Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 16 kwietnia 2025 11:48
  • Data zakończenia: 16 kwietnia 2025 11:59

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Literowym symbolem P oznacza się

A. rezystancję
B. indukcyjność
C. moc
D. częstotliwość
Mówiąc o tym, dlaczego rezystancja nie jest symbolem P, musisz wiedzieć, że rezystancję oznaczamy R, a to jest opór dla prądu. Na przykład w inżynierii, rezystancja ma spore znaczenie przy projektowaniu obwodów, bo wpływa na straty energii i wydajność. Częstotliwość, czyli f, to liczba cykli w obwodach prądu zmiennego i też jest ważna przy analizie obwodów, szczególnie w telekomunikacji. Z kolei indukcyjność, symbolizowana przez L, to zjawisko, gdy zmiany natężenia prądu w obwodzie indukują napięcie w tym samym obwodzie. Chociaż te wartości są istotne w elektryce, zapamiętaj, że każde ma swoje zastosowanie i nie można ich mylić z mocą. Często inżynierowie mogą się w tym pogubić, co prowadzi do błędów w obliczeniach i problemów z systemami elektrycznymi. Dobrze jest zawsze rozróżniać te różne wielkości i ich symbole, co jest ważne przy projektowaniu i diagnozowaniu systemów elektrycznych.

Pytanie 2

Po przeprowadzeniu diagnostyki komputerowej ustalono, że temperatura pracy karty graficznej z wyjściami HDMI oraz D-SUB, zainstalowanej w gnieździe PCI Express komputera stacjonarnego, wynosi 87°C. W związku z tym, serwisant powinien

A. wymienić dysk twardy na nowy, o porównywalnej pojemności i prędkości obrotowej
B. zmienić kabel sygnałowy D-SUB na HDMI
C. sprawdzić, czy wentylator działa prawidłowo i nie jest zabrudzony
D. dodać dodatkowy moduł pamięci RAM, aby zmniejszyć obciążenie karty
Temperatura pracy karty graficznej na poziomie 87°C jest zbyt wysoka i może prowadzić do przegrzania lub uszkodzenia podzespołu. W takim przypadku pierwszym krokiem serwisanta powinno być sprawdzenie wentylatora chłodzącego kartę graficzną. Wentylatory są kluczowe dla utrzymania odpowiedniej temperatury pracy komponentów komputerowych. Jeśli wentylator nie działa prawidłowo lub jest zakurzony, może to ograniczać jego wydajność, co w konsekwencji prowadzi do wzrostu temperatury. W praktyce, regularne czyszczenie i konserwacja wentylatorów oraz sprawdzanie ich działania to standardowa procedura w utrzymaniu sprzętu komputerowego w dobrym stanie. Dbałość o chłodzenie karty graficznej jest zgodna z najlepszymi praktykami w branży, które zalecają monitorowanie temperatury podzespołów oraz ich regularną konserwację, aby zapobiegać awariom i wydłużać żywotność sprzętu. Warto również rozważyć dodanie dodatkowych wentylatorów do obudowy komputera, aby poprawić cyrkulację powietrza.

Pytanie 3

Jaką funkcję pełni serwer FTP?

A. administracja kontami poczty
B. synchronizacja czasu
C. udostępnianie plików
D. nadzorowanie sieci
Serwer FTP to taki ważny element w IT, który głównie służy do przesyłania plików między różnymi systemami w sieci. Dzięki protokołowi FTP przesyłanie danych jest naprawdę sprawne, a do tego mamy różne mechanizmy bezpieczeństwa, jak SSL czy TLS, które pomagają chronić nasze pliki. Użycie serwera FTP jest naprawdę szerokie – od wymiany plików między serwerami, po udostępnianie zasobów użytkownikom. Przykładowo, w firmach zajmujących się tworzeniem oprogramowania, programiści korzystają z serwera FTP, żeby wymieniać się plikami z zespołem, co naprawdę ułatwia współpracę. Fajnie jest też, jak serwery FTP są odpowiednio skonfigurowane, żeby zmniejszyć ryzyko nieautoryzowanego dostępu. Regularne aktualizacje to też kluczowa sprawa, żeby mieć pewność, że korzystamy z najnowszych zabezpieczeń. Jak się spojrzy na standardy branżowe, to FTP jest często wspierany przez różne platformy i systemy operacyjne, co czyni go takim uniwersalnym narzędziem do zarządzania plikami.

