Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 14:20
  • Data zakończenia: 7 kwietnia 2025 14:34

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gniazdo na tablicy interaktywnej jest oznaczone tym symbolem. Które złącze powinno być wykorzystane do połączenia tablicy z komputerem?

Ilustracja do pytania
A. HDMI
B. FireWire
C. D-SUB VGA
D. USB A-A
Odpowiedź D-SUB VGA jest prawidłowa ponieważ wiele starszych tablic interaktywnych korzysta z tego standardu do przesyłania sygnału wideo z komputera PC. D-SUB VGA to złącze analogowe powszechnie używane do przesyłania sygnału wideo do monitorów projektorów i tablic interaktywnych. Jest to standardowe złącze 15-pinowe które umożliwia przesyłanie sygnału wideo o wysokiej rozdzielczości. Choć technologia cyfrowa zyskała na popularności VGA nadal jest obecna w wielu starszych urządzeniach edukacyjnych ze względu na swoją niezawodność i wszechstronność. W środowisku edukacyjnym tablice interaktywne często wymagają podłączenia do komputerów w celu wyświetlania obrazu i użycie złącza VGA pozwala na łatwą integrację z istniejącą infrastrukturą. Ważne jest aby znać różne rodzaje złączy i ich zastosowania aby móc skutecznie korzystać z tablic interaktywnych i innych urządzeń multimedialnych. Rozumienie tych standardów jest kluczowe w projektowaniu i wdrażaniu rozwiązań audiowizualnych w edukacji

Pytanie 2

W systemie Windows przypadkowo zlikwidowano konto użytkownika, lecz katalog domowy pozostał nietknięty. Czy możliwe jest odzyskanie nieszyfrowanych danych z katalogu domowego tego użytkownika?

A. to możliwe za pośrednictwem konta z uprawnieniami administratorskimi
B. to osiągalne tylko przy pomocy oprogramowania typu recovery
C. to niemożliwe, gdyż zabezpieczenia systemowe uniemożliwiają dostęp do danych
D. to niemożliwe, dane są trwale utracone wraz z kontem
Wielu użytkowników może błędnie sądzić, że dane użytkownika są bezpowrotnie utracone w momencie usunięcia konta, co jest nieprawdziwe. Istnieje kilka czynników, które prowadzą do tego nieporozumienia. Po pierwsze, usunięcie konta użytkownika w Windows nie oznacza automatycznego usunięcia jego katalogu domowego. System operacyjny oddziela te dwa procesy, a katalog domowy użytkownika może pozostać na dysku twardym. W związku z tym, bez dostępu do konta administracyjnego, użytkownik nie ma możliwości przeglądania ani odzyskiwania tych danych, co prowadzi do przekonania, że są one utracone. Innym błędnym założeniem jest myślenie, że dane są zawsze chronione przez systemowe zabezpieczenia. Choć system Windows ma wbudowane mechanizmy ochrony, takie jak uprawnienia dostępu i szyfrowanie, to w przypadku usunięcia konta te mechanizmy nie mają zastosowania, gdyż katalog domowy pozostaje dostępny dla administratora. Ponadto, niektóre narzędzia do odzyskiwania danych mogą być mylnie postrzegane jako jedyne rozwiązanie, mimo że konta administracyjne mogą przywrócić dostęp do plików bez dodatkowych aplikacji. Z tego powodu kluczowe jest zrozumienie, że dostęp do danych jest możliwy przy odpowiednich uprawnieniach, a nie tylko za pomocą specjalistycznych programów.

Pytanie 3

Trzech użytkowników komputera z systemem operacyjnym Windows XP Pro posiada swoje foldery z dokumentami w głównym katalogu dysku C:. Na dysku znajduje się system plików NTFS. Użytkownicy mają utworzone konta z ograniczonymi uprawnieniami. Jak można zabezpieczyć folder każdego z użytkowników, aby inni nie mieli możliwości modyfikacji jego zawartości?

A. Nie udostępniać dokumentów w sekcji Udostępnianie w ustawieniach folderu
B. Ustawić dla dokumentów atrybut Ukryty w ustawieniach folderów
C. Przydzielić uprawnienia NTFS do edytowania folderu jedynie odpowiedniemu użytkownikowi
D. Zmierzyć każdemu z użytkowników typ konta na konto z ograniczeniami
Podczas rozważania ochrony folderów użytkowników, warto zwrócić uwagę na kilka nieprawidłowych podejść. Nieudostępnienie dokumentów w zakładce 'Udostępnianie' może z pozoru wydawać się rozwiązaniem, ale w rzeczywistości nie eliminuje to problemu z dostępem do folderów. Użytkownicy mogą nadal mieć dostęp do folderów poprzez system uprawnień NTFS. Jeśli foldery nie są odpowiednio zabezpieczone poprzez przypisanie uprawnień, inni użytkownicy z tym samym dostępem do systemu będą mogli wprowadzać zmiany. Nadanie atrybutu ukrytego folderom również nie zabezpiecza ich przed dostępem. Atrybut ten jedynie sprawia, że foldery są niewidoczne w standardowym widoku, ale nie uniemożliwia to ich otwierania ani modyfikowania przez użytkowników, którzy znają ścieżkę dostępu. Zmiana typu konta na konto z ograniczeniami nie rozwiązuje problemu, ponieważ konta z ograniczeniami nadal mogą mieć dostęp do folderów, chyba że uprawnienia NTFS są prawidłowo skonfigurowane. W praktyce, brak zrozumienia zasadności przypisywania szczegółowych uprawnień prowadzi do sytuacji, w której dane są narażone na nieautoryzowany dostęp, co jest sprzeczne z zasadami bezpieczeństwa. Aby skutecznie chronić dane, należy zawsze bazować na zaawansowanych mechanizmach zabezpieczeń, takich jak NTFS, które oferują precyzyjną kontrolę dostępu.

Pytanie 4

W systemie Linux plik posiada uprawnienia ustawione na 541. Właściciel ma możliwość pliku

A. wyłącznie wykonać
B. odczytać, zapisać oraz wykonać
C. zmieniać
D. odczytać oraz wykonać
Uprawnienia pliku w systemie Linux są określane za pomocą trzech cyfr, gdzie każda cyfra reprezentuje różne uprawnienia dla właściciela, grupy i innych użytkowników. Wartość 541 oznacza, że właściciel ma uprawnienia do odczytu (4) i wykonania (1), ale nie ma uprawnień do zapisu (0). Z tego względu poprawna odpowiedź to możliwość odczytu i wykonania. Uprawnienia te są kluczowe w zarządzaniu bezpieczeństwem systemu, ponieważ pozwalają na kontrolowanie, kto ma dostęp do plików i jak może z nich korzystać. Na przykład, jeśli właściciel pliku chce, aby inni użytkownicy mogli go uruchomić, ale nie modyfikować, ustawienie uprawnień na 541 jest odpowiednie. Dobre praktyki w zarządzaniu uprawnieniami obejmują minimalizowanie dostępu do plików, a także używanie polecenia 'chmod' do precyzyjnego ustawiania tych uprawnień, co jest niezbędne w środowiskach produkcyjnych dla utrzymania bezpieczeństwa i integralności danych.

Pytanie 5

Jakim materiałem eksploatacyjnym dysponuje ploter solwentowy?

A. element tnący
B. zestaw metalowych narzędzi tnących
C. atrament w żelu
D. farba na bazie rozpuszczalników
Wybór niewłaściwego materiału eksploatacyjnego w kontekście ploterów solwentowych może prowadzić do wielu problemów, w tym obniżenia jakości druku i zwiększenia kosztów. Głowica tnąca, mimo że jest istotnym elementem w procesie cięcia, nie jest materiałem eksploatacyjnym, lecz komponentem, który wykonuje fizyczne cięcie materiałów, takich jak folie lub papier. Wybór zestawu metalowych rylców również nie ma zastosowania w ploterach solwentowych, ponieważ są to narzędzia bardziej związane z innego rodzaju technologiami użytkowymi, jak np. plotery tnące. Atrament żelowy jest przeznaczony do innych typów drukarek, w szczególności tych, które wykorzystują technologię druku atramentowego opartą na wodzie. Często błędem myślowym jest mylenie różnych technologii druku oraz materiałów eksploatacyjnych, co prowadzi do nieefektywnego wykorzystania sprzętu. Warto zaznaczyć, że dobór odpowiednich materiałów eksploatacyjnych powinien opierać się na znajomości specyfikacji urządzeń oraz wymagań dotyczących jakości i trwałości wydruków. W branży druku wielkoformatowego, znajomość odpowiednich norm i praktyk jest kluczowa dla osiągnięcia pożądanych rezultatów.

