Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 13 kwietnia 2025 11:40
  • Data zakończenia: 13 kwietnia 2025 11:53

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Sytuacyjne szczegóły terenowe
B. Wysokości punktów terenu
C. Numery obiektów budowlanych
D. Domiary prostokątne
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 2

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,10 m
B. 0,20 m
C. 0,50 m
D. 0,30 m
Pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej to sprawa dość poważna, więc wymagana dokładność 0,10 m to w sumie nic dziwnego. Jak wiemy, precyzyjne pomiary są mega ważne w geodezji. Na przykład, jeśli właz jest w miejscu, gdzie jest dużo zabudowań, to każda zmiana w układzie drogowym może wpłynąć na to, jak studzienki są lokalizowane. Jak się pomyli w pomiarze, to później mogą być problemy z dostępem do tych studzienek, a to nie jest to, co chcemy. Przykłady standardów, jak norma PN-EN ISO 17123, pokazują, że taka dokładność to nie jest tylko wymysł, ale konieczność w inwentaryzacji budynków. Starając się trzymać tych wytycznych, dajemy sobie szansę na bezpieczną i efektywną pracę z infrastrukturą, która jest pod ziemią.

Pytanie 3

Jakim symbolem literowym powinno się oznaczyć na mapie zasadniczej obiekt szkolny?

A. e
B. k
C. s
D. m
Wybór symbolu literowego 'k', 's' lub 'm' do oznaczenia budynku szkoły na mapie zasadniczej nie jest zgodny z powszechnie przyjętymi konwencjami kartograficznymi. Symbol 'k' najczęściej odnosi się do obiektów kultury, takich jak muzea czy centra sztuki, co prowadzi do dezorientacji w kontekście lokalizacji szkoły. Oznaczanie budynków użyteczności publicznej w sposób niezgodny z ustalonymi standardami może wprowadzać w błąd osoby korzystające z mapy, które mogą założyć, że obiekt kultury jest również miejscem edukacji, co jest błędne. Symbol 's' jest z kolei często używany dla obiektów sportowych, co również nie ma zastosowania w przypadku budynku szkoły. Zastosowanie symbolu 'm' może odnosić się do obiektów medycznych, co stwarza dodatkowe zamieszanie w interpretacji mapy. Wybór niewłaściwych symboli może wynikać z braku znajomości standardów kartograficznych, co jest istotne w profesjonalnym podejściu do tworzenia map. Użytkownicy map powinni być świadomi konsekwencji wynikających z błędnych oznaczeń, ponieważ mogą one utrudniać nie tylko nawigację, ale również planowanie przestrzenne oraz działania związane z zarządzaniem lokalnymi społecznościami. Właściwe oznaczanie obiektów na mapach nie tylko wpływa na ich użyteczność, ale również odzwierciedla dbałość o dokładność informacji przestrzennych.

Pytanie 4

Danymi źródłowymi numerycznymi wykorzystywanymi do generowania mapy numerycznej nie są

A. zdjęcia fotogrametryczne
B. wywiady branżowe
C. zdigitalizowane mapy
D. bezpośrednie pomiary geodezyjne
Wywiady branżowe to nie to samo co dane numeryczne, które są potrzebne do robienia mapy numerycznej. Te mapy potrzebują danych, które da się zmierzyć, zarejestrować albo sfotografować. Na przykład, zdjęcia fotogrametryczne pozwalają zbudować model terenu na podstawie zdjęć robionych z góry. Do tego dochodzą zdigitalizowane mapy, które przenoszą papierowe mapy do komputera. Pomiary geodezyjne dają nam informacje o konkretnych punktach w terenie, co jest mega ważne, żeby wszystko dobrze odwzorować. Wywiady mogą dostarczyć ciekawe konteksty, ale nie dają konkretnej liczby, więc nie nadają się do map numerycznych.

Pytanie 5

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Typ używanego sprzętu pomiarowego
B. Planowana skala mapy
C. Liczba osób przeprowadzających pomiar
D. Metoda realizacji rysunku polowego
Wybór rodzaju sprzętu do pomiaru, liczby osób wykonujących pomiar oraz sposobu wykonania szkicu polowego nie ma bezpośredniego wpływu na gęstość i rozmieszczenie pikiet w kontekście pomiarów wysokościowych. Właściwy sprzęt jest oczywiście istotny dla uzyskania dokładnych wyników, jednak to nie on decyduje o tym, jak wiele pikiet należy umieścić w terenie. W zależności od wybranej metody pomiarowej, technologia może znacznie różnić się, ale każda z nich powinna być dostosowana do specyfiki mapy, a nie odwrotnie. Liczba osób wykonujących pomiar ma znaczenie w kontekście wydajności i tempa pracy, ale nie wpływa na rozmieszczenie pikiet. Zbyt mała lub zbyt duża liczba pracowników może prowadzić do nieefektywnego wykorzystania zasobów, ale sama koncepcja pomiaru nie zmienia się. Sposób wykonania szkicu polowego również jest ważny, ale to jego wykonanie zależy od wcześniej ustalonej gęstości pikiet, więc nie wpływa na nią bezpośrednio. Często pojawia się mylne przekonanie, że różne aspekty organizacyjne pomiarów mogą zdefiniować techniczne parametry, co prowadzi do nieporozumień w planowaniu pomiarów w terenie. W rzeczywistości, kluczowym czynnikiem determinującym gęstość pikiet pozostaje zamierzona skala mapy oraz szczegółowość informacji, które chcemy przekazać w końcowym produkcie.