Pytanie 4

Jakie kroki powinien podjąć użytkownik, aby wyeliminować błąd zaznaczony na rysunku ramką?

Ilustracja do pytania
A. Zainstalować uaktualnienie Service Pack systemu operacyjnego Service Pack 1
B. Usunąć kartę graficzną z Menedżera urządzeń
C. Podłączyć monitor do portu HDMI
D. Zainstalować sterownik do karty graficznej
Zainstalowanie sterownika do karty graficznej jest kluczowym krokiem w zapewnieniu prawidłowego działania sprzętu graficznego w komputerze. Sterowniki to oprogramowanie umożliwiające systemowi operacyjnemu komunikację z urządzeniem. Bez właściwego sterownika karta graficzna może działać w ograniczonym trybie, jak na przykład standardowa karta graficzna VGA, co znacznie ogranicza jej możliwości. Instalacja sterownika zazwyczaj poprawia wydajność, umożliwia korzystanie z zaawansowanych funkcji karty oraz rozwiązuje problemy z kompatybilnością i stabilnością. W przypadku zewnętrznych kart graficznych, takich jak NVIDIA lub AMD, najważniejsze jest pobranie najnowszych sterowników bezpośrednio z oficjalnej strony producenta. Jest to zgodne z dobrą praktyką utrzymywania aktualności oprogramowania, co często jest wymagane w profesjonalnych środowiskach IT. Dodatkowo, regularne aktualizacje sterowników mogą wprowadzać optymalizacje dla nowych gier i aplikacji, co jest szczególnie istotne dla graczy i profesjonalistów korzystających z oprogramowania do edycji wideo czy grafiki.

Pytanie 5

Który zakres adresów pozwala na komunikację multicast w sieciach z użyciem adresacji IPv6?

A. ::/96
B. ff00::/8
C. 3ffe::/16
D. 2002::/24
Odpowiedź ff00::/8 jest poprawna, ponieważ jest to zarezerwowany zakres adresów IPv6 przeznaczony do komunikacji multicast. W architekturze IPv6, adresy multicast są używane do przesyłania pakietów do grupy odbiorców, co jest kluczowe w aplikacjach takich jak transmisje wideo, audio w czasie rzeczywistym oraz różnorodne usługi multimedialne. Umożliwia to efektywne wykorzystanie zasobów sieciowych, ponieważ pakiety są wysyłane raz i mogą być odbierane przez wiele urządzeń jednocześnie, zamiast wysyłać osobne kopie do każdego z nich. Przykładowo, w kontekście protokołów takich jak MLD (Multicast Listener Discovery), urządzenia w sieci mogą dynamicznie dołączać lub opuszczać grupy multicastowe, co zwiększa elastyczność i wydajność komunikacji. Standardy takie jak RFC 4291 dokładnie definiują sposób działania adresacji multicast w IPv6, co czyni ten zakres adresów kluczowym elementem nowoczesnych sieci komputerowych.

Pytanie 6

Mamy do czynienia z siecią o adresie 192.168.100.0/24. Ile podsieci można utworzyć, stosując maskę 255.255.255.224?

A. 6 podsieci
B. 8 podsieci
C. 12 podsieci
D. 4 podsieci
Wybór odpowiedzi 8 jako podsieci jest trafny. Jak wiesz, przy masce 255.255.255.224 (czyli /27) możemy podzielić główną sieć 192.168.100.0/24 na mniejsze podsieci. Ta pierwotna sieć ma 256 adresów IP – zaczynając od 192.168.100.0 do 192.168.100.255. Gdy zmienimy maskę na /27, otrzymujemy po 32 adresy IP w każdej z podsieci. Na przykład, pierwsza podsieć to 192.168.100.0 do 192.168.100.31, następna to 192.168.100.32 do 192.168.100.63 i tak dalej. Możemy łatwo policzyć, że 256 podzielone przez 32 to 8, więc faktycznie mamy 8 podsieci. Taki podział jest mega przydatny w dużych firmach, bo łatwiej wtedy zarządzać ruchem, a także poprawia to bezpieczeństwo sieci. Używając maski /27, możemy lepiej kontrolować adresy IP, co jest zgodne z tym, co mówi RFC 1918 na temat prywatnych adresów IP.

