, sztuczne oddychanie powinno być przeprowadzane w celu dostarczenia tlenu do płuc poszkodowanego, co jest kluczowe dla uniknięcia niedotlenienia mózgu. Wsparcie w tej sytuacji może być realizowane poprzez metody takie jak wentylacja ustami ust lub przy użyciu urządzeń wentylacyjnych, jeśli są dostępne. W przypadku dalszego braku samodzielnego oddechu, konieczne może być wprowadzenie resuscytacji krążeniowo-oddechowej, jednak najpierw trzeba zająć się zapewnieniem drożności dróg oddechowych i wentylacji, co zgodne jest z zasadami w pierwszej pomocy.

Pytanie 18

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. prądnice synchroniczne
B. ogniwa fotowoltaiczne
C. akumulatory kwasowe
D. elementy termoelektryczne
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 19

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. zawór dławiący
B. magnes stały
C. tłumik
D. membrana
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 20

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
B. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
C. HT - ester syntetyczny, najlepiej ulegający biodegradacji
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Wybór odpowiedzi związanych z HT, HTG oraz HV nie odpowiada wymaganiom stawianym cieczy hydraulicznej pracującej w warunkach zagrożenia pożarowego. Ciekłe estry, takie jak HT, mimo że są bardziej ekologiczne i biodegradowalne, nie zapewniają wystarczającej ochrony przed ryzykiem pożaru, gdyż ich palność, choć obniżona, wciąż może stwarzać zagrożenie. Cieczy HTG, wytwarzane na bazie olejów roślinnych, oferują pewne korzyści ekologiczne, jednak ich nierozpuszczalność w wodzie sprawia, że w przypadku wycieku nie można liczyć na efekt chłodzący, co w warunkach kontaktu z ogniem jest niezwykle istotne. Z kolei ciecz HV, przeznaczona dla urządzeń pracujących w zróżnicowanych temperaturach, nie spełnia wymagań dla środowisk, gdzie kluczowe jest zachowanie niskiej palności. W kontekście bezpieczeństwa pożarowego, wybór niewłaściwej cieczy hydraulicznej może prowadzić do niebezpiecznych sytuacji, w których wycieki mogą zapalić się, narażając na straty materialne oraz zdrowotne. Zatem kluczowym błędem w myśleniu jest brak uwzględnienia aspektów związanych z palnością i bezpieczeństwem cieczy hydraulicznych w kontekście pracy w warunkach zagrożenia pożarowego.

Pytanie 21

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Regulacyjny
B. Rozdzielający
C. Dławiący
D. Zwrotny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 22

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Teleskopowa
B. Tłokowa z dwustronnym tłoczyskiem
C. Tłokowa z jednostronnym tłoczyskiem
D. Nurnikowa
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 23

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Codzienna wymiana filtra powietrza
B. Usuwanie kondensatu wodnego
C. Okresowe wyłączanie sprężarki
D. Codzienna wymiana oleju w smarownicy
Usuwanie kondensatu wodnego jest kluczowym działaniem w konserwacji układów pneumatycznych, ponieważ kondensat, który gromadzi się w systemie, może prowadzić do wielu problemów operacyjnych. Woda w układzie pneumatycznym może spowodować korozję komponentów, zmniejszenie efektywności działania siłowników oraz obniżenie jakości powietrza dostarczanego do narzędzi pneumatycznych. Zgodnie z normami ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego, wilgotność powietrza jest istotnym czynnikiem do utrzymania w ryzach. Regularne usuwanie kondensatu, na przykład przy użyciu automatycznych osuszczy powietrza lub separatorów kondensatu, jest standardową praktyką, która pomaga zapewnić długą żywotność sprzętu i optymalną wydajność układów pneumatycznych. Przykładem tego może być zastosowanie separatorów wody w linii sprężonego powietrza, co pozwala na efektywne usuwanie wody i minimalizowanie ryzyka uszkodzeń oraz przestojów w pracy systemu.