Pytanie 6

Który z portów na zaprezentowanej płycie głównej umożliwia podłączenie zewnętrznego dysku przez interfejs e-SATA?

Ilustracja do pytania
A. 4
B. 2
C. 3
D. 1
Port numer 2 to e-SATA, czyli ten typ złącza, który pozwala na szybkie przesyłanie danych. W praktyce działa to tak, że podłączasz do niego zewnętrzne dyski twarde i masz możliwość przenoszenia dużych ilości info z naprawdę niezłą prędkością, sięgającą nawet 6 Gb/s. To czyni go całkiem konkurencyjnym wobec USB 3.0 i Thunderbolt. Z mojego doświadczenia wynika, że e-SATA jest świetny, gdy potrzebujesz szybko przesłać dane bez zbędnych opóźnień. Fajnie, że nie ma problemów z zakłóceniami elektromagnetycznymi, bo złącze jest dość solidnie zrobione. Jednak trzeba pamiętać, że e-SATA nie zapewnia zasilania przez kabel, dlatego zewnętrzne urządzenia często potrzebują swojego osobnego źródła zasilania. Generalnie, jest to technologia, która sprawdza się w pracy z dużymi zbiorem danych, takimi jak edycja wideo czy duże bazy danych.

Pytanie 7

Jakiego materiału używa się w drukarkach tekstylnych?

A. atrament sublimacyjny
B. filament
C. fuser
D. taśma woskowa
Fuser to element drukarek laserowych, który jest odpowiedzialny za utrwalanie tonera na papierze poprzez wysoką temperaturę, co czyni go istotnym w kontekście druku biurowego, ale nie ma zastosowania w drukarkach tekstylnych. Filament to materiał używany w drukarkach 3D, który dostarcza tworzywo do procesu drukowania, jednak nie jest przeznaczony do druku tekstylnego, a jego użycie w tej dziedzinie jest błędne z uwagi na różnice w technologii druku. Taśma woskowa jest stosowana w technologii druku termotransferowego, gdzie woskowy materiał jest przenoszony na podłoże, ale nie nadaje się do bezpośredniego druku na tkaninach, co ogranicza jej zastosowanie w przemyśle tekstylnym. Wybór niewłaściwego materiału eksploatacyjnego, takiego jak filament czy taśma woskowa, często wynika z braku zrozumienia specyfiki technologii druku oraz jej wymogów, co prowadzi do niedostatecznej jakości wydruków i nieodpowiednich rezultatów końcowych. Zrozumienie różnic w materiałach eksploatacyjnych oraz ich zastosowań jest kluczowe dla osiągnięcia pożądanych efektów w druku tekstylnym, co podkreśla znaczenie edukacji w tym zakresie.

Pytanie 8

Jakie narzędzie służy do połączenia pigtaila z włóknami światłowodowymi?

A. narzędzie zaciskowe do wtyków RJ45, posiadające odpowiednie gniazdo dla kabla
B. spawarka światłowodowa, łącząca włókna przy użyciu łuku elektrycznego
C. przedłużacz kategorii 5e z zestawem pasywnych kabli o maksymalnej prędkości połączenia 100 Mb/s
D. stacja lutownicza, która wykorzystuje mikroprocesor do ustawiania temperatury
Spawarka światłowodowa to urządzenie, które łączy włókna światłowodowe poprzez spawanie ich za pomocą łuku elektrycznego. Jest to kluczowe narzędzie w instalacji i konserwacji systemów światłowodowych, gdyż umożliwia tworzenie połączeń o niskim tłumieniu i wysokiej wydajności, co jest niezbędne w kontekście przesyłania danych na dużych odległościach. Przykładowo, w przypadku budowy sieci FTTH (Fiber To The Home), precyzyjne łączenie włókien światłowodowych za pomocą spawarki jest krytyczne dla zapewnienia odpowiedniej jakości sygnału. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie prawidłowych połączeń w systemach światłowodowych, ponieważ błędne spawy mogą prowadzić do znacznych strat sygnału i obniżenia wydajności całej sieci. Dodatkowo, spawarki światłowodowe są wyposażone w zaawansowane technologie, takie jak automatyczne dopasowanie włókien i monitorowanie jakości spawów, co zwiększa efektywność procesu oraz zapewnia zgodność z najlepszymi praktykami w branży.

Pytanie 9

Osoba planuje unowocześnić swój komputer poprzez zwiększenie pamięci RAM. Zainstalowana płyta główna ma specyfikacje przedstawione w tabeli. Wybierając dodatkowe moduły pamięci, powinien pamiętać, aby

Parametry płyty głównej
ModelH97 Pro4
Typ gniazda procesoraSocket LGA 1150
Obsługiwane procesoryIntel Core i7, Intel Core i5, Intel Core i3, Intel Pentium, Intel Celeron
ChipsetIntel H97
Pamięć4 x DDR3- 1600 / 1333/ 1066 MHz, max 32 GB, ECC, niebuforowana
Porty kart rozszerzeń1 x PCI Express 3.0 x16, 3 x PCI Express x1, 2 x PCI

A. dokupione moduły miały łączną pojemność przekraczającą 32 GB
B. były to cztery moduły DDR4, o wyższej częstotliwości niż obecnie zainstalowana pamięć RAM
C. w obrębie jednego banku były ze sobą zgodne tak, aby osiągnąć najwyższą wydajność
D. były to trzy moduły DDR2, bez systemu kodowania korekcyjnego (ang. Error Correction Code)
Wybór zgodnych modułów pamięci RAM w obrębie jednego banku jest kluczowy dla osiągnięcia optymalnej wydajności systemu komputerowego. W przypadku płyty głównej H97 Pro4 z przedstawionymi parametrami, ilość banków pamięci pozwala na zainstalowanie czterech modułów DDR3 o maksymalnej pojemności 32 GB i częstotliwości do 1600 MHz. Kluczowe jest, aby moduły pamięci były kompatybilne między sobą, co oznacza, że powinny mieć tę samą prędkość, pojemność i najlepiej pochodzić od tego samego producenta, co minimalizuje ryzyko problemów z kompatybilnością i maksymalizuje wydajność. Stosowanie zgodnych modułów pozwala na pełne wykorzystanie trybu dual-channel, który znacznie przyspiesza transfer danych pomiędzy pamięcią a procesorem. Praktyczne zastosowanie tej wiedzy w codziennym użytkowaniu komputera przejawia się w skróconych czasach ładowania aplikacji i lepszej wielozadaniowości systemu. Dobre praktyki branżowe wskazują także na regularne aktualizowanie biosu płyty głównej w celu uzyskania najnowszych rozwiązań kompatybilności pamięci.

Pytanie 10

Na podstawie załączonego obrazu, który adres powinien zostać zmieniony w ustawieniach klienta lub serwera, aby umożliwić podłączenie komputera do domeny?

