Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 11:27
  • Data zakończenia: 7 kwietnia 2025 11:55

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Skrót odnoszący się do zakresu fal radiowych o częstotliwości od 30 MHz do 300 MHz z modulacją FM to

A. LF
B. MF
C. VHF
D. ULF
Odpowiedź VHF, czyli Very High Frequency, odnosi się do pasma fal radiowych o częstotliwości od 30 MHz do 300 MHz. Jest to kluczowy zakres częstotliwości, który znajduje szerokie zastosowanie w komunikacji radiowej, w tym w nadawaniu telewizyjnym, radiu FM oraz w systemach komunikacji bezprzewodowej. Przykładem zastosowania VHF są stacje telewizyjne, które nadawane są w tym paśmie, zapewniając wysoką jakość sygnału i zasięg. W praktyce, urządzenia działające w zakresie VHF, takie jak transceivery i odbiorniki, muszą spełniać określone normy techniczne, aby zapewnić efektywność i niezawodność działania w tym zakresie. Warto również zauważyć, że VHF jest mniej podatne na zakłócenia ze strony przeszkód terenowych, co czyni je bardziej efektywnym w zastosowaniach mobilnych i na otwartych przestrzeniach. Dlatego VHF jest preferowane w wielu zastosowaniach, od komunikacji morskiej po systemy awaryjne, co pokazuje jego znaczenie w nowoczesnej technologii komunikacyjnej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakim rodzajem energii pobieranej przez telewizor LCD w trybie czuwania (tzw. tryb STANDBY) jest wartość 3 VA, podana w jego specyfikacji technicznej?

A. Skutecznej
B. Biernej
C. Czynnej
D. Pozornej
Moc czynna, moc bierna i moc skuteczna to pojęcia, które często mylone są z mocą pozorną. Moc czynna, mierzona w watach (W), odnosi się do energii, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład do zasilania telewizora podczas jego normalnej pracy. W przypadku telewizora w trybie czuwania, ich zużycie energii jest zminimalizowane, ale nie oznacza to, że pobierają one moc czynną. Z kolei moc bierna, wyrażana w varach, jest związana z elementami reaktancyjnymi w obwodzie, takimi jak cewki i kondensatory, i nie przyczynia się do wykonania żadnej pracy, co czyni ją nieodpowiednią w kontekście mocy pobieranej przez telewizor w stanie STANDBY. Co więcej, moc skuteczna to pojęcie, które nie jest standardowo używane w kontekście określania poboru energii przez urządzenia elektryczne, co sprawia, że odpowiedzi związane z mocą skuteczną również są błędne w tym kontekście. Kluczowym błędem myślowym jest mylenie tych terminów oraz nieprzywiązywanie uwagi do kontekstu ich zastosowania, co prowadzi do niepoprawnych wniosków dotyczących charakterystyki energetycznej urządzeń elektrycznych. Warto zatem zrozumieć, że podczas analizy dokumentacji technicznej, szczególnie w odniesieniu do poboru mocy przez urządzenia elektroniczne, kluczowe jest umiejętne odróżnianie tych rodzajów mocy oraz znajomość ich praktycznego zastosowania w codziennym użytkowaniu.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Którą klasę warunków środowiskowych powinno spełniać urządzenie przeznaczone do pracy na zewnątrz w miejscu nienarażonym na oddziaływanie warunków atmosferycznych w temperaturze od -25°C do 50°C?

Obowiązujące klasy środowiskowe:
  • Klasa środowiskowa I (wewnętrzna): stabilna praca w temperaturze z zakresu od 5 do 40 °C i maksymalnej wilgotności powietrza do 75%. Urządzenia do zastosowania wewnętrznego.
  • Klasa środowiskowa II (zewnętrzna, ogólna): dopuszczalna temperatura otoczenia w zakresie od -10 do +40 °C, przy wilgotności powietrza do 75%. Urządzenia instalowane w pomieszczeniach, w których występują wahania temperatury.
  • Klasa środowiskowa III (zewnętrzna osłonięta): dopuszczalna temperatura pracy od -25 do +50 °C, przy wilgotności powietrza z zakresu od 85% do 95%. Urządzenia instalowane w warunkach zewnętrznych, w miejscach nie narażonych na bezpośrednie oddziaływanie warunków atmosferycznych (np. deszczu, wiatru, śniegu, słońca).
  • Klasa środowiskowa IV (zewnętrzna, ogólna): dedykowana dla urządzeń przeznaczonych do pracy w ekstremalnych warunkach pogodowych. Bezawaryjna i stabilna praca przy temperaturach z zakresu od -25 do +60 °C i maksymalnej wilgotności do 95%.