Pytanie 6

Wysokości elementów infrastruktury terenu na mapach geodezyjnych podaje się z dokładnością

A. 0,05 m
B. 0,5 m
C. 0,01 m
D. 0,1 m
Podawanie wysokości elementów naziemnych uzbrojenia terenu z mniejszą dokładnością, jak 0,1 m, 0,5 m, czy 0,05 m, jest niewłaściwe w kontekście standardów geodezyjnych. Użycie takich wartości prowadzi do znacznych błędów w dokumentacji oraz w realizacji terenowych przedsięwzięć. Na przykład, przy budowie dróg, różnice rzędu 0,1 m mogą skutkować niewłaściwym odwodnieniem, co z kolei prowadzi do erozji gruntów lub zalewania nawierzchni. W praktyce, projektanci i inżynierowie opierają się na danych o dokładności 0,01 m, aby mieć pewność, że ich prace będą dostosowane do rzeczywistych warunków terenowych. Niestety, nieprecyzyjne wartości mogą również wpływać na oceny geotechniczne i analizy ryzyka, co może prowadzić do poważnych konsekwencji prawnych w przypadku, gdy inwestycja nie spełnia wymogów budowlanych. Ponadto, stosowanie nieodpowiednich wartości dokładności może wprowadzać zamieszanie w komunikacji między różnymi podmiotami zaangażowanymi w projekt, co może prowadzić do konfliktów i dodatkowych kosztów. W kontekście geodezji, kluczowe jest przestrzeganie uznanych standardów, aby zapewnić rzetelność i profesjonalizm w procesach pomiarowych.

Pytanie 7

Która z metod niwelacji opiera się na określaniu różnic w wysokości pomiędzy punktami terenu za pomocą zmierzonych kątów pionowych oraz odległości poziomych między tymi punktami?

A. Punktów rozproszonych
B. Reperów
C. Geometryczna
D. Trygonometryczna
Metoda niwelacji trygonometrycznej opiera się na wyznaczaniu różnic wysokości pomiędzy punktami terenowymi przy użyciu pomiarów kątów pionowych oraz odległości poziomych. Ta technika jest szczególnie przydatna w sytuacjach, gdzie bezpośredni dostęp do punktów jest utrudniony lub niemożliwy. W praktyce, inżynierowie często wykorzystują niwelację trygonometryczną do tworzenia bardziej skomplikowanych projektów budowlanych, takich jak mosty czy drogi, gdzie precyzyjne określenie różnic wysokości jest kluczowe. Zastosowanie tej metody pozwala na obliczenia przy użyciu wzorów trygonometrycznych, co zwiększa efektywność pomiarów. Standardy branżowe, takie jak normy ISO dotyczące geodezji, wskazują na niwelację trygonometryczną jako jedną z zalecanych metod w skomplikowanych projektach geodezyjnych, co świadczy o jej uznawanej wartości i praktyczności w dziedzinie inżynierii i geodezji.

Pytanie 8

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. ewidencyjnego
B. teleinformatycznego
C. komunikacyjnego
D. informacyjnego
System teleinformatyczny jest kluczowym narzędziem w procesie pozyskiwania, ewidencjonowania, przechowywania, udostępniania oraz zabezpieczania materiałów z państwowego zasobu geodezyjnego i kartograficznego. Dzięki zastosowaniu nowoczesnych technologii informacyjnych, możliwe jest zautomatyzowanie wielu procesów, co przyspiesza i upraszcza pracę. Przykładem może być wykorzystanie systemów GIS (Geographic Information Systems), które umożliwiają analizowanie i wizualizowanie danych przestrzennych. W praktyce, instytucje takie jak ośrodki dokumentacji geodezyjnej i kartograficznej korzystają z teleinformatycznych systemów zarządzania danymi, co zapewnia ich aktualność, integralność oraz bezpieczeństwo. Zgodnie z normami ISO/IEC 27001, należy wdrażać odpowiednie środki ochrony danych, co jest realizowane poprzez technologie szyfrowania oraz systemy kontroli dostępu. Poprawne wdrożenie systemu teleinformatycznego znacząco podnosi jakość usług świadczonych przez administrację publiczną w zakresie geodezji i kartografii.

Pytanie 9

Co wpływa na wysokości opisów w mapie głównej?