Pytanie 7

Jakie urządzenie sieciowe widnieje na ilustracji?

Ilustracja do pytania
A. Adapter IrDA
B. Modem USB
C. Karta sieciowa bezprzewodowa
D. Moduł Bluetooth
Adapter Bluetooth oraz adapter IrDA to urządzenia służące do bezprzewodowej komunikacji pomiędzy różnymi urządzeniami lecz działają na zupełnie innych zasadach niż modem USB. Adapter Bluetooth umożliwia łączenie się z urządzeniami w bliskiej odległości jak słuchawki czy klawiatury w oparciu o technologię radiową działającą w paśmie ISM 2,4 GHz. Jest znany z niskiego zużycia energii i krótkiego zasięgu co sprawia że nie nadaje się do przesyłania dużych ilości danych jak internet mobilny. Adapter IrDA natomiast wykorzystuje technologię podczerwieni do komunikacji na bardzo krótkie odległości co jest praktycznie przestarzałe w nowoczesnych zastosowaniach sieciowych. Karta sieciowa WiFi służy do łączenia się z lokalnymi sieciami bezprzewodowymi dzięki czemu umożliwia dostęp do internetu przez router WiFi. Chociaż zapewnia mobilność w obrębie sieci lokalnej nie korzysta z technologii mobilnych i nie posiada funkcji modemu co ogranicza jej zastosowanie w porównaniu do modemu USB. Wybór niewłaściwego urządzenia często wynika z mylenia różnych technologii bezprzewodowych i ich zastosowań co może prowadzić do nieoptymalnego wykorzystania sprzętu w określonych sytuacjach. Ważne jest aby zrozumieć specyfikę i przeznaczenie każdego typu urządzenia co pozwala lepiej dopasować je do indywidualnych potrzeb sieciowych szczególnie tam gdzie liczy się mobilność i dostępność do szerokopasmowego internetu mobilnego. Stąd kluczowe jest rozpoznawanie różnic pomiędzy technologiami i ich praktycznymi zastosowaniami w rzeczywistych scenariuszach użytkowania.

Pytanie 8

Protokół poczty elektronicznej, który umożliwia zarządzanie wieloma skrzynkami pocztowymi oraz pobieranie i manipulowanie na wiadomościach przechowywanych na zdalnym serwerze, to

A. POP3
B. TCP
C. IMAP
D. SMTP
Wybór protokołu TCP nie jest właściwy w kontekście zarządzania pocztą elektroniczną. TCP, czyli Transmission Control Protocol, to protokół komunikacyjny, który zapewnia niezawodne przesyłanie danych w sieci, ale nie jest związany bezpośrednio z przetwarzaniem wiadomości e-mail. TCP działa na poziomie transportu, co oznacza, że zarządza przepływem danych pomiędzy różnymi hostami, natomiast IMAP funkcjonuje na poziomie aplikacji, umożliwiając interakcję z wiadomościami. Z kolei POP3, chociaż jest protokołem używanym do odbierania e-maili, w przeciwieństwie do IMAP, nie obsługuje zarządzania folderami ani synchronizacji na wielu urządzeniach. Oba podejścia - zarówno TCP, jak i POP3 - mogą prowadzić do nieporozumień, ponieważ są stosowane w kontekście e-mail, ale służą różnym celom. SMTP (Simple Mail Transfer Protocol) jest protokołem odpowiedzialnym za wysyłanie wiadomości, a nie za ich odbieranie czy zarządzanie. Wybierając ten protokół, można błędnie zrozumieć jego rolę w całym ekosystemie poczty elektronicznej. Kluczowe jest zrozumienie, że IMAP został zaprojektowany do efektywnego zarządzania wiadomościami na serwerze, co jest kluczowe w dobie rosnącej liczby urządzeń i wymagających aplikacji pocztowych.

