Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 czerwca 2025 16:33
  • Data zakończenia: 16 czerwca 2025 16:48

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 30
B. 75
C. 60
D. 24
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. suwmiarka
B. szczelinomierz
C. liniał
D. mikrometr
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. pochłonięciu
B. odbiciu
C. wzmocnieniu
D. rozproszeniu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Epoksyt
B. Polistyren
C. Żeliwo białe
D. Teflon
Epoksyt, teflon, polistyren oraz żeliwo białe reprezentują różne materiały, które mogą być używane w różnych kontekstach inżynieryjnych, lecz nie wszystkie z nich są optymalne w produkcji łożysk ślizgowych. Epoksyt to materiał kompozytowy, który charakteryzuje się wysoką wytrzymałością mechaniczną oraz odpornością na chemikalia, ale nie ma właściwości samosmarujących, co jest kluczowe dla łożysk, które wymagają minimalizacji tarcia i zwiększonej trwałości. Polistyren, z drugiej strony, jest materiałem o niskiej wytrzymałości mechanicznej i wysokiej podatności na działanie wysokich temperatur, co czyni go nieodpowiednim w zastosowaniach wymagających dużej odporności. Żeliwo białe, chociaż jest materiałem o dobrej trwałości, nie nadaje się na łożyska ślizgowe, ze względu na swoją sztywność i dużą masę, które mogą prowadzić do zwiększenia oporów tarcia. Często błędem jest utożsamianie materiałów z wysoką wytrzymałością z ich zastosowaniem w łożyskach; w rzeczywistości kluczowe znaczenie mają także ich właściwości tribologiczne, które w przypadku niektórych z wymienionych materiałów są niewystarczające. Zrozumienie różnic w zastosowaniach tych materiałów i ich właściwości jest kluczowe w procesie projektowania komponentów mechanicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Termistor.
B. Gaussotron.
C. Tensometr.
D. Warystor.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. o polepszonych parametrach lepkości i temperatury
C. mineralny bez dodatków uszlachetniających
D. syntetyczny
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 15

Jakie jest medium robocze w systemie hydraulicznym?

A. energia elektryczna
B. olej pod ciśnieniem
C. powietrze sprężone
D. woda pod ciśnieniem
Prąd elektryczny jako medium robocze w układzie hydraulicznym jest koncepcją mylną, ponieważ nie pełni on roli nośnika energii w tym kontekście. Układy hydrauliczne opierają się na mechanice płynów, a prąd elektryczny jest związany z obwodami elektrycznymi. W rzeczywistości w układach hydraulicznych energia jest przekazywana przez ciecz, co wskazuje na fundamentalną różnicę między hydrauliką a elektrycznością. Sprężone powietrze również nie jest medium hydraulicznym; jest to medium pneumatyczne, które działa na zasadzie ciśnienia powietrza, a nie cieczy. Pneumatyka znajduje zastosowanie w systemach, gdzie wymagana jest szybka i lekka akcja, ale nie jest w stanie przenosić tak dużych sił jak hydraulika. Woda pod ciśnieniem, choć może być stosowana w niektórych aplikacjach (np. w systemach gaśniczych), nie jest typowym medium roboczym w hydraulice przemysłowej, gdzie preferowane są oleje z uwagi na ich lepsze właściwości smarne i stabilność temperaturową. Typowym błędem jest mylenie dwóch różnych systemów - hydrauliki i pneumatyki - co prowadzi do niewłaściwego doboru mediów roboczych oraz potencjalnych awarii systemów. Należy pamiętać, że wybór medium roboczego ma kluczowe znaczenie dla efektywności i bezpieczeństwa działania układów mechanicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W celu zamontowania sterownika PLC na szynie DIN, należy użyć

A. śrub
B. zatrzasków
C. nitów
D. łap
Zatrzaski stosowane do montażu sterowników PLC na szynach DIN są popularnym wyborem ze względu na ich prostotę, szybkość montażu oraz bezpieczeństwo. Zatrzaski pozwalają na łatwe i szybkie mocowanie urządzenia bez potrzeby używania narzędzi, co jest szczególnie przydatne w przypadku instalacji w trudnodostępnych miejscach. W praktyce oznacza to, że technik może w krótkim czasie zamontować lub zdemontować urządzenie, co znacznie przyspiesza proces konserwacji i ewentualnej wymiany komponentów. Dodatkowo, zatrzaski zapewniają stabilne mocowanie, które zabezpiecza sterownik przed przypadkowym wypięciem się z szyny, co mogłoby prowadzić do przerw w pracy systemu. Stosowanie zatrzasków przestrzega również normy dotyczące instalacji urządzeń elektrycznych, które zalecają użycie rozwiązań umożliwiających łatwy dostęp do urządzeń bez ryzyka ich uszkodzenia. Warto również zwrócić uwagę, że w przypadku większych instalacji, łatwość montażu i demontażu staje się kluczowym czynnikiem wpływającym na efektywność pracy zespołów zajmujących się utrzymaniem ruchu.