A. Od typu i stylu pisma
B. Od wartości skalarnej mapy
C. Od opisywanej treści i skali mapy
D. Od metody wykonania opisu
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 10

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 10%
B. iAB = 5%
C. iAB = 1%
D. iAB = 0,5%
Prawidłowa odpowiedź to iAB = 1%. Aby obliczyć pochylenie linii łączącej dwa punkty A i B na podstawie odległości międzywarstwicowej oraz różnicy wysokości, stosujemy wzór na pochylenie, które wyraża się jako stosunek różnicy wysokości do poziomej odległości między punktami. W tym przypadku różnica wysokości wynosi 0,5 m, a pozioma odległość wynosi 50 m. Zatem pochylenie wyliczamy według wzoru: iAB = (wysokość / odległość) * 100%. Czyli: iAB = (0,5 m / 50 m) * 100% = 1%. Pochylenie to istotny parametr w geodezji, inżynierii lądowej oraz w planowaniu przestrzennym, ponieważ wpływa na projektowanie dróg, infrastruktury oraz systemów odwodnienia. Przykład praktycznego zastosowania można znaleźć w projektowaniu dróg, gdzie odpowiednie pochylenie zapewnia bezpieczną jazdę i efektywne odprowadzanie wody opadowej. Ponadto, znajomość pochylenia warstwic jest kluczowa w ocenie stabilności gruntów i w budownictwie. W kontekście standardów, pochylenia powinny być zgodne z wytycznymi zawartymi w normach geodezyjnych oraz budowlanych.

Pytanie 11

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Ortogonalną oraz niwelacji trygonometrycznej
B. Ortogonalną oraz niwelacji geometrycznej
C. Biegunową oraz niwelacji geometrycznej
D. Biegunową oraz niwelacji trygonometrycznej
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 12

Który z poniższych elementów terenu zalicza się do pierwszej kategorii dokładnościowej?

A. Drzewo przyuliczne
B. Linia brzegowa jeziora
C. Boisko sportowe
D. Budynek szkoły
Budynek szkoły to coś, co możemy spokojnie wrzucić do pierwszej grupy dokładnościowej, jeśli mówimy o analizie terenowej i geodezyjnej. W tej grupie są obiekty, które mają naprawdę wysoką precyzję. To znaczy, że ich lokalizacja jest dokładnie określona i można je wykorzystać w różnych sytuacjach, jak planowanie przestrzenne czy urbanistyka. Jak to z budynkami bywa, zwłaszcza tymi publicznymi, jak szkoły, mają one duże znaczenie dla analizy przestrzennej, bo ich lokalizacja wpływa na to, jak dostępne są usługi dla ludzi w okolicy. Kiedy tworzymy mapy społeczne czy sprawdzamy dostęp do edukacji, precyzyjna lokalizacja szkół jest super ważna, żeby ocenić jakość życia i infrastruktury w danym miejscu. A wiesz, stosowanie standardów jak ISO 19115, które dotyczą metadanych geograficznych, pomaga w tym, żeby te dane były zebrane i użyte tak, jak trzeba. To naprawdę ważne dla dalszych analiz.

Pytanie 13

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Archiwum Geodezyjnego
B. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
C. Banku Danych Lokalnych
D. Państwowego Zasobu Geodezyjnego i Kartograficznego
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 14

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Topograficzna
B. Zasadnicza
C. Sozologiczna
D. Ewidencyjna
Wybór pozostałych opcji, takich jak mapa sozologiczna, ewidencyjna czy topograficzna, wskazuje na pewne nieporozumienia dotyczące funkcji tych map. Mapa sozologiczna koncentruje się na ochronie środowiska i zasobów naturalnych, ilustrując zagrożone obszary, co nie ma bezpośredniego związku z usytuowaniem sieci uzbrojenia terenu. Z kolei mapa ewidencyjna skupia się na rejestrze gruntów i budynków, dostarczając danych o właścicielach i statusie prawnym nieruchomości, co również nie obejmuje aspektów infrastrukturalnych. Mapa topograficzna natomiast przedstawia rzeźbę terenu oraz różne obiekty geograficzne, ale nie jest specjalnie ukierunkowana na infrastrukturę techniczną. Te błędne wybory mogą wynikać z mylnego zrozumienia specyfiki każdego rodzaju mapy. W praktyce, brak znajomości zasadniczej mapy może prowadzić do problemów w planowaniu przestrzennym, takich jak konflikty w infrastrukturze, co podkreśla znaczenie właściwego doboru mapy w procesie projektowania i zarządzania przestrzenią.

Pytanie 15

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do II grupy
B. Tylko do I grupy
C. Do I i II grupy
D. Do II i III grupy
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 16

W jakiej Bazie Danych są przechowywane dane dotyczące wysokości studzienek kanalizacyjnych?

A. Geodezyjnej Ewidencji Sieci Uzbrojenia Terenu
B. Ewidencji Gruntów i Budynków
C. Obiektów Topograficznych
D. Szczegółowych Osnów Geodezyjnych
Geodezyjna Ewidencja Sieci Uzbrojenia Terenu (GESUT) to baza danych, w której gromadzone są istotne informacje na temat infrastruktury technicznej, w tym również rzędnych studzienek kanalizacyjnych. GESUT ma na celu systematyzację i ułatwienie dostępu do danych o sieciach uzbrojenia terenu, co jest kluczowe dla planowania przestrzennego oraz prowadzenia działań związanych z zarządzaniem infrastrukturą. Zbierane w niej informacje są nie tylko istotne dla geodetów, ale także dla projektantów, inżynierów oraz służb odpowiedzialnych za utrzymanie infrastruktury. Przykładowo, podczas projektowania nowego osiedla, inżynierowie mogą korzystać z GESUT, aby uzyskać dostęp do rzędnych studzienek kanalizacyjnych, co pozwala na prawidłowe zaplanowanie systemu odwadniającego. Ponadto, dane zawarte w GESUT są także wykorzystywane w procesach inwestycyjnych oraz podczas przeprowadzania prac modernizacyjnych, co podkreśla ich praktyczne znaczenie w codziennym zarządzaniu infrastrukturą.