Konfiguracja serwera

Physical Address. . . . . . . . : 08-00-27-07-E1-8E
DHCP Enabled. . . . . . . . . . : No
Autoconfiguration Enabled . . . : Yes
Link-local IPv6 Address . . . . : fe80::646e:47a6:1d9:91d1%12(Preferred)
IPv4 Address. . . . . . . . . . : 10.0.0.1(Preferred)
Subnet Mask . . . . . . . . . . : 255.0.0.0
Default Gateway . . . . . . . . : 10.0.0.5
DHCPv6 IAID . . . . . . . . . . : 302514215
DHCPv6 Client DUID. . . . . . . : 00-01-00-01-1E-D7-23-14-08-00-27-07-E1-8E
DNS Servers . . . . . . . . . . : ::1
                                : 127.0.0.1
NetBIOS over Tcpip. . . . . . . : Enabled

Konfiguracja klienta

Adres fizyczny. . . . . . . . . : 08-00-27-74-46-56
DHCP włączone . . . . . . . . . : Nie
Autokonfiguracja włączona . . . : Tak
Adres IPv6 połączenia lokalnego : fe80::56b:c9ae:a01d:7e32%11(Preferowane)
Adres IPv4. . . . . . . . . . . : 10.0.0.10(Preferowane)
Maska podsieci. . . . . . . . . : 255.0.0.0
Brama domyślna. . . . . . . . . : 10.0.0.5
Identyfikator IAID DHCPv6 . . . : 235405351
Identyfikator DUID klienta DHCPv6 : 00-01-00-01-1A-68-0C-FD-08-00-27-0F-E6-F8
Serwery DNS . . . . . . . . . . : fec0:0:0:ffff::1%1
                                : fec0:0:0:ffff::2%1
                                : fec0:0:0:ffff::3%1
NetBIOS przez Tcpip . . . . . . : Włączony

A. Adres DNS w ustawieniach klienta na 10.0.0.1
B. Adres IPv4 w ustawieniach serwera na 10.0.0.10
C. Adres DNS w ustawieniach serwera na 10.0.0.1
D. Adres IPv4 w ustawieniach klienta na 10.0.0.1
Adres DNS jest kluczowym elementem konfiguracji sieciowej, ponieważ pozwala na tłumaczenie nazw domenowych na adresy IP, które są zrozumiałe dla urządzeń w sieci. W przypadku potrzeby podłączenia komputera do domeny, poprawna konfiguracja DNS jest niezbędna do odnalezienia odpowiednich serwerów domenowych. Ustawienie adresu DNS na 10.0.0.1 w konfiguracji klienta sugeruje, że jest to adres serwera DNS, który powinien być dostępny z tej samej podsieci. To podejście jest zgodne z dobrymi praktykami, gdzie serwer DNS znajduje się w tej samej sieci lub jest dostępny poprzez trasę bramy domyślnej, co minimalizuje opóźnienia i zapewnia szybszy czas odpowiedzi na zapytania DNS. W wielu organizacjach praktykuje się, że serwer DNS jest również kontrolerem domeny, co umożliwia zarządzanie politykami sieciowymi i użytkownikami. Takie centralne podejście ułatwia zarządzanie infrastrukturą sieciową i zapewnia spójność w dostępie do zasobów sieciowych oraz ich bezpieczeństwo.

Pytanie 11

Zjawisko przesłuchu w sieciach komputerowych polega na

A. przenikaniu sygnału pomiędzy sąsiadującymi w kablu parami przewodów
B. niejednorodności toru wynikającej z modyfikacji geometrii par przewodów
C. utratach sygnału w torze transmisyjnym
D. opóźnieniach w propagacji sygnału w torze transmisyjnym
Przenikanie sygnału pomiędzy sąsiadującymi w kablu parami przewodów to kluczowe zjawisko, które jest istotne w kontekście transmisji danych w sieciach komputerowych. To zjawisko, znane również jako crosstalk, występuje, gdy sygnał z jednej pary przewodów przenika do innej pary w tym samym kablu, co może prowadzić do zakłóceń i degradacji jakości sygnału. Przykładem zastosowania tej wiedzy jest projektowanie kabli Ethernet, gdzie standardy takie jak TIA/EIA-568 określają maksymalne dopuszczalne poziomy przesłuchu, aby zapewnić wysokojakościową transmisję. W praktyce, inżynierowie sieciowi muszą zwracać uwagę na takie parametry jak długość kabli, sposób ich układania oraz stosowanie ekranowanych kabli, aby zminimalizować wpływ przesłuchów. Zrozumienie tego zjawiska jest również kluczowe przy pracy z nowoczesnymi technologiami, takimi jak PoE (Power over Ethernet), gdzie przesłuch może wpływać na zarówno jakość przesyłanych danych, jak i efektywność zasilania urządzeń.

Pytanie 12

Możliwości zmiany uprawnień dostępu do plików w systemie Windows 10 można uzyskać za pomocą komendy

A. verify
B. icacls
C. convert
D. set
Polecenie icacls (ang. Integrity Control Access Control Lists) jest narzędziem w systemie Windows 10, które umożliwia zarządzanie uprawnieniami dostępu do plików i folderów. Używając icacls, administratorzy mogą modyfikować, wyświetlać, tworzyć oraz przywracać uprawnienia dostępu do zasobów systemowych. Przykładowo, aby nadać użytkownikowi pełne uprawnienia do pliku, można użyć komendy: icacls \"ścieżka\do\pliku\" /grant Użytkownik:F. To polecenie przyznaje użytkownikowi pełne (F - Full) uprawnienia do modyfikowania i odczytywania pliku. Ponadto, icacls pozwala na automatyzację zarządzania uprawnieniami poprzez skrypty, co jest zgodne z najlepszymi praktykami w administracji systemami operacyjnymi. Dzięki tym funkcjom, narzędzie to jest niezwykle przydatne w kontekście zapewnienia bezpieczeństwa systemów Windows, umożliwiając precyzyjne zarządzanie dostępem do danych. Warto również zaznaczyć, że icacls obsługuje różne poziomy uprawnień, takie jak odczyt, zapis, czy pełna kontrola, co daje administratorom dużą elastyczność w zarządzaniu dostępem do zasobów."

Pytanie 13

Do weryfikacji funkcjonowania serwera DNS na systemach Windows Server można zastosować narzędzie nslookup. Jeżeli w poleceniu jako argument zostanie podana nazwa komputera, np. nslookup host.domena.com, to system sprawdzi

A. obie strefy przeszukiwania, najpierw wstecz, a potem do przodu.
B. aliasu zdefiniowanego dla rekordu adresu domeny.
C. strefy przeszukiwania do przodu.
D. strefy przeszukiwania wstecz.
Wybór strefy przeszukiwania wstecz jako odpowiedzi na to pytanie jest niepoprawny, ponieważ strefa ta działa w odwrotny sposób. Strefa przeszukiwania wstecz jest używana do przekształcania adresów IP na odpowiadające im nazwy hostów. Zatem, jeżeli podalibyśmy adres IP w narzędziu nslookup, moglibyśmy uzyskać nazwę hosta, ale nie jest to poprawne w kontekście podawania nazwy domeny. Koncepcja strefy przeszukiwania do przodu, która jest głównym aspektem omawianego pytania, odnosi się do przekształcania nazw na adresy IP, co czyni ją odpowiednią w przypadku zapytania o nazwę hosta. Wybór aliasu wprowadzonego dla rekordu adresu domeny również nie jest adekwatny, ponieważ nslookup nie jest narzędziem do analizy aliasów, lecz do rozwiązywania nazw. Istnieje także mylne przekonanie, że nslookup jednocześnie przeszukuje obie strefy, co jest błędne; narzędzie to zawsze zaczyna od strefy przeszukiwania do przodu przy podawaniu nazwy. Takie nieporozumienia mogą prowadzić do trudności w prawidłowym rozwiązywaniu problemów z DNS oraz w skutecznym zarządzaniu infrastrukturą sieciową. Zrozumienie różnicy między tymi strefami jest kluczowe dla prawidłowego korzystania z narzędzi diagnostycznych i efektywnego zarządzania systemami DNS.

Pytanie 14

Które z poniższych poleceń systemu Windows generuje wynik przedstawiony na rysunku?