Pytanie 21

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. synchroniczne
B. obcowzbudne
C. bocznikowe
D. szeregowe
Silniki prądu stałego szeregowe charakteryzują się tym, że uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem wirnika. Taki układ oznacza, że prąd płynący przez wirnik jest również tym samym prądem, który zasila uzwojenie wzbudzenia. W rezultacie, przy rozruchu silnika szeregowego, w momencie zerowej prędkości obrotowej, prąd osiąga wartość maksymalną, co generuje bardzo duży moment obrotowy. Jest to szczególnie istotne w zastosowaniach, gdzie wymagany jest wysoki moment startowy, na przykład w napędzie dźwigów, taśmociągów czy wózków widłowych. W kontekście standardów przemysłowych, silniki te często stosowane są w aplikacjach, gdzie wymagane jest szybkie pokonywanie oporów, co czyni je niezastąpionymi w wielu dziedzinach przemysłu. Dodatkowo, ich prosta konstrukcja oraz stosunkowo niskie koszty produkcji sprawiają, że są popularnym wyborem w wielu zastosowaniach.

Pytanie 22

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Fartuch ochronny z bawełny
B. Ochronne okulary
C. Opaskę uziemiającą
D. Buty z izolującą podeszwą
Wybór bawełnianego fartucha ochronnego, okularów ochronnych lub butów z izolowaną podeszwą do pracy przy wymianie tranzystora CMOS jest niewłaściwy, gdyż te elementy ochrony nie są wystarczające, aby zminimalizować ryzyko związane z uszkodzeniem komponentów przez ładunki elektrostatyczne. Fartuch ochronny, mimo że może chronić przed zanieczyszczeniami, nie zapewnia ochrony przed ESD. Użycie okularów ochronnych jest również nieadekwatne, ponieważ ich główną funkcją jest ochrona oczu przed zanieczyszczeniami mechanicznymi czy chemicznymi, ale nie ma zastosowania w kontekście ochrony przed uszkodzeniami wywołanymi przez elektrostatykę. Co więcej, buty z izolowaną podeszwą mogą prowadzić do zwiększenia ryzyka gromadzenia się ładunków elektrostatycznych, co jest sprzeczne z zasadami ochrony ESD. Często pracownicy nie doceniają znaczenia uziemienia, uważając, że inne formy ochrony są wystarczające, co jest klasycznym błędem myślowym. W przypadku pracy z wrażliwymi komponentami, jak tranzystory CMOS, najważniejsze jest minimalizowanie ryzyka ESD, a do tego niezbędne jest stosowanie opasek uziemiających, które zapewniają bezpieczne odprowadzenie ładunków do ziemi. Bez odpowiedniej ochrony ESD, nawet niewielkie ładunki mogą spowodować nieodwracalne uszkodzenia komponentów, co prowadzi do zwiększonych kosztów napraw oraz strat w produkcji.

Pytanie 23

Korzystając z danych zamieszczonych w tabeli, określ klasę jakości oleju, który można zastosować do urządzeń pracujących przy wysokim ciśnieniu i w stałej temperaturze otoczenia?

Klasa jakości
ISO 6743/4
Charakterystyka olejuZastosowanie olejuZawartość dodatków
%
HHoleje bez dodatków uszlachetniającychdo słabo obciążonych systemów0
HLoleje z inhibitorami utlenienia i korozjido umiarkowanie obciążonych systemówOk. 0,6
HRoleje z inhibitorami utlenienia i korozji oraz modyfikatorami lepkoścido umiarkowanie obciążonych systemów pracujących w zmiennych temperaturach otoczeniaOk. 8,0
HMoleje z inhibitorami utlenienia dodatkami przeciwzużyciowymido systemów pracujących przy wysokim ciśnieniuOk. 1,2
HVoleje z inhibitorami utlenienia i korozji, dodatkami przeciwzużyciowymi oraz modyfikatorami lepkoścido systemów pracujących przy wysokim ciśnieniu w zmiennych temperaturach otoczeniaOk. 8,0