Pytanie 17

Punkt, w którym niweleta styka się z powierzchnią terenu, nazywany jest punktem

A. zmiany kierunku trasy
B. zerowym robót ziemnych
C. hektometrowym
D. charakterystycznym
Punkt zerowy robót ziemnych to kluczowy element w projektach budowlanych, który odnosi się do miejsca, w którym niweleta, czyli linia pozioma określająca wysokość terenu, przecina się z naturalnym poziomem gruntu. Ten punkt stanowi punkt odniesienia dla dalszych prac ziemnych i budowlanych. W praktyce oznacza to, że wszelkie pomiary wysokości i głębokości są dokonywane względem tego punktu, co umożliwia precyzyjne wykonanie wykopów, nasypów oraz układanie nawierzchni. Zastosowanie punktu zerowego pozwala na uniknięcie błędów w pomiarach, które mogłyby prowadzić do poważnych problemów w późniejszych etapach budowy, takich jak osiadanie konstrukcji czy nieprawidłowe ukształtowanie terenu. Zgodnie z dobrą praktyką inżynieryjną, punkt zerowy powinien być ustalany na etapie planowania inwestycji, a jego lokalizacja powinna być dokładnie zaznaczona na dokumentacji projektowej. Współczesne technologie, takie jak skanowanie 3D czy GPS, również wspierają precyzyjne wyznaczanie punktu zerowego, co zwiększa dokładność i efektywność prac budowlanych.

Pytanie 18

Ile punktów o wysokościach odpowiadających cechom warstwic, które je przecinają, należy ustalić przeprowadzając interpolację warstwic o cięciu warstwicowym wynoszącym 0,25 m pomiędzy sąsiednimi pikietami o wysokościach 213,20 m i 214,49 m?

A. 2 punkty
B. 5 punktów
C. 4 punkty
D. 3 punkty
Wybranie innej liczby punktów może się brać z tego, że nie do końca rozumiesz, jak działa interpolacja warstwicowa. Często myśli się, że liczbę punktów liczy się tylko na podstawie zaokrągleń albo prostych różnic w wysokości, co sprawia, że liczba punktów jest zaniżona. Jak się stosuje złe metody obliczeń, na przykład ignorując cięcie warstwicowe, to wychodzą błędne wyniki. W geodezji i inżynierii lądowej bardzo ważne jest, żeby dokładnie ustalić pomiary, bo jeśli zaniżysz liczbę punktów, to potem mogą być poważne błędy w analizach i projektowaniu. Ustalając wysokości warstwic, zawsze musisz mieć na uwadze różnicę wysokości i wybrane cięcie. Pamiętaj, że pomiar powinien być zgodny z branżowymi standardami, takimi jak normy ISO czy lokalne przepisy geodezyjne. To wszystko przekłada się na jakość wyników, co jest kluczowe w planowaniu przestrzennym.

Pytanie 19

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Usunięcie sytuacji, która już nie istnieje w terenie
B. Dodanie nowych elementów treści mapy
C. Korekta zmian w nazewnictwie
D. Wprowadzenie jedynie wybranych danych
Odpowiedź 'naniesienie tylko wybranych danych' jest prawidłowa, ponieważ proces aktualizacji mapy zasadniczej wymaga kompleksowego podejścia do uzupełniania i weryfikacji danych. Mapa zasadnicza, jako dokument urzędowy, powinna odzwierciedlać pełny stan rzeczy w terenie, co oznacza, że każda istotna zmiana, w tym wprowadzenie nowych elementów, poprawa nazewnictwa oraz usunięcie nieaktualnych obiektów, powinny być wprowadzane w sposób kompleksowy. Na przykład, jeżeli na danym terenie zbudowano nową drogę, to nie wystarczy jedynie nanieść tej drogi – konieczne jest również zaktualizowanie nazw ulic, systemów adresowych oraz wszelkich powiązanych danych. Ponadto, zgodnie z obowiązującymi standardami, w tym normami ISO oraz krajowymi przepisami prawa geodezyjnego, aktualizacja mapy zasadniczej powinna być przeprowadzana w sposób systematyczny i całościowy, aby zapewnić jej rzetelność oraz aktualność. Tylko w ten sposób mapa może służyć jako wiarygodne źródło informacji dla różnych użytkowników, w tym instytucji publicznych, inwestorów oraz obywateli.