Ilustracja do pytania
A. msconfig
B. netstat
C. tracert
D. ipconfig
Polecenie netstat w systemie Windows pozwala na wyświetlenie aktywnych połączeń sieciowych które są obecnie otwarte na komputerze. Umożliwia ono monitorowanie i diagnozowanie sieci poprzez pokazywanie aktualnego stanu połączeń TCP i UDP. Na załączonym obrazie widzimy wynik działania polecenia netstat które przedstawia listę aktualnych połączeń TCP z informacjami o lokalnym i zdalnym adresie oraz porcie jak również stanie połączenia. Takie dane są niezwykle użyteczne dla administratorów sieci i specjalistów IT gdyż pozwalają na śledzenie ruchu sieciowego oraz identyfikację potencjalnych problemów lub nieautoryzowanego dostępu. Dzięki netstat można również monitorować jakie aplikacje korzystają z konkretnych portów systemowych co jest kluczowe dla utrzymania bezpieczeństwa systemu. Netstat jest powszechnie stosowany w praktyce w celu diagnozowania problemów z siecią a także aby sprawdzić czy nie występują nieautoryzowane połączenia co jest standardem w dobrych praktykach zarządzania sieciami komputerowymi.

Pytanie 15

Jakie zakresy adresów IPv4 mogą być używane jako adresy prywatne w lokalnej sieci?

A. 127.0.0.0 ÷ 127.255.255.255
B. 168.172.0.0 ÷ 168.172.255.255
C. 200.186.0.0 ÷ 200.186.255.255
D. 172.16. 0.0 ÷ 172.31.255.255
Zakres adresów IP 127.0.0.0 do 127.255.255.255 jest zarezerwowany dla adresów loopback, co oznacza, że są one używane do testowania lokalnych połączeń na danym urządzeniu. Adres 127.0.0.1 jest powszechnie znany jako 'localhost' i służy do komunikacji wewnętrznej w systemie operacyjnym. Użycie tych adresów w sieciach lokalnych nie jest wskazane, ponieważ nie są one routowane poza urządzenie, co uniemożliwia ich wykorzystanie do komunikacji między różnymi urządzeniami w sieci. Zakres 168.172.0.0 do 168.172.255.255 nie jest zdefiniowany jako prywatny w żadnym standardzie, co oznacza, że mogą być one przypisane jako publiczne adresy IP. Ostatecznie, zakres 200.186.0.0 do 200.186.255.255 również nie znajduje się w ramach prywatnych adresów IP, a adresy te są routowane w Internecie. Typowe błędy, które mogą prowadzić do nieprawidłowych wniosków, obejmują mylenie adresów prywatnych z publicznymi, co może skutkować problemami z dostępem do sieci oraz bezpieczeństwem. Kluczowe jest, aby zrozumieć, jakie adresy są przeznaczone do użytku lokalnego a jakie do komunikacji w Internecie, aby skutecznie projektować i zarządzać sieciami komputerowymi.

Pytanie 16

Aby zapobiec uszkodzeniu sprzętu podczas modernizacji laptopa, która obejmuje wymianę modułów pamięci RAM, należy

A. rozłożyć i uziemić matę antystatyczną oraz założyć na nadgarstek opaskę antystatyczną
B. przewietrzyć pomieszczenie oraz założyć okulary z powłoką antyrefleksyjną
C. podłączyć laptop do zasilania awaryjnego, a następnie rozkręcić jego obudowę i przejść do montażu
D. przygotować pastę przewodzącą oraz równomiernie nałożyć ją na obudowę gniazd pamięci RAM
Wybór opcji polegającej na rozłożeniu i uziemieniu maty antystatycznej oraz założeniu opaski antystatycznej jest kluczowy dla zapewnienia bezpieczeństwa sprzętu podczas modernizacji komputera przenośnego. Podczas pracy z delikatnymi komponentami elektronicznymi, takimi jak moduły pamięci RAM, istnieje ryzyko uszkodzenia ich w wyniku wyładowań elektrostatycznych (ESD). Zastosowanie maty antystatycznej i opaski antystatycznej skutecznie odprowadza ładunki elektryczne, minimalizując ryzyko wystąpienia ESD. Przykładowo, w profesjonalnych środowiskach serwisowych, zawsze stosuje się takie zabezpieczenia, aby chronić sprzęt oraz zapewnić długoterminową niezawodność. Warto również pamiętać o tym, aby unikać pracy w ubraniach z syntetycznych materiałów, które generują statykę. Wnioskując, przestrzeganie tych zasad jest standardem w branży, co zaleca wiele podręczników dotyczących serwisowania sprzętu komputerowego.

Pytanie 17

NIEWŁAŚCIWE podłączenie taśmy sygnałowej do napędu dyskietek skutkuje

A. trwałym uszkodzeniem napędu
B. błędami w zapisie na dyskietce
C. niemożnością pracy z napędem
D. problemami z uruchomieniem maszyny
Często jak się wybiera złą odpowiedź, to może być efekt braku zrozumienia, jak systemy komputerowe w ogóle działają. Problemy z uruchomieniem komputera mogą być spowodowane różnymi rzeczami, ale niekoniecznie są wynikiem źle podłączonej taśmy sygnałowej. Zwykle przyczyny leżą gdzie indziej, jak na przykład w zasilaniu czy uszkodzeni pamięci. Mówienie, że napęd dyskietek jest trwale uszkodzony, to też nie do końca prawda. Wiele nowoczesnych napędów potrafi wybaczyć błędy w podłączeniu, a ich uszkodzenia wynikają zazwyczaj z niewłaściwego używania nośników lub po prostu długiego czasu pracy. I jeszcze jedno – błędne rozumienie, co to są 'błędy w zapisie' może prowadzić do mylnego wniosku, że źle podłączony napęd wpływa na zapis danych, co tak naprawdę nie jest prawdą. Zapis odbywa się na innym poziomie, a komunikacja między urządzeniami jest ważna, ale nie wpływa na jakość zapisanych danych, jeśli sam napęd działa. Dlatego ważne jest, żeby rozumieć, jak różne elementy współpracują ze sobą w systemie komputerowym, bo to pomaga w naprawie problemów.

Pytanie 18

Na ilustracji ukazano kartę

Ilustracja do pytania
A. graficzną PCI
B. graficzną AGP
C. telewizyjną PCI Express
D. telewizyjną EISA
Karta graficzna PCI to urządzenie rozszerzeń komputera, które wykorzystuje magistralę PCI (Peripheral Component Interconnect) do komunikacji z płytą główną. PCI to standard interfejsu szeregowego, który pozwala na łatwe dodawanie kart rozszerzeń do komputerów osobistych. Karty graficzne PCI były popularne na przełomie lat 90. i 2000. zanim zostały zastąpione przez nowsze technologie takie jak AGP i PCI Express. PCI zapewnia przepustowość, która była wystarczająca dla wczesnych potrzeb graficznych. W praktyce karty graficzne PCI były stosowane w komputerach biurowych i domowych do obsługi wyświetlania grafiki 2D i podstawowej grafiki 3D. Wiedza o nich jest przydatna w zrozumieniu ewolucji technologii komputerowych oraz w kontekście modernizacji starszych systemów. Dobrą praktyką jest identyfikowanie kart na podstawie złącza, które w przypadku PCI jest charakterystycznym białym slotem umiejscowionym poziomo na płycie głównej, co ułatwia poprawną identyfikację i instalację.

Pytanie 19

Jak skonfigurować dziennik w systemie Windows Server, aby rejestrować zarówno udane, jak i nieudane próby logowania użytkowników oraz działania na zasobach dyskowych?