A. HR
B. HM
C. HL
D. HH
Odpowiedź HM jest poprawna, ponieważ oleje klasy HM są specjalnie zaprojektowane do pracy w systemach hydraulicznych, które operują pod wysokim ciśnieniem. Oleje te zawierają inhibitory utleniania, co zwiększa ich trwałość i stabilność w trudnych warunkach eksploatacyjnych. Dodatki przeciwzużyciowe pomagają redukować zużycie komponentów, co jest istotne w aplikacjach, gdzie wymagana jest niezawodność i długoterminowa efektywność. Zgodnie z normami branżowymi, takie jak ISO 6743-4, oleje hydrauliczne HM są uznawane za standard w wielu zastosowaniach przemysłowych, w tym w systemach hydraulicznych w maszynach budowlanych i produkcyjnych, gdzie występują wysokie obciążenia oraz stałe warunki pracy. Użycie oleju klasy HM w takich systemach pozwala na optymalizację wydajności, zmniejszenie ryzyka awarii oraz prolongowanie żywotności urządzeń, co jest kluczowe dla efektywności produkcji i obniżenia kosztów utrzymania.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
B. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
D. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Mostek tensometryczny
B. Enkoder
C. Przepływomierz powietrza
D. Pirometr
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 36

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. zielonym kolorem z żółtą obręczą
B. symbolem kwadratu z określoną wartością napięcia
C. napisem "narzędzie bezpieczne"
D. symbolem podwójnego trójkąta z określoną wartością napięcia
Stosowanie narzędzi izolowanych w pracy z urządzeniami pod napięciem jest niezwykle istotne dla zapewnienia bezpieczeństwa, jednak nie wszystkie oznaczenia są równoznaczne z właściwym zabezpieczeniem. Odpowiedzi wskazujące na kolor zielony z żółtym pierścieniem, znak kwadratu z wartością napięcia czy napis "narzędzie bezpieczne" nie mają podstaw w powszechnie uznawanych standardach. Narzędzia oznaczone kolorem zielonym z żółtym pierścieniem mogą sugerować, że są one przeznaczone do użytku w określonych warunkach, ale nie dostarczają konkretnej informacji o ich odporności na napięcie, co jest kluczowe w pracy z elektrycznością. Z kolei oznaczenie kwadratu z wartością napięcia może być mylące, ponieważ nie określa ono, czy narzędzie jest rzeczywiście izolowane, a tylko wskazuje na parametry, które mogą być różne w zależności od zastosowania. Ponadto, napis "narzędzie bezpieczne" nie jest standardowym oznaczeniem w branży, co może prowadzić do fałszywego poczucia bezpieczeństwa u użytkowników. Wiele osób myśli, że wystarczy jedynie odpowiedni kolor lub napis, aby zapewnić sobie bezpieczeństwo. Takie myślenie jest błędne, ponieważ bezpieczeństwo w pracy z elektrycznością wymaga dokładnej znajomości specyfikacji narzędzi oraz ich zastosowania. Kluczowe jest, aby operatorzy sprzętu byli świadomi, że tylko narzędzia oznaczone z zachowaniem norm, takich jak podwójny trójkąt z określeniem wartości napięcia, mogą zagwarantować odpowiedni poziom ochrony przed porażeniem elektrycznym.

Pytanie 37

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
B. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
C. usunąć ciało obce, położyć rannego i wezwać lekarza
D. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
Usunięcie obcego ciała z rany może się wydawać słuszne, ale w praktyce to dość ryzykowne. Może to prowadzić do większego krwawienia lub dodatkowych uszkodzeń tkanek. Tak naprawdę zasada pierwszej pomocy mówi, żeby unikać wszelkich działań, które mogą pogorszyć sytuację, w tym usuwania ciał obcych, które mogą działać jak „korki”, ograniczając krwotok. W przypadku krwotoku ważne jest, by zmniejszyć przepływ krwi, a najlepszym sposobem jest ucisk na ranę i uniesienie kończyn. Użycie opatrunku uciskowego to standard w pierwszej pomocy, bo skutecznie zmniejsza krwawienie i stabilizuje poszkodowanego. Nie zapominaj, że zawsze trzeba wezwać pomoc, ale najpierw skup się na podstawowych zasadach opieki nad poszkodowanym. Niezrozumienie tych rzeczy może spowodować opóźnienia w skutecznej pomocy i zwiększyć ryzyko zdrowotnych konsekwencji.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.