A. III
B. II
C. I
D. IV
Odpowiedź III jest poprawna, ponieważ klasa środowiskowa III obejmuje urządzenia zaprojektowane do pracy w warunkach zewnętrznych, które są osłonięte przed bezpośrednim działaniem warunków atmosferycznych. Urządzenia tej klasy mogą funkcjonować w temperaturach od -25°C do +50°C oraz w warunkach wysokiej wilgotności powietrza wynoszącej od 85% do 95%. W praktyce oznacza to, że urządzenia te mogą być wykorzystywane w różnych zastosowaniach, takich jak stacje meteorologiczne, czujniki monitorujące środowisko czy różnorodne systemy automatyki budynkowej. Ważne jest, aby w takich urządzeniach uwzględniać nie tylko zakres temperatury, ale także odporność na działanie wilgoci, co jest kluczowe dla ich długotrwałej pracy i niezawodności w zmieniających się warunkach atmosferycznych. Standardy dotyczące klas środowiskowych, takie jak IEC 60721-3-4, precyzują te wymagania, co pozwala na tworzenie bardziej odpornych i efektywnych technologii, które mogą być wykorzystywane na zewnątrz w różnorodnych aplikacjach.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Która z czynności związanych z konserwacją systemu alarmowego nie wymaga przestawienia centrali na tryb serwisowy?

A. Zamiana akumulatora
B. Korekta bieżącego czasu
C. Modyfikacja czasu na wejście
D. Wymiana czujnika PIR
Wybór odpowiedzi wskazującej na inne czynności, które wymagają wprowadzenia centrali w tryb serwisowy, może wynikać z braku pełnego zrozumienia operacji związanych z konserwacją systemów alarmowych. Zmiana czasu na wejście, wymiana akumulatora oraz wymiana czujki PIR to operacje, które mogą prowadzić do przerwy w działaniu systemu i z tego powodu wymagają specjalnych środków ostrożności, takich jak przejście w tryb serwisowy. W przypadku wymiany akumulatora, konieczne jest zapewnienie, że system pozostaje zasilany przez cały czas, aby uniknąć sytuacji, w której system nie może zareagować na zagrożenie. Z kolei wymiana czujki PIR, która jest kluczowym elementem detekcji ruchu, również wymaga wprowadzenia trybu serwisowego, aby uniknąć aktywowania fałszywych alarmów. Czasami, w praktyce, niektóre osoby mogą niewłaściwie postrzegać operacje związane z administracyjnym zarządzaniem czasem jako mniej istotne, co prowadzi do błędnych wniosków. Warto zwrócić uwagę, że każda czynność konserwacyjna ma swoje znaczenie i wymaga odpowiedniego podejścia, aby zapewnić integralność i niezawodność systemu alarmowego, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W trakcie przeglądu okresowego systemu telewizji kablowej jakość sygnału u poszczególnych abonentów ocenia się, dokonując pomiaru