A. systemu.
B. zabezpieczeń.
C. ustawień.
D. aplikacji i usług.
Odpowiedź "zabezpieczeń" jest prawidłowa, ponieważ dziennik zabezpieczeń w systemie Windows Server jest miejscem, w którym rejestrowane są wszelkie zdarzenia związane z bezpieczeństwem, w tym próby logowania użytkowników oraz operacje na zasobach dyskowych. Dziennik ten umożliwia administratorom systemów monitorowanie i analizowanie aktywności użytkowników oraz identyfikowanie potencjalnych zagrożeń. Na przykład, udane i nieudane próby logowania mogą dostarczyć informacji o nieautoryzowanym dostępie, a analiza zmian na poziomie zasobów dyskowych może pomóc w wykryciu nadużyć, takich jak nieautoryzowane modyfikacje plików. Dobre praktyki w zakresie bezpieczeństwa informacji, takie jak te określone w normach ISO/IEC 27001, zalecają regularne przeglądanie dzienników zabezpieczeń w celu oceny skuteczności kontroli zabezpieczeń oraz reagowania na incydenty. Właściwe konfigurowanie i monitorowanie dziennika zabezpieczeń to kluczowy element zarządzania bezpieczeństwem w organizacji.

Pytanie 20

Jakim złączem zasilany jest wewnętrzny dysk twardy typu IDE?

A. PCIe
B. Molex
C. SATA
D. ATX
Złącze Molex jest standardowym złączem zasilającym, które było powszechnie stosowane w komputerach stacjonarnych do zasilania różnych komponentów, w tym dysków twardych IDE. Złącze to składa się z czterech pinów, które dostarczają napięcie 5V i 12V, co jest zgodne z wymaganiami zasilania dla dysków twardych IDE. W praktyce, złącza Molex charakteryzują się dużą wytrzymałością i prostotą konstrukcji, co czyni je idealnym rozwiązaniem do trwałego zasilania urządzeń. Wiele starszych komputerów oraz urządzeń peryferyjnych, takich jak napędy CD/DVD, również korzysta z tego typu złącza. Dobrą praktyką w branży jest dbanie o odpowiednie połączenie kabli zasilających, aby uniknąć problemów z zasilaniem komponentów oraz ich uszkodzeniem. Warto zauważyć, że choć standard Molex jest coraz rzadziej używany w nowoczesnych konstrukcjach, jego znajomość pozostaje istotna dla specjalistów serwisujących starsze systemy komputerowe.

Pytanie 21

Na diagramie blokowym procesora blok funkcjonalny oznaczony jako SIMD to

Ilustracja do pytania
A. moduł procesora wykonujący wyłącznie operacje związane z grafiką
B. zestaw 256 bitowych rejestrów, który znacznie przyspiesza obliczenia dla liczb stałopozycyjnych
C. zestaw 128 bitowych rejestrów wymaganych do przeprowadzania instrukcji SSE procesora dla liczb stało- i zmiennoprzecinkowych
D. jednostka procesora odpowiedzialna za obliczenia zmiennoprzecinkowe (koprocesor)
Wygląda na to, że mogą być jakieś nieporozumienia co do tego, co SIMD naprawdę robi. Często myśli się, że SIMD działa tylko w kontekście grafiki, ale w rzeczywistości przyspiesza różne zadania dzięki równoległemu przetwarzaniu danych. Łatwo pomylić SIMD z FPU, czyli jednostką zmiennoprzecinkową. FPU skupia się na liczbach zmiennoprzecinkowych, a SIMD w zasadzie pozwala przetwarzać wiele danych tego samego typu na raz. I nie jest to zestaw 256-bitowych rejestrów, co się czasem mówi – to są inne rozszerzenia, jak AVX. Ludziska też często mylą SIMD wyłącznie z obliczeniami stało-pozycyjnymi. W rzeczywistości obsługuje zarówno liczby stało-, jak i zmiennoprzecinkowe, co czyni go naprawdę wszechstronnym narzędziem. Rozumienie tych rzeczy może pomóc lepiej wykorzystywać nowoczesne technologie i optymalizować kod, żeby sprzęt działał wydajniej.

Pytanie 22

W pierwszym oktecie adresów IPv4 klasy B znajdują się liczby mieszczące się w przedziale

A. od 128 do 191
B. od 32 do 63
C. od 192 do 223
D. od 64 do 127
Adresy IPv4 klasy B są definiowane na podstawie wartości pierwszego oktetu w adresie IP. W przypadku klasy B, pierwszy oktet mieści się w zakresie od 128 do 191. Klasa ta jest stosowana głównie w dużych sieciach, gdzie potrzebne jest więcej adresów niż w klasie A, ale mniej niż w klasie C. Przykładowo, adresy takie jak 128.0.0.1 czy 190.255.255.255 są typowymi adresami klasy B. W praktyce, organizacje korzystające z tej klasy mogą przydzielać do 65,536 adresów IP w obrębie jednej sieci, co czyni ją idealną do zastosowań takich jak duże przedsiębiorstwa, które potrzebują wielu urządzeń w jednej sieci lokalnej. Warto również zauważyć, że klasy adresów IP są częścią starszego podejścia do routingu, a obecnie coraz częściej stosuje się CIDR (Classless Inter-Domain Routing), który umożliwia bardziej elastyczne przydzielanie adresów IP.

Pytanie 23

Jakie urządzenie zapewnia zabezpieczenie przed różnorodnymi atakami z sieci i może również realizować dodatkowe funkcje, takie jak szyfrowanie danych przesyłanych lub automatyczne informowanie administratora o włamaniu?

A. firewall sprzętowy
B. punkt dostępowy
C. koncentrator
D. regenerator
Firewall sprzętowy, znany również jako zapora ogniowa, to kluczowe urządzenie w architekturze bezpieczeństwa sieci, które służy do monitorowania i kontrolowania ruchu sieciowego w celu ochrony przed nieautoryzowanym dostępem oraz atakami z sieci. Funkcjonalność firewalla obejmuje nie tylko blokowanie niepożądanych połączeń, ale także możliwość szyfrowania przesyłanych danych, co znacząco podnosi poziom bezpieczeństwa informacji. Przykładowo, w przedsiębiorstwie firewall może być skonfigurowany do automatycznego powiadamiania administratora o podejrzanych aktywnościach, co pozwala na szybką reakcję na potencjalne zagrożenia. Zgodnie z najlepszymi praktykami branżowymi, firewalle powinny być regularnie aktualizowane oraz dostosowywane do zmieniających się warunków w sieci, aby skutecznie przeciwdziałać nowym typom zagrożeń. Wiele organizacji wdraża rozwiązania firewallowe w połączeniu z innymi technologiami zabezpieczeń, co tworzy wielowarstwowy system ochrony, zgodny z zaleceniami standardów bezpieczeństwa takich jak ISO/IEC 27001.

Pytanie 24

Kable światłowodowe nie są powszechnie używane w lokalnych sieciach komputerowych z powodu

A. ograniczonej przepustowości
B. znacznych strat sygnału podczas transmisji
C. niskiej odporności na zakłócenia elektromagnetyczne
D. wysokich kosztów elementów pośredniczących w transmisji
Kable światłowodowe są coraz częściej wykorzystywane w różnych systemach komunikacyjnych, jednak ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez koszty elementów pośredniczących w transmisji. Światłowody wymagają zastosowania specjalistycznych urządzeń, takich jak transceivery i przełączniki światłowodowe, które są znacznie droższe w porównaniu do tradycyjnych urządzeń dla kabli miedzianych. Przykładem może być wykorzystanie światłowodów w dużych przedsiębiorstwach, gdzie ich zalety, takie jak wysoka przepustowość i odporność na zakłócenia elektromagnetyczne, przeważają nad kosztami. W zastosowaniach lokalnych, szczególnie w małych biurach lub domach, miedź (np. kable Ethernet) pozostaje bardziej opłacalna. Zgodnie z najlepszymi praktykami, gdyż koszt wykonania instalacji światłowodowej nie zawsze jest uzasadniony w kontekście wymagań lokalnej sieci, ciągle preferowane są rozwiązania oparte na miedzi, które wystarczają do zaspokojenia bieżących potrzeb.