Pytanie 24

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Stabilizatory.
B. Prostowniki.
C. Generatory.
D. Flip-flopy.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 25

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Polistyren
C. Żeliwo białe
D. Teflon
Epoksyt, teflon, polistyren oraz żeliwo białe reprezentują różne materiały, które mogą być używane w różnych kontekstach inżynieryjnych, lecz nie wszystkie z nich są optymalne w produkcji łożysk ślizgowych. Epoksyt to materiał kompozytowy, który charakteryzuje się wysoką wytrzymałością mechaniczną oraz odpornością na chemikalia, ale nie ma właściwości samosmarujących, co jest kluczowe dla łożysk, które wymagają minimalizacji tarcia i zwiększonej trwałości. Polistyren, z drugiej strony, jest materiałem o niskiej wytrzymałości mechanicznej i wysokiej podatności na działanie wysokich temperatur, co czyni go nieodpowiednim w zastosowaniach wymagających dużej odporności. Żeliwo białe, chociaż jest materiałem o dobrej trwałości, nie nadaje się na łożyska ślizgowe, ze względu na swoją sztywność i dużą masę, które mogą prowadzić do zwiększenia oporów tarcia. Często błędem jest utożsamianie materiałów z wysoką wytrzymałością z ich zastosowaniem w łożyskach; w rzeczywistości kluczowe znaczenie mają także ich właściwości tribologiczne, które w przypadku niektórych z wymienionych materiałów są niewystarczające. Zrozumienie różnic w zastosowaniach tych materiałów i ich właściwości jest kluczowe w procesie projektowania komponentów mechanicznych.

Pytanie 26

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. przełącznika instalacyjnego systemu
B. ochrony prądowej systemu
C. czujnika poziomu światła
D. wskaźnika działania systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 27

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Fartuch ochronny z bawełny
B. Ochronne okulary
C. Opaskę uziemiającą
D. Buty z izolującą podeszwą
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 28

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Czarnym
B. Żółtym
C. Brązowym
D. Niebieskim
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 29

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. daloczułkiem.
B. multimetrem.
C. fotometrem.
D. pirometrem.
Pirometr to urządzenie specjalistyczne, które służy do bezdotykowego pomiaru temperatury obiektów. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt, co pozwala na określenie jego temperatury bez konieczności fizycznego kontaktu. Takie podejście jest szczególnie przydatne w sytuacjach, gdy obiekt jest zbyt gorący lub niebezpieczny do dotykania, jak w przypadku pieców przemysłowych czy silników. W praktyce, pirometry są powszechnie stosowane w przemyśle metalurgicznym, spożywczym oraz w energetyce, gdzie precyzyjny pomiar temperatury ma kluczowe znaczenie dla bezpieczeństwa i efektywności procesów. Zgodnie z normami branżowymi, pomiar temperatury za pomocą pirometru powinien być wykonywany w odpowiednich warunkach, co obejmuje m.in. kalibrację urządzenia oraz uwzględnienie współczynnika emisji materiału, który mierzony jest dla uzyskania dokładnych rezultatów. Warto również zauważyć, że pirometry są dostępne w różnych wariantach, w tym ręcznych i stacjonarnych, co zwiększa ich uniwersalność w zastosowaniach przemysłowych.

Pytanie 30

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 1500 mm2
B. 1000 mm2
C. 3000 mm2
D. 2000 mm2
Aby obliczyć powierzchnię S tłoka siłownika, możemy skorzystać z podanej zależności Fu = η ∙ S ∙ p. Wstawiając znane wartości: Fu = 1,6 kN (co odpowiada 1600 N), p = 1 MPa (co odpowiada 1 000 000 Pa) oraz η = 0,8, możemy przekształcić równanie, aby znaleźć S. Wyrażenie przyjmuje postać S = Fu / (η ∙ p). Podstawiając wartości, otrzymujemy S = 1600 N / (0,8 ∙ 1 000 000 Pa) = 0,002 m2, co odpowiada 2000 mm2. Tak obliczona powierzchnia tłoka jest zgodna z praktykami inżynieryjnymi i standardami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w projektowaniu siłowników hydraulicznych. W praktyce, takie obliczenia są kluczowe dla zapewnienia efektywności i bezpieczeństwa działania maszyn, w których używane są siłowniki. Przykładem zastosowania może być projektowanie systemów hydraulicznych w maszynach budowlanych, gdzie odpowiednia powierzchnia tłoka bezpośrednio wpływa na osiąganą siłę i efektywność działania siłownika.