Pytanie 9

W środowisku Linux uruchomiono skrypt przy użyciu dwóch argumentów. Uzyskanie dostępu do wartości drugiego argumentu z wnętrza skryptu możliwe jest przez

A. %2
B. $2$
C. %2%
D. $2
Zrozumienie, jak przekazywać parametry do skryptów w systemie Linux, jest kluczowe dla skutecznego programowania w powłoce. Pojęcia takie jak %2, %2% i $2$ są niepoprawne, ponieważ nie są zgodne z konwencjami używanymi w powłokach Unixowych. W przypadku %2 i %2%, znaki procentu są stosowane w kontekście innych języków programowania lub systemów, ale nie w skryptach powłoki, gdzie stosuje się dolary ($) do oznaczania zmiennych. Użycie $2 jest właściwe, ale dodawanie dodatkowych znaków, jak % czy $, zmienia semantykę zmiennej i prowadzi do błędów w interpretacji. Często takie pomyłki wynikają z nieznajomości konwencji i reguł, które rządzą danym językiem. Warto zwrócić uwagę, że nie tylko w przypadku zmiennych, ale również w kontekście innych komponentów skryptów, takich jak funkcje czy pętle, posługiwanie się nieprawidłowymi symbolami może prowadzić do nieoczekiwanych rezultatów oraz problemów z debugowaniem. Dlatego kluczowe jest, aby szczegółowo zrozumieć, jak działa system, w którym pracujemy, oraz stosować się do jego zasad i dobrych praktyk programistycznych.

Pytanie 10

Każdorazowo automatycznie szyfrowany staje się plik, który został zaszyfrowany przez użytkownika za pomocą systemu NTFS 5.0, w momencie

A. kiedy jest wysyłany pocztą e-mail
B. gdy jest kopiowany przez sieć
C. gdy inny użytkownik próbuje go odczytać
D. gdy jest zapisywany na dysku
Podczas analizy błędnych odpowiedzi należy zauważyć, że odczytywanie pliku przez innego użytkownika nie powoduje automatycznego szyfrowania. W rzeczywistości, jeśli plik jest już zaszyfrowany, inny użytkownik nie ma możliwości jego odczytania bez odpowiednich uprawnień i kluczy. To prowadzi do mylnego wniosku, że proces szyfrowania zachodzi w momencie, gdy plik jest otwierany przez innego użytkownika, co jest nieprawdziwe i może wynikać z braku zrozumienia, jak działa EFS w NTFS. Kopiowanie pliku przez sieć również nie powoduje automatycznego szyfrowania. Plik zostaje skopiowany w stanie, w jakim aktualnie się znajduje, a szyfrowanie nie jest w tym przypadku stosowane, chyba że zainicjowane zostanie przez użytkownika w trakcie procesu kopiowania. Wysyłanie pliku pocztą e-mail również nie wprowadza automatycznego szyfrowania; plik wysyłany jest w formie, w jakiej został zapisany. Często pojawia się błędne zrozumienie, że szyfrowanie działa w czasie rzeczywistym na każdym etapie interakcji z plikiem, co jest niezgodne z rzeczywistością. Dlatego kluczowe jest, aby użytkownicy byli świadomi, że szyfrowanie automatycznie ma miejsce podczas zapisywania pliku, a nie przy innych interakcjach, co jest fundamentalnym aspektem ochrony danych w złożonych systemach operacyjnych.

Pytanie 11

Jaki adres IPv6 jest stosowany jako adres link-local w procesie autokonfiguracji urządzeń?

A. he88::/10
B. fe88::/10
C. de80::/10
D. fe80::/10
Adres IPv6 fe80::/10 jest przeznaczony do użycia jako adres link-local, co oznacza, że jest stosowany do komunikacji w obrębie lokalnej sieci. Adresy link-local są automatycznie przypisywane przez urządzenia sieciowe przy użyciu protokołu autokonfiguracji, na przykład Neighbor Discovery Protocol (NDP). Adresy te są wykorzystywane do komunikacji między urządzeniami w tej samej sieci lokalnej bez konieczności konfiguracji serwera DHCP. Przykładem zastosowania adresu link-local może być sytuacja, w której dwa urządzenia, takie jak router i komputer, muszą wymieniać informacje konfiguracyjne, takie jak adresy MAC. Link-local jest również wykorzystywany w protokole IPv6 do wykrywania i identyfikacji sąsiednich urządzeń, co jest kluczowe dla wydajności sieci. Zgodnie z RFC 4862, adresy link-local są typowe dla lokalnych segmentów sieci i nie są routowalne poza tę sieć, co zapewnia bezpieczeństwo i ograniczenie nieautoryzowanego dostępu do sieci lokalnej.