Pytanie 25

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. dziesiętnej
B. oktalnej
C. binarnej
D. heksadecymalnej
Adres AC-72-89-17-6E-B2 to przykład adresu MAC, który jest zapisany w formacie heksadecymalnym. W systemie heksadecymalnym każda cyfra może przyjmować wartości od 0 do 9 oraz od A do F, co pozwala na reprezentację 16 różnych wartości. W kontekście adresów MAC, każda para heksadecymalnych cyfr reprezentuje jeden bajt, co jest kluczowe w identyfikacji urządzeń w sieci. Adresy MAC są używane w warstwie łącza danych modelu OSI i są istotne w takich protokołach jak Ethernet. Przykładowe zastosowanie adresów MAC to filtrowanie adresów w routerach, co pozwala na kontrolę dostępu do sieci. Zrozumienie systemów liczbowych, w tym heksadecymalnego, jest istotne dla profesjonalistów w dziedzinie IT, ponieważ wiele protokołów i standardów, takich jak IPv6, stosuje heksadecymalną notację. Ponadto, dobra znajomość adresowania MAC jest niezbędna przy rozwiązywaniu problemów z sieciami komputerowymi, co czyni tę wiedzę kluczową w pracy administratorów sieci.

Pytanie 26

W oznaczeniu procesora INTEL CORE i7-4790 liczba 4 wskazuje na

A. liczbę rdzeni procesora
B. generację procesora
C. wskaźnik wydajności Intela
D. specyficzną linię produkcji podzespołu
Odpowiedzi, które sugerują, że cyfra 4 odnosi się do liczby rdzeni procesora, wskaźnika wydajności Intela lub specyficznej linii produkcji podzespołu, są błędne i opierają się na nieporozumieniach dotyczących oznaczeń procesorów. Liczba rdzeni procesora nie jest bezpośrednio wskazywana w oznaczeniu i7-4790, gdyż ten procesor ma cztery rdzenie, ale to nie jest informacja zawarta w samej nazwie. Takie podejście prowadzi do nieporozumienia, ponieważ wiele osób może mylić liczby w oznaczeniach z fizycznymi specyfikacjami sprzętowymi, co jest uproszczeniem złożonego systemu klasyfikacji procesorów. Wskaźnik wydajności Intela, choć istotny, jest skomplikowanym zagadnieniem, które nie jest bezpośrednio reprezentowane w nazwie modelu procesora, a zamiast tego wymaga analizy benchmarków i testów wydajnościowych. Co więcej, procesory nie są klasyfikowane według specyficznych linii produkcji w takim sensie, że każdy model pochodzi z tej samej linii, co może prowadzić do mylnych wniosków. Właściwe zrozumienie oznaczeń procesorów jest niezbędne dla efektywnego wyboru sprzętu, a jakiekolwiek uproszczenia mogą prowadzić do nieodpowiednich decyzji zakupowych i niewłaściwego doboru komponentów, co w konsekwencji wpływa na wydajność całego systemu komputerowego.

Pytanie 27

Dane z twardego dysku HDD, którego sterownik silnika SM jest uszkodzony, można odzyskać

A. dzięki wymianie płytki z elektroniką dysku na inną z tego samego modelu
B. poprzez wymianę silnika SM
C. za pomocą polecenia fixmbr
D. przy użyciu programu do odzyskiwania danych, na przykład TestDisk
Odzyskiwanie danych z dysku twardego HDD z uszkodzonym sterownikiem silnika SM wymaga zastosowania metod, które uwzględniają specyfikę uszkodzeń. Wymiana silnika SM, mimo że wydaje się logiczna, w praktyce jest bardzo trudna i często niemożliwa bez specjalistycznego sprzętu. Silnik SM jest zsynchronizowany z firmwarem dysku i wymiana go na inny, nawet tego samego modelu, może prowadzić do dalszych uszkodzeń lub całkowitej utraty danych. Podobnie, użycie polecenia fixmbr jest nieodpowiednie w tym kontekście, gdyż to narzędzie jest przeznaczone do naprawy struktur partycji w systemie Windows, a nie do odzyskiwania danych na poziomie fizycznym dysku. Posiadając uszkodzenie na poziomie elektroniki, nawet przy użyciu tego polecenia użytkownik nie jest w stanie odczytać danych, które są niedostępne z powodu problemów sprzętowych. Z kolei zewnętrzne programy do odzyskiwania danych, takie jak TestDisk, są skuteczne jedynie wtedy, gdy struktura plików lub partycji jest uszkodzona, a nie w przypadku uszkodzeń hardware'owych. Często prowadzi to do mylnego przekonania, że oprogramowanie może zdziałać cuda w przypadkach, gdzie wymagana jest interwencja serwisowa. Właściwe zrozumienie, kiedy należy stosować konkretne metody odzyskiwania danych, jest kluczowe w pracy z uszkodzonymi dyskami twardymi.

Pytanie 28

Jaki protokół umożliwia nawiązywanie szyfrowanych połączeń terminalowych z zdalnym komputerem?

A. Telnet
B. SIP
C. SSH
D. SSL
SSH, czyli Secure Shell, to protokół komunikacyjny zaprojektowany w celu bezpiecznego łączenia się z zdalnymi komputerami. Oferuje szyfrowane połączenie, które chroni przesyłane dane przed podsłuchiwaniem, co jest kluczowe w kontekście bezpieczeństwa informacji. Protokół SSH jest szeroko stosowany do zarządzania serwerami, co pozwala administratorom na zdalne wykonywanie poleceń oraz transfer plików w sposób bezpieczny. Przykładem zastosowania może być administracja serwerami Linux, gdzie SSH jest standardem pozwalającym na zdalne logowanie i konfigurację systemu. Ponadto, SSH wspiera różne metody uwierzytelniania, w tym klucze publiczne, co zwiększa bezpieczeństwo w porównaniu do tradycyjnych metod, takich jak hasła. Warto również zwrócić uwagę, że SSH stanowi podstawowy element w najlepszych praktykach bezpieczeństwa, a jego użycie jest zalecane w każdym środowisku, które wymaga zdalnego dostępu do zasobów informatycznych.

Pytanie 29

Norma EN 50167 odnosi się do systemów okablowania

A. horyzontalnego
B. wertykalnego
C. sieciowego
D. szkieletowego
Zrozumienie znaczenia różnych typów okablowania w budynkach jest kluczowe dla efektywnej instalacji sieci telekomunikacyjnych. Okablowanie kampusowe odnosi się do połączeń między różnymi budynkami na terenie kampusu, co jest bardziej złożonym zagadnieniem, które wymaga innego podejścia projektowego, zarówno pod kątem odległości, jak i zastosowanych technologii. W przypadku okablowania pionowego, które łączy różne piętra budynku, istotne jest, aby instalacje były zgodne z lokalnymi normami budowlanymi oraz odpowiednio zabezpieczone przed zakłóceniami. Wreszcie, okablowanie szkieletowe to termin używany do opisania infrastruktury sieciowej obejmującej główne elementy, takie jak przełączniki i routery, które są kluczowe dla efektywnego zarządzania ruchem danych. Zbyt często myli się te terminy, co prowadzi do nieprawidłowych założeń w projektowaniu systemów sieciowych. Każdy z tych rodzajów okablowania ma swoje unikalne wymagania i zastosowania, które muszą być starannie rozważone w kontekście całej infrastruktury sieciowej. Dlatego tak ważne jest, aby przy projektowaniu i wdrażaniu systemów okablowania stosować się do odpowiednich norm i standardów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować ryzyko awarii.

Pytanie 30

Gdy użytkownik wykonuje w wierszu poleceń komendę ping www.onet.pl, otrzymuje komunikat: "Żądanie polecenia ping nie może znaleźć hosta www.onet.pl Sprawdź nazwę i ponów próbę". Z kolei, po wpisaniu w wierszu poleceń komendy ping 213.180.141.140 (adres IP serwera www.onet.pl), użytkownik otrzymuje odpowiedź z serwera. Jakie mogą być przyczyny tej sytuacji?