Pytanie 20

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. inwentaryzacyjnej
B. branżowej
C. topograficznej
D. zasadniczej
Odpowiedź "zasadnicza" jest poprawna, ponieważ projekt zagospodarowania działki lub terenu należy sporządzić na podstawie mapy zasadniczej, która jest oficjalnym dokumentem zawierającym szczegółowe informacje o terenach, w tym granice działek, infrastrukturę oraz istniejące zagospodarowanie. Mapa zasadnicza jest kluczowym narzędziem w procesie planowania przestrzennego, ponieważ odzwierciedla aktualny stan zagospodarowania przestrzennego oraz umożliwia analizę i projektowanie nowych rozwiązań. W praktyce, architekci i planiści często korzystają z map zasadniczych w celu oceny potencjału działki, identyfikacji ograniczeń (np. strefy ochrony środowiska) oraz planowania przyszłego zagospodarowania. Dobre praktyki w zakresie sporządzania projektów uwzględniają również aktualizację mapy zasadniczej, aby zapewnić zgodność z obowiązującymi przepisami prawa budowlanego i lokalnymi planami zagospodarowania przestrzennego. Dodatkowo, znajomość mapy zasadniczej jest niezbędna w kontekście pozyskiwania pozwoleń na budowę oraz w procesach inwestycyjnych.

Pytanie 21

Jakie jest przyrost współrzędnej ∆x1-2, przy pomiarze długości d1-2 = 100,00 m oraz sinAz1-2 = 0,7604 i cosAz1-2 = 0,6494?

A. 64,94 m
B. 76,04 m
C. 6,49 m
D. 7,60 m
Aby obliczyć przyrost współrzędnej ∆x1-2, możemy wykorzystać równania z zakresu trygonometrii. Długość d1-2 = 100,00 m jest długością odcinka pomierzonego, a współrzędne ∆x1-2 są związane z kierunkiem, w którym ten odcinek jest zorientowany. W tym przypadku sinAz1-2 i cosAz1-2 reprezentują odpowiednio sinus i cosinus azymutu odcinka. Przyrost współrzędnej ∆x1-2 oblicza się przy pomocy wzoru: ∆x1-2 = d1-2 * cosAz1-2. Podstawiając wartości: ∆x1-2 = 100,00 m * 0,6494 = 64,94 m. W praktyce, takie obliczenia są niezwykle istotne w geodezji, inżynierii lądowej czy w kartografii, gdzie precyzyjne pomiary i obliczenia współrzędnych mają kluczowe znaczenie dla realizacji projektów. Stosowanie standardów, takich jak normy ISO w dziedzinie pomiarów, zapewnia dokładność i rzetelność uzyskiwanych wyników.

Pytanie 22

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. wojewoda
B. starosta
C. geodeta uprawniony
D. główny geodeta kraju
Główny geodeta kraju jest organem odpowiedzialnym za zakładanie i prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu, co wynika z regulacji zawartych w Ustawie z dnia 17 maja 1989 r. - Prawo geodezyjne i kartograficzne. Jego zadaniem jest nadzór nad działalnością geodezyjną w kraju, w tym zapewnienie odpowiedniej jakości danych geodezyjnych oraz ich zgodności z obowiązującymi normami i standardami. W praktyce, główny geodeta kraju koordynuje prace związane z ewidencją infrastruktury, co jest kluczowe dla planowania przestrzennego oraz zarządzania zasobami naturalnymi. Działania te mają na celu utrzymanie aktualnej bazy danych, która jest podstawą podejmowania decyzji administracyjnych oraz inwestycyjnych. Umożliwia to również efektywne zarządzanie sieciami uzbrojenia terenu, co jest istotne w kontekście rozwoju infrastruktury i ochrony środowiska.

Pytanie 23

Geodezyjne pomiary sytuacyjne w terenie nie mogą być realizowane za pomocą metod

A. biegunowej.
B. skaningu laserowego.
C. wcięć kątowych, liniowych i kątowo-liniowych.
D. ortogonalną (domiarów prostokątnych).
Skaning laserowy to naprawdę fajna technika pomiarowa. Działa na zasadzie zbierania danych za pomocą skanera laserowego, co sprawia, że jest bardzo efektywna, zwłaszcza w geodezyjnych pomiarach terenowych. Choć nie jest to typowa metoda, to pozwala na zbieranie ogromnej ilości punktów danych w krótkim czasie. Dzięki temu możemy stworzyć bardzo szczegółowy model 3D terenu. W projektach budowlanych to może być super przydatne, bo pozwala szybko i dokładnie dokumentować istniejące budynki czy inne obiekty. To jest mega ważne, gdy planujemy coś nowego. Ważne jest, aby pamiętać, że skanowanie laserowe powinno być robione w odpowiednich warunkach, a wyniki warto sprawdzić tradycyjnymi metodami, żeby mieć pewność co do jakości tych danych.

Pytanie 24

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 14,500 m
B. 1,450 m
C. 145,000 m
D. 0,145 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 25

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. liczbę hektometrów w danym kilometrze trasy
B. całkowitą liczbę metrów w jednym odcinku trasy
C. numer hektometra w konkretnej sekcji kilometra
D. kompletną liczbę kilometrów od startu trasy
Odpowiedź jest prawidłowa, ponieważ cyfra 2 w symbolu 2/5 odnosi się do pełnej liczby kilometrów od początku trasy. W systemie oznaczania tras, szczególnie w kontekście budowy i utrzymania infrastruktury drogowej czy kolejowej, stosuje się taki zapis, aby jednoznacznie określić lokalizację punktu w odniesieniu do całej długości trasy. Przykładowo, jeśli mamy trasę o długości 5 km, to zapis 2/5 wskazuje, że dany punkt znajduje się na 2 km od początku trasy. Z perspektywy praktycznej, takie oznaczenia są kluczowe w zarządzaniu projektami budowlanymi, gdzie dokładne lokalizacje punktów pomiarowych są niezbędne do precyzyjnego planowania i realizacji robót. Standardy branżowe, takie jak normy PN-EN 13450, podkreślają znaczenie precyzyjnego oznaczania punktów w terenie dla celów geodezyjnych oraz budowlanych, co ułatwia komunikację między różnymi zespołami pracującymi nad realizacją projektu.