Pytanie 31

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Ustawić szczotki w strefie neutralnej
B. Znormalizować nacisk szczotek
C. Zamienić łożyska
D. Obtoczyć oraz przeszlifować komutator
Wymiana łożysk nie rozwiąże problemu nierównej prędkości obrotowej oraz intensywnego iskrzenia szczotek. Łożyska odpowiadają za utrzymanie osi silnika w odpowiedniej pozycji i zmniejszenie tarcia, jednakże nie mają wpływu na działanie komutatora ani na kontakt szczotek z wirnikiem. Z kolei ujednolicanie nacisku szczotek, chociaż może wydawać się logicznym rozwiązaniem, nie adresuje bezpośrednio problemu iskrzenia, które jest wynikiem niewłaściwego ustawienia szczotek. Obtoczenie i przeszlifowanie komutatora mogą jedynie częściowo poprawić sytuację, ale nie zlikwidują źródła problemu, jakim jest niewłaściwe ustawienie szczotek. Ustawienie szczotek w strefie neutralnej jest nie tylko najlepszym sposobem na rozwiązanie zaobserwowanych problemów, ale także jest zgodne z praktykami stosowanymi w serwisie silników prądu stałego, co podkreśla znaczenie precyzyjnej diagnostyki oraz regulacji. Ostatecznie, te działania powinny być częścią regularnych przeglądów technicznych, aby zapewnić długotrwałą i efektywną pracę silnika.

Pytanie 32

Który z wymienionych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo szare
B. Stal wysokowęglowa
C. Żeliwo białe
D. Stal niskowęglowa
Stal niskowęglowa jest materiałem, który jest powszechnie stosowany w konstrukcjach spawanych, ponieważ charakteryzuje się dobrą spawalnością oraz wystarczającą wytrzymałością, co czyni ją idealnym wyborem do różnorodnych zastosowań inżynieryjnych. Zawartość węgla w stali niskowęglowej nie przekracza 0,3%, co zapewnia jej dużą plastyczność i łatwość w obróbce. Materiały te są często stosowane w budowie konstrukcji stalowych, takich jak wieże, mosty oraz różne elementy przemysłowe. Dodatkowo, stal niskowęglowa może być poddawana różnym procesom, takim jak hartowanie czy odpuszczanie, co pozwala dostosować jej właściwości do specyficznych wymagań projektu. W praktyce, zgodnie z normą EN 10025, stal niskowęglowa łączy w sobie zdolności do spawania z dobrą odpornością na zmęczenie, co czyni ją niezastąpionym materiałem w inżynierii konstrukcyjnej i mechanice. Przykłady zastosowań obejmują budowę ram samochodowych, elementów maszyn oraz innych konstrukcji narażonych na dynamiczne obciążenia.

Pytanie 33

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przełącznika gwiazda-trójkąt
B. Softstartu
C. Przemiennika częstotliwości
D. Prostownika sterowanego trójpulsowego
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 34

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. filtr, zawór dławiący, manometr, smarownica
B. filtr, zawór redukcyjny, manometr, smarownica
C. sprężarka, filtr, manometr, smarownica
D. sprężarka, filtr, zawór redukcyjny, manometr
Nieprawidłowe odpowiedzi dotyczą elementów, które nie są standardowo częścią zespołu przygotowania powietrza. Odpowiedzi takie jak sprężarka i zawór dławiący wskazują na pewne nieporozumienia. Sprężarka jest urządzeniem odpowiedzialnym za wytwarzanie sprężonego powietrza, ale nie jest elementem przygotowania powietrza; jest to zatem pierwszy krok w procesie, a nie jego część. W kontekście branżowym, elementy te powinny być rozróżniane, aby uniknąć błędów w projektowaniu systemów pneumatycznych. Zawór dławiący jest zazwyczaj używany do regulacji przepływu, ale nie spełnia funkcji zaworu redukcyjnego, który jest kluczowy do utrzymania stabilnego ciśnienia. Zawory dławiące mogą prowadzić do niestabilności w systemie, gdyż nie kontrolują ciśnienia, tylko jego przepływ. W przypadku zrozumienia układów pneumatycznych, istotne jest, by mieć na uwadze, że właściwe przygotowanie powietrza jest kluczowe dla efektywności całego systemu. Niewłaściwy dobór komponentów może prowadzić do zwiększonego zużycia energii, uszkodzeń urządzeń oraz obniżenia wydajności, co jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie precyzyjnej konstrukcji i konserwacji systemów pneumatycznych. Dlatego kluczowe jest nie tylko posiadanie odpowiednich elementów, ale także ich integralne zrozumienie i zastosowanie w praktyce.