A. błędnie skonfigurowana brama domyślna
B. błędny adres IP serwera DNS
C. błędny adres IP hosta
D. błędnie ustawiona maska podsieci
Odpowiedź o niepoprawnym adresie IP serwera DNS jest prawidłowa, ponieważ to właśnie serwer DNS odpowiada za tłumaczenie nazw domen na odpowiednie adresy IP. Kiedy użytkownik wpisuje polecenie 'ping www.onet.pl', system operacyjny wysyła zapytanie do serwera DNS, aby uzyskać adres IP przypisany do tej nazwy. Jeśli serwer DNS nie może odnaleźć odpowiedniej informacji, użytkownik otrzymuje komunikat o błędzie, mówiący o tym, że host nie może zostać znaleziony. W takiej sytuacji, nawet jeśli adres IP serwera (213.180.141.140) jest poprawny i odpowiada, to brak możliwości przetłumaczenia nazwy domeny skutkuje brakiem odpowiedzi na polecenie ping. Warto zainwestować czas w skonfigurowanie stabilnych i niezawodnych serwerów DNS, takich jak Google Public DNS (8.8.8.8) lub Cloudflare DNS (1.1.1.1), co może znacznie poprawić dostępność usług sieciowych oraz zredukować czas odpowiedzi. Dobrą praktyką jest także regularne sprawdzanie i aktualizowanie konfiguracji DNS, aby zapewnić ciągłość działania systemów sieciowych.

Pytanie 31

Do konwersji kodu źródłowego na program wykonywalny używany jest

A. kompilator
B. interpreter
C. emulator
D. debuger
Kompilator to narzędzie, które przekształca kod źródłowy, napisany w języku wysokiego poziomu, na kod maszynowy, który jest zrozumiały dla procesora. Proces ten jest kluczowy w programowaniu, ponieważ pozwala na uruchomienie aplikacji na sprzęcie komputerowym. Kompilatory analizują i optymalizują kod, co sprawia, że programy działają szybciej i bardziej efektywnie. Przykłady popularnych kompilatorów to GCC (GNU Compiler Collection) dla języka C/C++ oraz javac dla języka Java. Kompilacja przynosi korzyści takie jak sprawdzanie błędów na etapie kompilacji, co pozwala na wczesne wykrywanie problemów. Standardy takie jak ISO C++ oraz Java Language Specification definiują, jak powinny wyglądać języki oraz jak działa kompilacja, co zapewnia spójność i interoperacyjność w ekosystemie programistycznym. Kompilatory także często tworzą pliki wykonywalne, które są łatwe w dystrybucji i uruchamianiu na różnych systemach operacyjnych, co jest istotne w kontekście rozwijania oprogramowania.

Pytanie 32

Element płyty głównej, który jest odpowiedzialny za wymianę danych między procesorem a innymi komponentami płyty, to

A. BIOS ROM
B. chipset
C. pamięć RAM
D. układ chłodzenia
Chipset jest naprawdę ważnym elementem płyty głównej. Odpowiada za to, jak różne części komputera ze sobą rozmawiają, na przykład procesor, pamięć RAM czy karty graficzne. Można powiedzieć, że to taki pośrednik, który sprawia, że wszystko działa razem. Weźmy na przykład gry komputerowe - bez chipsetu przesyłanie danych między procesorem a kartą graficzną byłoby chaosem, a przecież każdy chce płynnej grafiki. Chipsety są różne, bo mają różne architektury, co ma potem wpływ na to, jak działają z różnymi procesorami. W branży mamy standardy jak Intel czy AMD, które mówią, jakie chipsety są dostępne i co potrafią. Moim zdaniem, dobrze dobrany chipset to podstawa, żeby cały system działał stabilnie i wydajnie, zwłaszcza gdy korzystamy z aplikacji wymagających sporo mocy obliczeniowej.

Pytanie 33

W serwerach warto korzystać z dysków, które obsługują tryb Hot plugging, ponieważ

A. czas odczytu zwiększa się trzykrotnie w porównaniu do trybu Cable select
B. pojemność dysku wzrasta dzięki automatycznej kompresji danych
C. można podłączyć i odłączyć dysk przy włączonym zasilaniu serwera
D. prędkość zapisu rośnie do 250 MB/s
Nieprawidłowe odpowiedzi, które sugerują inne powody stosowania dysków z funkcjonalnością Hot plugging, nie odzwierciedlają rzeczywistej istoty tej technologii. Twierdzenie, że zwiększa się pojemność dysku poprzez automatyczną kompresję danych, jest mylne, ponieważ kompresja nie jest funkcją, która jest związana z Hot plugging. Kompresja to proces, który odbywa się na poziomie oprogramowania i nie wpływa na fizyczne połączenie dysków w systemie. Kolejna fałszywa koncepcja dotyczy czasu odczytu, który rzekomo miałby wzrastać trzykrotnie w porównaniu z trybem Cable select. W rzeczywistości, Cable select jest techniką identyfikacji dysków w systemach SATA, a nie technologii, która miałaby wpływ na prędkość odczytu. Prędkości zapisu również nie są związane z Hot plugging; nie ma standardowej prędkości zapisu wynoszącej 250 MB/s, ponieważ wydajność dysków zależy od wielu czynników, takich jak ich typ, protokoły komunikacyjne czy konfiguracja RAID. Typowe błędy myślowe w takich odpowiedziach obejmują mylenie funkcji i specyfikacji dysków z technologią ich podłączenia oraz niepełne zrozumienie, jak działają systemy dyskowe w kontekście Hot plugging. Ważne jest, aby skupić się na rzeczywistych zastosowaniach i korzyściach wynikających z tej technologii, a nie na błędnych założeniach dotyczących jej funkcji.

Pytanie 34

Na przedstawionym zrzucie panelu ustawień rutera można zauważyć, że serwer DHCP

Ilustracja do pytania
A. może przydzielać maksymalnie 154 adresy IP
B. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.100
C. może przydzielać maksymalnie 10 adresów IP
D. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.10
Serwer DHCP skonfigurowany na routerze może przydzielić maksymalnie 10 adresów IP, ponieważ w polu 'Maximum Number of DHCP Users' ustawiono wartość 10. Oznacza to, że serwer DHCP może obsłużyć tylko 10 różnych urządzeń jednocześnie, przypisując im adresy IP z dostępnego zakresu. Jest to często stosowana konfiguracja w małych sieciach, gdzie liczba urządzeń jest ograniczona i nie ma potrzeby alokacji większej liczby adresów. Przydzielanie adresów IP przez DHCP ułatwia zarządzanie siecią, ponieważ eliminuje potrzebę ręcznego konfigurowania każdego urządzenia. Podczas konfiguracji DHCP ważne jest, aby zwrócić uwagę na zakres adresów dostępnych dla użytkowników, co może być ograniczone przez maskę podsieci. Dobrą praktyką jest ustawienie odpowiedniej liczby użytkowników DHCP, aby uniknąć sytuacji, w której zabraknie dostępnych adresów IP dla nowych urządzeń. W przypadku większych sieci warto rozważyć segmentację sieci i zastosowanie większego zakresu adresacji. Stosowanie DHCP wspiera automatyzację i elastyczność w zarządzaniu dynamicznie zmieniającą się infrastrukturą IT.

Pytanie 35

Z jakiego typu pamięci korzysta dysk SSD?

A. pamięć bębnową
B. pamięć ferromagnetyczną
C. pamięć półprzewodnikową flash
D. pamięć optyczną
Wybór odpowiedzi związanej z pamięcią bębnową jest niepoprawny, ponieważ ta technologia opiera się na mechanicznych elementach, które obracają się, aby odczytać i zapisać dane na magnetycznym bębnie. Takie dyski, znane z przestarzałych systemów, są wolniejsze i bardziej podatne na awarie niż nowoczesne rozwiązania. Pamięć ferromagnetyczna, która również pojawia się w zestawieniu, odnosi się do technologii wykorzystywanej w tradycyjnych dyskach twardych, gdzie dane są przechowywane na wirujących talerzach, co wprowadza dodatkowe opóźnienia w dostępie do informacji. Pamięć optyczna, jak płyty CD czy DVD, różni się zasadniczo od pamięci flash, ponieważ wykorzystuje laser do odczytu i zapisu danych, co sprawia, że jest znacznie wolniejsza i mniej elastyczna w zastosowaniach, które wymagają szybkiego dostępu do dużych ilości danych. Wybierając niewłaściwe odpowiedzi, można nieświadomie wpłynąć na decyzje technologiczne, prowadząc do wyboru mniej efektywnych i przestarzałych rozwiązań. Zrozumienie różnic między tymi rodzajami pamięci jest kluczowe w kontekście optymalizacji wydajności systemów komputerowych oraz wyboru odpowiednich narzędzi do przechowywania danych, które spełnią wymagania nowoczesnych aplikacji.