Pytanie 26

Geodezyjnym znakiem, który znajduje się pod ziemią, nie jest

A. rura kanalizacyjna wypełniona betonem
B. cegła odpowiednio wypalona
C. słup wykonany z granitu lub betonu
D. rurka drenażowa
Podczas analizy geodezyjnych znaków podziemnych, ważne jest zrozumienie ich funkcji oraz klasyfikacji. Cegła dobrze wypalona, rura kanalizacyjna wypełniona cementem oraz rurka drenarska mogą być stosowane jako znaki podziemne, ponieważ ich struktura zapewnia odpowiednią trwałość i stabilność. Cegły, ze względu na swoje właściwości fizyczne, mogą być wykorzystywane do oznaczania punktów w różnych projektach budowlanych, gdzie potrzebne są długotrwałe oznaczenia. Rura kanalizacyjna wypełniona cementem również pełni podobną rolę, ponieważ jej integralność zapewnia, że nie ulegnie ona deformacji w trakcie prac ziemnych. Rurki drenarskie są z kolei używane do odprowadzania wody, co czyni je istotnymi w kontekście zarządzania wodami gruntowymi oraz ochrony strukturalnej budowli. Natomiast błędne przekonanie, że słup z granitu lub betonu jest geodezyjnym znakiem podziemnym, opiera się na nieporozumieniu dotyczących jego funkcji. Słupy te są elementami nośnymi w budownictwie, a ich umiejscowienie i zastosowanie ma charakter budowlany, a nie geodezyjny. Dlatego też ich klasyfikowanie jako znaki podziemne jest mylne, co może prowadzić do poważnych błędów w planowaniu przestrzennym i geodezyjnym. W geodezji istotne jest, aby znaki podziemne były zrozumiane i klasyfikowane prawidłowo, aby zapewnić dokładność i spójność w pomiarach.

Pytanie 27

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 50 cm
B. 25 cm
C. 5 cm
D. 2,5 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 28

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. pl.
B. ul.
C. al.
D. dr.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 29

Na precyzję pomiarów niwelacyjnych nie wpływa

A. wyważenie łat niwelacyjnych
B. kolejność dokonywanych pomiarów
C. odległość między niwelatorem a łatami
D. poziomowanie libelli niwelacyjnej
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 30

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 127g12c35cc
B. 527g12c35cc
C. 27g12c35cc
D. 227g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 31

W celu ustabilizowania punktu osnowy realizacyjnej można zastosować

A. drewniany palik
B. znak wykonany z kamienia
C. ceramiczną rurkę
D. narysowany znak
Znak z kamienia to naprawdę jedna z najlepszych opcji, jeśli chodzi o stabilizację punktu osnowy w geodezji. Kamień jest mega odporny na różne warunki pogodowe, co sprawia, że pomiary są bardziej precyzyjne i trwałe. W praktyce często wykorzystuje się je w miejscach, gdzie punkty odniesienia muszą być stabilne przez dłuższy czas, na przykład w sieciach geodezyjnych. Z tego co wiem, istotne jest, żeby umiejscowienie tych znaków było zgodne z normami, takimi jak PN-EN ISO 19152, które mówią, jak powinno się je zakupywać i instalować. Ważne, żeby były oznaczone tak, żeby łatwo je było znaleźć w przyszłości, co jest kluczowe dla dokładności pomiarów. W realnym świecie, użycie takiego znaku z kamienia ułatwia odnajdywanie punktów podczas kolejnych prac geodezyjnych. Naprawdę warto w to zainwestować.

Pytanie 32

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:30
B. 1:30000
C. 1:300
D. 1:3000
Analizując dostępne odpowiedzi, ważne jest, aby zrozumieć, jak oblicza się błąd względny oraz dlaczego wybrane metody mogą prowadzić do mylnych wyników. Wiele osób może mylnie zakładać, że błąd względny można określić w sposób prosty, traktując błąd pomiaru jako jedynie procent od całkowitej długości. Na przykład, odpowiedzi takie jak 1:30000 mogą wynikać z błędnego zrozumienia, że im mniejszy błąd pomiarowy, tym lepsza jakość pomiaru, co jest uproszczeniem. Taka interpretacja ignoruje rzeczywisty kontekst pomiaru, który w tym przypadku jest określony przez stosunek błędu do długości zmierzonego odcinka. Ponadto, podejście do 1:30 może sugerować, że błąd pomiarowy jest znacznie większy niż rzeczywiście, co może wynikać z niewłaściwego oszacowania wielkości błędu w kontekście stosunków, jakie są typowe dla tej długości. Kolejna odpowiedź, 1:300, może być oparta na błędnej kalkulacji wartości błędu, zniekształcając rzeczywisty wpływ błędu na pomiar. Aby efektywnie unikać takich błędów, kluczowe jest zrozumienie metodyki pomiarowej oraz odpowiedniego stosowania wzorów do obliczeń. W profesjonalnym środowisku, jak inżynieria lądowa czy geodezja, błąd względny jest stosowany do oceny precyzji i dokładności, co jest niezbędne do uzyskania wiarygodnych wyników.