Pytanie 12

Administrator systemu Linux wyświetlił zawartość katalogu /home/szkoła w terminalu, uzyskując następujący rezultat -rwx –x r-x 1 admin admin 25 04-09 15:17 szkola.txt. Następnie wydał polecenie ```chmod ug=rw szkola.txt | Is``` Jaki będzie rezultat tego działania, pokazany w oknie terminala?

A. -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt
B. -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt
C. -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt
D. -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt
Odpowiedź -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt jest poprawna, ponieważ wynika z zastosowania polecenia chmod ug=rw, które modyfikuje uprawnienia do pliku szkola.txt. Użycie 'ug=rw' oznacza, że zarówno właściciel pliku (user), jak i grupa (group) otrzymują uprawnienia do odczytu (r) i zapisu (w). Uprawnienia są reprezentowane w systemie Linux w formie trzech grup: właściciel, grupa i inni (others). Oryginalne uprawnienia pliku to -rwx –x r-x, co oznacza, że właściciel miał uprawnienia do odczytu, zapisu i wykonywania, grupa miała uprawnienia do wykonywania, a inni mieli uprawnienia do odczytu i wykonywania. Po zastosowaniu chmod ug=rw, poprawione uprawnienia stają się -rw- rw- r-x. Widać, że właściciel i grupa uzyskali uprawnienia do odczytu i zapisu, natomiast uprawnienia dla innych pozostały bez zmian. Dobrą praktyką jest zrozumienie, w jaki sposób zmiany uprawnień wpływają na bezpieczeństwo i dostęp do plików, co jest kluczowe w zarządzaniu systemami Linux. Umożliwia to nie tylko kontrolę dostępu do danych, ale także ochronę przed nieautoryzowanym dostępem.

Pytanie 13

W dokumentacji płyty głównej podano informację "wsparcie dla S/PDIF Out". Co to oznacza w kontekście tej płyty głównej?

A. analogowe złącze sygnału wyjścia video
B. cyfrowe złącze sygnału video
C. cyfrowe złącze sygnału audio
D. analogowe złącze sygnału wejścia video
Odpowiedzi wskazujące na złącza sygnału video są niepoprawne, ponieważ S/PDIF jest ściśle związane z przesyłem sygnału audio, a nie video. Nie ma żadnych standardów ani praktyk inżynieryjnych, które sugerowałyby, że S/PDIF mogłoby być używane do przesyłania sygnału video. Cyfrowe złącze sygnału video, takie jak HDMI czy DisplayPort, służy do przesyłania obrazów i dźwięku, lecz S/PDIF koncentruje się wyłącznie na audio. Wybór analogowego złącza sygnału wyjścia lub wejścia video również wskazuje na nieporozumienie co do funkcji S/PDIF, które nie przesyła sygnałów w formacie analogowym. W kontekście audio, analogowe złącza, takie jak RCA, nie oferują tej samej jakości przesyłu sygnału, co S/PDIF, dlatego preferencje w profesjonalnych zastosowaniach często składają się na wybór cyfrowych rozwiązań. Zrozumienie różnic pomiędzy sygnałami audio i video oraz ich standardami jest kluczowe dla skutecznego projektowania i budowy systemów multimedialnych.

Pytanie 14

Jakie parametry można śledzić w przypadku urządzenia przy pomocy S.M.A.R.T.?

A. Procesora
B. Płyty głównej
C. Dysku twardego
D. Chipsetu
Wybór płyty głównej, procesora czy chipsetu jako odpowiedzi na pytanie o S.M.A.R.T. to trochę mylne podejście. Płyta główna to ważny element, bo łączy wszystko w systemie, ale nie ma za zadanie monitorowania stanu zdrowia dysków. Procesor robi swoje obliczenia i zarządza zadaniami, ale nie zajmuje się dyskami w tej kwestii. Co do chipsetu, to też pełni rolę pośredniczącą, ale nie ma nic wspólnego z S.M.A.R.T. To narzędzie działa tylko w dyskach twardych i SSD, a jego celem jest pomóc w uniknięciu awarii poprzez analizę ich stanu. Ważne, żeby pamiętać, że S.M.A.R.T. dotyczy wyłącznie nośników danych, więc zamiana tej technologii na inne komponenty to typowy błąd, który może wprowadzić w błąd przy wyborze narzędzi do zarządzania IT.