A. poziomu sygnału wizyjnego w gniazdach abonenckich poszczególnych użytkowników
B. współczynnika szumów w sygnale przekazywanym przez stację czołową do abonentów
C. współczynnika szumów w kanale zwrotnym poszczególnych abonentów
D. poziomu sygnału przesyłanego przez stację czołową do abonentów
Wybór innych opcji jako sposobu monitorowania jakości sygnału telewizyjnego może prowadzić do nieporozumień dotyczących rzeczywistego wpływu na jakość odbioru. Poziom sygnału wysyłanego przez stację czołową do abonentów, choć istotny, nie odzwierciedla problemów pojawiających się w trakcie transmisji do poszczególnych użytkowników. Poziom sygnału wizyjnego w gniazdach abonenckich również nie uwzględnia zakłóceń powstałych w kanale zwrotnym, które mogą wpływać na jakość odbioru. Współczynnik szumów w sygnale wysyłanym przez stację czołową do abonentów nie jest miarodajnym wskaźnikiem, ponieważ nie określa on jakości sygnału, który już przeszedł przez różnorodne elementy infrastruktury sieciowej. Typowym błędem jest założenie, że jakość sygnału na etapie stacji czołowej równoznaczna jest z jakością, jaką odbierają abonenci. W rzeczywistości, przeszkody fizyczne, interferencje z innymi urządzeniami oraz dowolne zakłócenia w kablu mogą znacząco wpłynąć na sygnał, co czyni skuteczną kontrolę kanału zwrotnego niezbędną do oceny rzeczywistej jakości dostarczanego sygnału.

Pytanie 22

Zmniejszenie amplitudy światła przesyłanego w linii światłowodowej określa się mianem

A. propagacji
B. polaryzacji
C. tłumienia
D. dyspersji
Tłumienie to naprawdę ważna sprawa w technologii światłowodowej. To zjawisko, które polega na spadku siły sygnału optycznego, gdy przesuwa się przez włókno. W praktyce to oznacza, że część energii światła gdzieś znika, bo jest wchłaniana albo rozpraszana przez włókno lub jego otoczenie. Kiedy mamy do czynienia z tłumieniem, to wpływa to na to, na jaką odległość możemy przesyłać sygnał bez utraty jakości. W branży telekomunikacyjnej mamy różne standardy, na przykład ITU-T G.652, które mówią, jakie powinny być limity tłumienia dla różnych typów światłowodów, żeby wszystko działało sprawnie. W przemyśle ważne jest monitorowanie tego zjawiska, bo każda strata dB może naprawdę zrujnować jakość połączeń, szczególnie w sieciach telekomunikacyjnych. Dobrze dobrane komponenty, takie jak wzmacniacze optyczne, mogą pomóc zredukować efekty tłumienia, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Na rysunku pokazano schemat ideowy zasilacza stabilizowanego, w którym uszkodzeniu uległ stabilizator napięcia zaznaczony symbolem X. Ze względu na uszkodzenie obudowy stabilizatora nie jest możliwa identyfikacja jego oznaczeń. Zgodnie z instrukcją serwisową zasilacza wartości zaznaczonych na rysunku napięć i prądów są następujące: U1 = 20 V, U2= 15 V, I = 1,8 A. W tabeli wymieniono listę dostępnych zamienników stabilizatora wraz z wartościami wybranych parametrów elektrycznych. Jako zamiennik należy użyć stabilizatora oznaczonego symbolem

SymbolMaks. napięcie wejścioweNapięcie wyjścioweMaks. prąd wyjściowyTyp obudowy
LM78M1535 V15 V500 mATO-220
LM78S1535 V15 V2 ATO-220
LM780535 V5 V1 ATO-220
LM79L15-35 V-15 V100 mATO-92

Ilustracja do pytania
A. LM79L15
B. LM78S15
C. LM7805
D. LM78M15
Stabilizator LM78S15 jest odpowiednią odpowiedzią, ponieważ jego wyjściowe napięcie wynoszące 15 V idealnie odpowiada wymaganiom schematu, gdzie napięcie U2 wynosi 15 V. Dodatkowo, maksymalny prąd wyjściowy stabilizatora wynoszący 2 A przewyższa wymagany prąd 1,8 A, co zapewnia wystarczającą rezerwę dla stabilnej pracy zasilacza. Wybór stabilizatora z odpowiednim napięciem i prądem jest kluczowy w praktyce, aby uniknąć uszkodzeń układów zasilanych, co jest zgodne z najlepszymi praktykami w projektowaniu zasilaczy. Używanie stabilizatorów, które nie spełniają minimalnych wymagań dotyczących napięcia lub prądu, może prowadzić do niestabilności pracy urządzenia, co jest niepożądane w aplikacjach wymagających niezawodności. Dodatkowo, warto dodać, że stabilizatory SMPS (Switched Mode Power Supply) są często stosowane w nowoczesnych projektach, choć LM78S15 należy do grupy stabilizatorów liniowych, które charakteryzują się prostotą zastosowania oraz niskim poziomem szumów, co czyni je popularnym wyborem w wielu projektach elektronicznych.