Pytanie 33

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Koordynatografu
B. Podziałki transwersalnej i kroczka
C. Kwadratnicy z nakłuwaczem
D. Nanosnika biegunowego
Koordynatograf, kwadratnica z nakłuwaczem oraz podziałka transwersalna i kroczek to narzędzia, które w różny sposób mogą być wykorzystane do nanoszenia siatki kwadratów na arkusz mapy. Koordynatograf to kluczowy instrument w kartografii, który pozwala na precyzyjne przenoszenie współrzędnych i naznaczanie punktów w siatce, co jest niezbędne przy tworzeniu dokładnych map. Jego konstrukcja umożliwia łatwe i szybkie ustawienie punktów w odpowiednich miejscach. Kwadratnica z nakłuwaczem to narzędzie, które umożliwia tworzenie siatki poprzez nakłuwanie otworów w odpowiednich odstępach, co jest przydatne, gdy chcemy uzyskać wysoce precyzyjne podziały. Z kolei podziałka transwersalna i kroczek służą do pomiarów i nanoszenia podziałów, co również wspiera proces tworzenia siatki. Warto zauważyć, że każdy z tych instrumentów ma swoje specyficzne zastosowanie i w odpowiednich warunkach może znacznie ułatwić pracę. Błędy w wyborze narzędzi do nanoszenia siatki mogą prowadzić do nieprecyzyjnych odwzorowań i w efekcie do poważnych pomyłek w późniejszych analizach geodezyjnych czy kartograficznych.

Pytanie 34

Który krok nie jest częścią procesu konwersji mapy analogowej na cyfrową?

A. kalibracja
B. skanowanie
C. generalizacja
D. wektoryzacja
Wszystkie procesy, poza generalizacją, są ważnymi krokami w przetwarzaniu mapy analogowej na cyfrową. Skanowanie to ten pierwszy etap, gdzie przekształcamy obraz mapy analogowej na wersję cyfrową. Do tego używamy skanerów wysokiej rozdzielczości, które wychwytują szczegóły, a potem przerabiają je na dane cyfrowe. Kalibracja to inny proces, który ma na celu dopasowanie zeskanowanej mapy do rzeczywistych współrzędnych geograficznych, używając punktów kontrolnych, żeby precyzyjnie oddać rzeczywistość. Wektoryzacja natomiast to przerabianie pikseli na obiekty wektorowe, co pozwala na dalszą analizę. W praktyce, bez tych kroków mapa nie byłaby używana w systemach GIS ani dobrze rozumiana przez ludzi. Często ludzie mylą etapy przetwarzania z późniejszymi poprawkami danych, co powoduje zamieszanie, jeśli chodzi o ich rolę w cyfryzacji map. Ważne jest, by zrozumieć, że każdy z tych kroków ma swoje zadanie i prowadzi do powstania dokładniejszego modelu danych.

Pytanie 35

Najwyższy dozwolony średni błąd lokalizacji punktów pomiarowych osnowy sytuacyjnej w odniesieniu do najbliższych punktów poziomej osnowy geodezyjnej wynosi

A. 0,20 m
B. 0,05 m
C. 0,10 m
D. 0,15 m
Wybór wartości błędu, takich jak 0,05 m, 0,20 m czy 0,15 m, może być wynikiem pewnych nieporozumień. Czasem myśli się, że 0,05 m to super precyzyjna wartość, ale to nie jest to, czego potrzebujemy w przypadku osnowy sytuacyjnej. Zbyt dokładne wymagania mogą po prostu opóźnić projekt i podnieść jego koszty. Z kolei 0,20 m czy 0,15 m też nie są dobre, bo nie odpowiadają normom, które jasno wskazują, jakie błędy są dopuszczalne. Takie wybory mogą wynikać z niepełnego zrozumienia, jak działa geodezja, co prowadzi do błędnych decyzji przy planowaniu. Na przykład, ekipa może źle ulokować budynki, używając nieprawidłowych danych, co później może skończyć się problemami, jak konieczność ich przesuwania. Więc naprawdę warto znać te normy, żeby prace geodezyjne były na dobrym poziomie.

Pytanie 36

Dokumentacja dotycząca pracy geodezyjnej, którą należy wypełnić w ośrodku dokumentacji geodezyjnej i kartograficznej, powinna zawierać