Pytanie 36

W drukarce laserowej do utrwalenia wydruku na papierze stosuje się

A. głowice piezoelektryczne
B. taśmy transmisyjne
C. rozgrzane wałki
D. promienie lasera
Wybór promieni lasera jako metody utrwalania obrazu w drukarce laserowej jest mylny i wynika z nieporozumienia dotyczącego działania tego typu urządzeń. Promień lasera nie jest wykorzystywany do utrwalania obrazu na papierze, lecz do tworzenia naświetlenia bębna światłoczułego, na którym toner jest przyciągany i następnie przenoszony na kartkę. Laser jest kluczowy w etapach tworzenia obrazu, ale to rozgrzane wałki są odpowiedzialne za rzeczywiste utrwalenie tonera na papierze. Taśmy transmisyjne są elementami stosowanymi w drukarkach igłowych, a nie laserowych, co dodatkowo myli koncepcję działania drukarek. Z kolei głowice piezoelektryczne występują w drukarkach atramentowych i nie mają zastosowania w technologii druku laserowego. Pojmowanie, że laser mógłby pełnić funkcję utrwalającą, prowadzi do błędnych wniosków o mechanizmach działania drukarki. Ważne jest, aby zrozumieć, że każdy typ drukarki operuje na odmiennych zasadach technologicznych i nie można ich mylić. Poza tym, zrozumienie roli poszczególnych komponentów w procesie druku jest kluczowe dla oceny wydajności i jakości wydruków, a także dla dokonywania świadomych wyborów związanych z zakupem i eksploatacją sprzętu drukującego.

Pytanie 37

Aby zweryfikować adresy MAC komputerów, które są połączone z przełącznikiem, można zastosować następujące polecenie

A. ip http port
B. ip http serwer
C. clear mac address-table
D. show mac address-table
Polecenie 'show mac address-table' jest kluczowym narzędziem w diagnostyce i zarządzaniu sieciami komputerowymi. Umożliwia administratorom sieci uzyskanie informacji o adresach MAC urządzeń podłączonych do przełącznika, co jest niezbędne do monitorowania ruchu w sieci oraz rozwiązywania problemów związanych z łącznością. W wyniku wykonania tego polecenia, administrator otrzymuje tabelę, która zawiera adresy MAC, odpowiadające im porty oraz VLAN, co pozwala na łatwe identyfikowanie lokalizacji konkretnego urządzenia w sieci. Przykładowo, w przypadku problemów z dostępnością zasobów, administrator może szybko zlokalizować urządzenie, które nie działa prawidłowo. Dobre praktyki w zarządzaniu sieciami sugerują regularne monitorowanie adresów MAC, aby zapewnić bezpieczeństwo i optymalizację wydajności sieci.

Pytanie 38

W doborze zasilacza do komputera kluczowe znaczenie

A. ma rodzaj procesora
B. mają parametry zainstalowanego systemu operacyjnego
C. współczynnik kształtu obudowy
D. ma łączna moc wszystkich komponentów komputera
Wybór odpowiedniego zasilacza komputerowego jest kluczowy dla stabilności i wydajności całego systemu. Najważniejszym czynnikiem, który należy wziąć pod uwagę, jest łączna moc wszystkich podzespołów komputera, ponieważ zasilacz musi dostarczać wystarczającą ilość energii, aby zasilić każdy komponent. Niewłaściwa moc zasilacza może prowadzić do niestabilności systemu, losowych restartów, a nawet uszkodzeń sprzętu. Standardowo, całkowita moc wszystkich podzespołów powinna być zsumowana, a następnie dodane około 20-30% zapasu mocy, aby zapewnić bezpieczną i stabilną pracę. Na przykład, jeśli złożone komponenty wymagają 400 W, warto zaopatrzyć się w zasilacz o mocy co najmniej 500 W. Przy wyborze zasilacza warto także zwrócić uwagę na jego efektywność, co najlepiej określa certyfikacja 80 PLUS, która zapewnia, że zasilacz działa z wysoką efektywnością energetyczną. Dobrze zbilansowany zasilacz to fundament niezawodnego komputera, szczególnie w przypadku systemów gamingowych i stacji roboczych wymagających dużej mocy.

Pytanie 39

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. pierścienia
B. siatki
C. gwiazdy
D. magistrali
Odpowiedź "siatki" jest poprawna, ponieważ w sieciach bezprzewodowych Ad-Hoc IBSS (Independent Basic Service Set) urządzenia łączą się w sposób, który tworzy elastyczną i zdecentralizowaną strukturę. W tej topologii każdy węzeł (urządzenie) może komunikować się z innymi bez potrzeby centralnego punktu dostępowego. Przykładem może być sytuacja, gdy użytkownicy znajdują się w jednym pomieszczeniu i chcą wymieniać dane bezpośrednio między sobą. Dzięki takiej strukturze, sieć może łatwo się rozszerzać, gdyż nowe urządzenia mogą po prostu dołączyć do istniejącej sieci bez skomplikowanej konfiguracji. W standardzie IEEE 802.11, który definiuje zasady funkcjonowania sieci bezprzewodowych, takie podejście pozwala na zwiększenie efektywności i elastyczności komunikacji, co jest kluczowe w środowiskach, gdzie mobilność i szybkość reakcji mają znaczenie. W praktyce, sieci te znajdują zastosowanie w sytuacjach kryzysowych lub podczas wydarzeń na świeżym powietrzu, gdzie szybkość uruchomienia i zdolność do adaptacji są priorytetami.

Pytanie 40

Jaką czynność można wykonać podczas konfiguracji przełącznika CISCO w interfejsie CLI, bez przechodzenia do trybu uprzywilejowanego, na poziomie dostępu widocznym w powyższej ramce?

A. Określanie haseł dostępu
B. Zmiana nazwy systemowej
C. Wyświetlenie tablicy ARP
D. Tworzenie sieci VLAN
Zmiana nazwy systemowej, określanie haseł dostępu oraz tworzenie sieci VLAN wymagają dostępu do trybu uprzywilejowanego, co oznacza, że nie mogą być realizowane na podstawowym poziomie dostępu. Często występującym błędem myślowym jest skojarzenie podstawowych komend administracyjnych z podstawowym poziomem dostępu, co prowadzi do nieporozumień. Zmiana nazwy systemowej jest kluczowym krokiem w procesie identyfikacji urządzenia w sieci. Użytkownik musi wykonać polecenie 'hostname [nazwa]', które jest dostępne jedynie w trybie uprzywilejowanym, ponieważ zmiana tej nazwy wpływa na cały system i jego funkcjonowanie. Podobnie, określanie haseł dostępu, które obejmuje polecenia takie jak 'enable secret [hasło]', także nie może być wykonane bez dostępu do trybu uprzywilejowanego. Ta operacja jest niezbędna dla zapewnienia bezpieczeństwa urządzenia, co jest kluczowe w środowiskach produkcyjnych. Tworzenie sieci VLAN (Virtual Local Area Network) to kolejna operacja, która wymaga podniesienia poziomu uprawnień do trybu uprzywilejowanego. VLAN-y są używane do segmentacji ruchu w sieci oraz zwiększenia bezpieczeństwa poprzez oddzielanie różnych grup użytkowników. Ostatecznie, zrozumienie, które operacje są dostępne na poszczególnych poziomach uprawnień, jest kluczowe dla efektywnego zarządzania siecią oraz dla zapewnienia jej bezpieczeństwa i stabilności.