Pytanie 25

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. dostawcę usług internetowych
B. zarządcę sieci lokalnej
C. indywidualnego użytkownika sieci
D. producenta karty sieciowej
Adresy fizyczne MAC (Media Access Control) są unikalnymi identyfikatorami przypisywanymi do interfejsów sieciowych urządzeń. Te adresy są nadawane przez producenta karty sieciowej i są zapisywane w trwałej pamięci sprzętowej urządzenia, co zapewnia ich unikalność i stałość. Adres MAC składa się z 48-bitowego numeru, który jest zazwyczaj przedstawiany w postaci 12-cyfrowego heksadecymalnego ciągu, podzielonego na sześć par. Standard IEEE 802.3 definiuje sposób komunikacji w sieciach lokalnych oraz znaczenie adresów MAC. Przykładem zastosowania adresów MAC jest ich użycie w protokołach takich jak Ethernet, gdzie umożliwiają one identyfikację urządzeń w sieci i kierowanie danych w odpowiednie miejsca. W praktyce, jeśli dwa urządzenia chcą wymienić informacje w sieci lokalnej, adres MAC jednego z nich będzie wskazywał, do którego urządzenia mają być przekazywane dane, co jest kluczowe dla poprawnego działania komunikacji w sieci.

Pytanie 26

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnej bazy
B. wspólnego kolektora
C. wspólnego źródła
D. wspólnego emitera
Wybór innych konfiguracji tranzystora, jak wspólne źródło czy wspólny emiter, może prowadzić do nieporozumień w kwestii wzmacniaczy tranzystorowych. Wspólne źródło, na przykład, jest fajne do wzmocnienia napięcia, ale ma niską impedancję wyjściową, przez co nie za bardzo nadaje się do interfejsów wymagających dużej impedancji. Z kolei wspólny emiter to popularny układ, bo daje spore wzmocnienie napięcia i prądu, ale może wprowadzać więcej zniekształceń i ma niższą impedancję wyjściową. Co do wspólnej bazy, to chociaż czasami jest użyteczna, to ma bardzo niską impedancję wejściową i w większości zastosowań nie jest zbyt praktyczna. Wydaje mi się, że zrozumienie różnic między tymi konfiguracjami to kluczowa rzecz dla inżynierów i techników w elektronice, bo wybór niewłaściwego układu może prowadzić do problemów i nieefektywnych projektów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby sprawdzić ciągłość połączeń w obwodach drukowanych w urządzeniach elektronicznych, należy zastosować

A. amperomierz
B. omomierz
C. watomierz
D. woltomierz
Omomierz to takie proste urządzenie, które służy do badania oporności w obwodach. Ważne jest, żeby sprawdzać ciągłość połączeń w obwodach drukowanych, bo to pomaga zauważyć różne uszkodzenia czy przerwy w ścieżkach. Z omomierzem można szybko ocenić, czy obwód działa jak należy, co jest mega istotne, szczególnie podczas produkcji i napraw elektronicznych. Na przykład, w obwodach drukowanych, jeśli ciągłość nie działa, to komponenty jak procesory czy pamięci mogą przestać działać prawidłowo. Dlatego inżynierowie często korzystają z omomierzy w testach, by upewnić się, że wszystko jest w porządku i nie ma żadnych przerw. Poza tym, przy pomiarach niskich oporności, można zidentyfikować słabe punkty w lutowaniu, co jest ważne, żeby sprzęt działał długo i bezproblemowo.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby ocenić efektywność energetyczną przetwornicy DC/DC, należy użyć