A. opis przedmiotu oraz lokalizacji i obszaru realizowanej pracy
B. dane dotyczące wykonawcy
C. informację o innych pracach prowadzonych w rejonie zgłaszanej pracy
D. datę zakończenia pracy
W przypadku zgłoszenia pracy geodezyjnej, osoba wypełniająca dokumentację może mylnie sądzić, że inne elementy, takie jak termin zakończenia pracy, opis przedmiotu czy informacja o wykonawcy, są kluczowe dla ośrodka dokumentacji geodezyjnej i kartograficznej. Jednakże, w kontekście przeprowadzania takich prac, najważniejszym aspektem jest zrozumienie, jakie inne działania są prowadzone w tym samym czasie na danym obszarze. Termin zakończenia pracy, choć istotny z perspektywy zarządzania projektami, nie dostarcza istotnych informacji o wpływie na inne projekty, podczas gdy opis przedmiotu pracy może być zbyt ogólny i nie uwzględniać specyfiki lokalnych warunków. Informacja o wykonawcy również ma swoje miejsce w dokumentacji, jednakże sama w sobie nie odnosi się do kluczowych współzależności między różnymi pracami geodezyjnymi. Takie podejście do zgłoszenia może prowadzić do pomijania istotnych czynników, które mogą rzekomo kolidować z innymi projektami, co skutkuje problemami z koordynacją działań geodezyjnych. Dlatego zrozumienie znaczenia koordynacji prac w obszarze geodezyjnym oraz odpowiedniego dokumentowania tego aspektu jest kluczowym elementem skutecznego zarządzania projektami geodezyjnymi.

Pytanie 37

Zbiór punktów o współrzędnych X, Y ustalonych w sieciach geodezyjnych o najwyższej precyzji określamy mianem osnowy

A. podstawową
B. dokładną
C. niwelacyjną
D. pomiarową
Osnowa geodezyjna to zbiór punktów o znanych współrzędnych, stanowiących podstawę do prowadzenia prac pomiarowych w geodezji. Wyróżnia się osnowę geodezyjną podstawową, która charakteryzuje się najwyższą dokładnością i stabilnością. Punkty te są wykorzystywane jako referencyjne w procesie pomiarowym, co zapewnia wysoką jakość i precyzję wyników. Osnowa podstawowa jest podstawą dla dalszej analizy i opracowywania danych w geodezji, jak również w infrastrukturze, takiej jak budownictwo i planowanie przestrzenne. Przykłady zastosowania osnowy podstawowej obejmują wytyczanie granic działek, pomiary inżynieryjne oraz tworzenie map topograficznych. W praktyce, dokładność osnowy podstawowej może wynikać z zastosowania technologii, takich jak GNSS, które umożliwiają precyzyjne określenie położenia punktów w przestrzeni. Zgodnie z normami geodezyjnymi, osnowa podstawowa jest niezbędna dla zapewnienia wiarygodności i spójności danych geodezyjnych w danym obszarze.

Pytanie 38

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 201,06 m
B. HP = 197,96 m
C. HP = 203,36 m
D. HP = 200,26 m
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 39

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,004 m
B. 0,01 m
C. 0,001 m
D. 0,02 m
Wybór innych wartości, takich jak 0,02 m, 0,001 m czy 0,004 m, wskazuje na brak zrozumienia wymagań dotyczących precyzyjnego pozycjonowania w kontekście technologii GNSS. W przypadku 0,02 m, chociaż może to wydawać się akceptowalnym poziomem dokładności, w rzeczywistości jest to zbyt duży błąd, który może prowadzić do poważnych nieścisłości w pomiarach, zwłaszcza w geodezji, gdzie standardy w zakresie dokładności są szczególnie surowe. Przykłady zastosowań, gdzie dokładność jest kluczowa, obejmują monitoring deformacji gruntu czy precyzyjne pomiary w inżynierii lądowej. Zastosowanie 0,001 m jako wymaganej dokładności również jest niepraktyczne, ponieważ w rzeczywistości osiągnięcie tak wysokiej precyzji w warunkach terenowych jest niezwykle trudne i kosztowne. Wreszcie, wybór 0,004 m również nie odpowiada rzeczywistym potrzebom, ponieważ nie zapewnia odpowiedniego marginesu bezpieczeństwa w kontekście pomiarów, które mogą być narażone na różne źródła błędów, takie jak interferencje atmosferyczne czy multipath. W związku z tym, dla zastosowań wymagających precyzji, ustalanie wysokości anteny odbiornika z dokładnością 0,01 m jest najbardziej odpowiednim rozwiązaniem, które nie tylko spełnia standardy branżowe, ale również odpowiada rzeczywistym wymaganiom projektowym.

Pytanie 40

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 90°
B. 360°
C. 180°
D. 200°
Odpowiedź 90° jest poprawna, ponieważ podczas dokładnego poziomowania teodolitu, alidade musi być obrócona o kąt prosty względem linii ustawczych, aby uzyskać odpowiednią orientację. Obrót o 90° umożliwia precyzyjne sprawdzenie poziomu w kierunku prostopadłym do linii, na której zainstalowano teodolit. W praktyce, obrócenie alidade o ten kąt umożliwia wykonanie pomiarów w dwóch prostopadłych kierunkach, co jest istotne dla uzyskania dokładnych wyników. W standardach branżowych, takich jak normy ISO dotyczące pomiarów geodezyjnych, wskazuje się na znaczenie precyzyjnego poziomowania i wykorzystania alidady do potwierdzenia poprawności ustawienia urządzenia. W przypadku pomiarów budowlanych lub inżynieryjnych, prawidłowe poziomowanie teodolitu jest kluczowe, aby uniknąć błędów, które mogą prowadzić do kosztownych poprawek i opóźnień. Dlatego znajomość technik obrotu alidade oraz ich zastosowanie w praktyce jest niezbędna dla każdego geodety.