Pytanie 35

Podczas wymiany przewodu wysokociśnieniowego w systemie hydraulicznym, jakie aspekty powinny być brane pod uwagę przy wyborze nowego przewodu?

A. Grubość materiału oraz przepuszczalność
B. Ciśnienie robocze i minimalny promień gięcia
C. Odporność na ściskanie oraz masa
D. Przepustowość i odporność na rozciąganie
Wybór nowego przewodu wysokociśnieniowego w układzie hydraulicznym powinien uwzględniać ciśnienie robocze oraz minimalny promień gięcia. Ciśnienie robocze jest kluczowym parametrem, ponieważ przewody muszą być w stanie utrzymać określone wartości ciśnienia bez ryzyka pęknięcia lub uszkodzenia. Ważne jest, aby przewód był zaprojektowany zgodnie z normami, takimi jak ISO 18752, które definiują różne klasy przewodów w zależności od ich zastosowania. Minimalny promień gięcia odnosi się do zdolności przewodu do elastycznego odkształcania się bez uszkodzenia, co jest istotne w przypadku instalacji w trudno dostępnych miejscach. Przykładem może być zastosowanie odpowiednich przewodów w maszynach budowlanych, gdzie przewody muszą być gięte w małych przestrzeniach, a jednocześnie muszą wytrzymać wysokie ciśnienia pracy. Należy również brać pod uwagę temperaturę pracy oraz kompatybilność chemiczną materiałów, z których wykonany jest przewód, aby zapewnić długotrwałe i bezpieczne działanie systemu hydraulicznego.

Pytanie 36

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik prędkości
B. przepływomierz
C. miernik mętności
D. czujnik poziomu
Miernik poziomu jest urządzeniem, które służy do określania wysokości cieczy w zbiorniku, a jego zakres pomiarowy nie odnosi się do przepływu, lecz do stanu napełnienia. Z kolei mętnościomierz jest narzędziem do pomiaru mętności wody, co jest istotne w analizach jakości wody, ale nie ma związku z pomiarem przepływu. Szybkościomierz, jak sama nazwa wskazuje, mierzy prędkość, co jest inną kategorią pomiarów, najczęściej stosowaną w kontekście ruchu pojazdów lub przepływu powietrza. Błędne rozumienie funkcji tych urządzeń często prowadzi do nieprawidłowych wniosków na temat ich zastosowania. Ważne jest, aby zrozumieć, że każdy z tych mierników ma swoje specyficzne przeznaczenie oraz metody pomiarowe, co jest kluczowe w inżynierii i technologii pomiarowej. Niezrozumienie różnicy między mierzonymi parametrami oraz ich przeznaczeniem może prowadzić do nieefektywnego zarządzania procesami przemysłowymi oraz błędów w aplikacjach inżynieryjnych.