A. amperomierza
B. dwóch woltomierzy
C. dwóch watomierzy
D. omomierza
W kontekście pomiaru sprawności energetycznej przetwornicy DC/DC, wykorzystanie omomierza jest niewłaściwe, ponieważ jego podstawową funkcją jest pomiar oporu elektrycznego, a nie mocy czy energii. Omomierz nie dostarcza informacji o prądzie i napięciu, które są niezbędne do obliczenia sprawności przetwornicy. Z kolei amperomierz, chociaż mierzy prąd, również nie dostarcza pełnego obrazu, ponieważ brakuje mu pomiaru napięcia, co uniemożliwia obliczenie mocy. Pomiar tylko jednego z tych parametrów prowadzi do niekompletnych i nieprecyzyjnych wyników. Użycie dwóch woltomierzy również nie jest odpowiednie, ponieważ chociaż pozwala na zmierzenie napięcia, nie uwzględnia wartości prądu, co jest niezbędne do obliczenia mocy. Typowym błędem jest myślenie, że można oszacować sprawność poprzez pomiar tylko jednego z parametrów – napięcia lub prądu. W rzeczywistości oba te parametry są komplementarne i niezbędne do prawidłowego określenia wydajności energetycznej systemu. Niezrozumienie tego konceptu może prowadzić do poważnych błędów w ocenie efektywności systemów zasilania, co może mieć negatywne konsekwencje w praktycznych zastosowaniach, takich jak systemy zarządzania energią czy projekty inżynieryjne związane z odnawialnymi źródłami energii.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Ile bitów ma adres IP zapisany w standardzie protokołu IPv4?

A. 8 bitów
B. 16 bitów
C. 12 bitów
D. 32 bity
Adres IP w formacie protokołu IPv4 jest reprezentowany jako 32 bity, co oznacza, że składa się z czterech oktetów, z których każdy ma 8 bitów. To podejście jest zgodne ze standardem określonym w dokumencie RFC 791, który definiuje protokół IPv4. Dzięki 32-bitowej przestrzeni adresowej możliwe jest wygenerowanie 2^32, czyli 4 294 967 296 unikalnych adresów IP. Ta liczba jest kluczowa w kontekście globalnych sieci komputerowych, umożliwiając identyfikację urządzeń podłączonych do Internetu. W praktyce, adresy IPv4 są zwykle zapisywane w postaci dziesiętnej, oddzielonej kropkami, na przykład 192.168.1.1. W obliczeniach oraz projektowaniu sieci, zrozumienie struktury adresacji IPv4 jest niezbędne do efektywnego zarządzania zasobami sieciowymi, a także do implementacji takich technik jak NAT (Network Address Translation), które pozwalają na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 39

W jakim układzie pracuje wzmacniacz operacyjny oznaczony na schemacie literą B?

Ilustracja do pytania
A. Całkującym.
B. Nieodwracającym.
C. Różniczkującym.
D. Odwracającym.
Wzmacniacz operacyjny oznaczony literą B pracuje w konfiguracji nieodwracającej, co oznacza, że sygnał wyjściowy jest równy sygnałowi wejściowemu pomnożonemu przez współczynnik wzmocnienia, który jest większy lub równy jeden. W tej konfiguracji, wejście nieodwracające (plus) jest podłączone do sygnału wejściowego przez rezystor R8, natomiast wejście odwracające (minus) jest połączone z masą za pomocą rezystora R9. Taki układ zapewnia, że sygnał wyjściowy nie zmienia fazy w stosunku do sygnału wejściowego. W praktyce, wzmacniacze operacyjne w konfiguracji nieodwracającej są powszechnie stosowane w aplikacjach takich jak wzmacniacze audio, filtry aktywne oraz systemy pomiarowe, gdzie zachowanie fazy sygnału jest kluczowe. Dzięki wysokiej impedancji wejściowej i niskiej impedancji wyjściowej, wzmacniacze te są w stanie efektywnie współpracować z różnymi źródłami sygnału, co czyni je niezwykle użytecznymi w projektowaniu układów elektronicznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.