Pytanie 37

Demontaż przekładni pasowej zaczyna się od

A. poluzowania naciągu pasów
B. demontażu wałów
C. zdemontowania koła pasowego o mniejszej średnicy
D. zdemontowania koła pasowego o większej średnicy
Wybór do demontażu koła pasowego o mniejszej lub większej średnicy jako pierwszego kroku w procesie demontażu przekładni pasowych jest niewłaściwy. Takie podejście ignoruje fundamentalne zasady eksploatacji układów pasowych, które nakładają obowiązek zapewnienia odpowiedniego naciągu pasów przed ich demontażem. Rozpoczynając od wymontowania kół pasowych, można napotkać znaczne trudności związane z ich usunięciem, co może prowadzić do uszkodzenia komponentów. Bez poluzowania naciągu, siły działające na pasy mogą powodować ich deformację, a także niepotrzebne obciążenie łożysk i wałów. Dodatkowo, poluzowanie wałów przed demontażem kół pasowych jest praktykowane w określonych sytuacjach, jednak nie jest to standardowa procedura rozpoczynająca demontaż. Często prowadzi to do błędnych wniosków, że demontaż można rozpocząć od kół pasowych, co jest sprzeczne z zaleceniami producentów i normami branżowymi. Ignorowanie tego kroku może skutkować uszkodzeniami mechanicznymi oraz wydłużeniem czasu przestoju maszyn, co jest nieefektywne z punktu widzenia zarządzania produkcją. Dlatego kluczowe jest przestrzeganie właściwej kolejności podczas demontażu układów pasowych dla zapewnienia ich bezpieczeństwa i efektywności działania.

Pytanie 38

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. proszkowej
B. pianowej
C. śniegowej
D. halonowej
Użycie gaśnic halonowych, proszkowych czy śniegowych do gaszenia pożarów urządzeń elektrycznych pod napięciem jest niewłaściwe z kilku powodów. Gaśnice halonowe, choć skuteczne w gaszeniu pożarów, nie są już produkowane z uwagi na ich negatywny wpływ na warstwę ozonową. Ponadto, w przypadku halonu, nie ma pewności co do pełnego usunięcia zagrożenia elektrycznego, co może prowadzić do groźnych sytuacji. Gaśnice proszkowe, mimo że mogą gasić pożary elektryczne, pozostawiają po sobie resztki chemiczne, które mogą być szkodliwe dla delikatnych urządzeń elektronicznych i mogą prowadzić do ich uszkodzenia. Dodatkowo, proszek jest materiałem, który, w przypadku niewłaściwego użycia, może prowadzić do rozprzestrzenienia ognia lub zwiększenia ryzyka porażeń prądem. Użycie gaśnic śniegowych, które wykorzystują dwutlenek węgla, również niesie ze sobą ryzyko, ponieważ CO2 nie ma żadnych właściwości izolacyjnych i może nie być wystarczające w sytuacjach z wyższym napięciem. Powszechnym błędem jest mylenie skuteczności różnych typów gaśnic w kontekście ich zastosowania w pożarach elektrycznych. Wiedza na temat odpowiedniego typu gaśnicy ma kluczowe znaczenie dla zapewnienia bezpieczeństwa, a niewłaściwy wybór może prowadzić do poważnych konsekwencji.

Pytanie 39

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. imbusowego
B. nasadowego
C. płaskiego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 40

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RTT - jedną oś obrotową i dwie osie prostoliniowe
B. RRT - dwie osie obrotowe i jedną oś prostoliniową
C. RRR - trzy osie obrotowe
D. TTT - trzy osie prostoliniowe
Odpowiedź RRR, która sugeruje manipulatory z kilkoma osiami obrotowymi, nie za bardzo pasuje do kontekstu prostopadłościennej przestrzeni roboczej. Obrotowe ruchy mogą wydawać się elastyczne, ale w praktyce nie dają tej samej precyzji, co ruchy prostoliniowe. Odpowiedzi RRT i RTT, które łączą osie obrotowe i prostoliniowe, też nie spełniają wymagań tej konkretnej przestrzeni. Wiesz, w takich manipulacjach ważne są bezpośrednie ruchy liniowe, które pozwalają na dotarcie do każdego punktu w prostopadłościanie, a z samymi obrotami to nie takie proste. Często błędne myślenie przy takich odpowiedziach wynika z niedostatecznego zrozumienia kinematyki, a niektórzy mylą ruchy manipulatorów z ich geometrią. Dlatego, moim zdaniem, ważne jest, żeby znać różne typy kinematyki, żeby móc dobierać odpowiednie urządzenia do konkretnych zadań.