Pytanie 15

Jakie urządzenie jest kluczowe do połączenia pięciu komputerów w sieci o topologii gwiazdy?

A. ruter.
B. przełącznik.
C. most.
D. modem.
Przełącznik, znany również jako switch, jest kluczowym urządzeniem w sieciach komputerowych, szczególnie w topologii gwiazdy, gdzie wszystkie urządzenia są podłączone do jednego punktu centralnego. Jego główną funkcją jest przekazywanie danych między komputerami w sieci lokalnej, co czyni go idealnym rozwiązaniem dla łączenia pięciu komputerów. W odróżnieniu od koncentratorów, które przesyłają dane do wszystkich portów, przełączniki działają na poziomie warstwy drugiej modelu OSI i inteligentnie kierują pakiety tylko do odpowiednich portów, co zwiększa wydajność sieci i zmniejsza kolizje danych. W praktyce, jeśli pięć komputerów wymaga współdzielenia zasobów, takich jak pliki czy drukarki, przełącznik zapewni szybkie i niezawodne połączenia, co jest kluczowe w środowiskach biurowych. Dodatkowo, nowoczesne przełączniki oferują funkcje zarządzania, takie jak VLAN, co umożliwia segmentację sieci i zwiększa bezpieczeństwo oraz efektywność. Dlatego wybór przełącznika jako centralnego urządzenia w topologii gwiazdy jest zgodny z najlepszymi praktykami w projektowaniu sieci lokalnych.

Pytanie 16

Aby sprawdzić stan podłączonego kabla oraz zdiagnozować odległość do miejsca awarii w sieci, należy użyć funkcji przełącznika oznaczonej numerem

Ilustracja do pytania
A. 3
B. 1
C. 4
D. 2
Odpowiedź numer 3 jest prawidłowa, ponieważ funkcja oznaczona jako 'Cable Test' służy do sprawdzania stanu podłączonego kabla i diagnozowania odległości od miejsca awarii. Ta funkcja jest niezbędna w zarządzaniu siecią, gdyż umożliwia szybkie wykrywanie problemów z połączeniami kablowymi. Przełączniki sieciowe, takie jak TP-Link TL-SG108E, oferują wbudowane narzędzia diagnostyczne, które znacząco ułatwiają lokalizację usterek. Testowanie kabli pomaga w identyfikacji uszkodzeń mechanicznych, takich jak złamania, oraz problemów z połączeniami, na przykład zwarć czy przerw w obwodzie. Dzięki temu administratorzy sieci mogą szybko podjąć działania naprawcze. Test kablowy działa poprzez wysyłanie sygnałów testowych przez kabel i mierzenie czasu, jaki zajmuje sygnałowi powrót, co pozwala na oszacowanie odległości do miejsca usterki. Jest to standardowa praktyka w branży sieciowej i znajduje zastosowanie w wielu scenariuszach, od małych sieci domowych po duże sieci korporacyjne. Regularne testowanie kabli jest kluczowe dla utrzymania wysokiej wydajności i niezawodności sieci, co czyni tę funkcję nieocenionym narzędziem w arsenale każdego administratora sieciowego.

Pytanie 17

Wtyczka zaprezentowana na fotografii stanowi element obwodu elektrycznego zasilającego

Ilustracja do pytania
A. napędy CD
B. procesor ATX12V
C. wewnętrzne dyski SATA
D. stację dysków
Przedstawiona na zdjęciu wtyczka to typowy złącze zasilania ATX12V stosowane w nowoczesnych komputerach osobistych. ATX12V jest kluczowym elementem niezbędnym do zasilania procesora, dostarczającym dodatkowe 12V niezbędne do jego poprawnego działania. Wtyczka ta jest zazwyczaj czteropinowa, jak na zdjęciu, i jest podłączana bezpośrednio z zasilacza do gniazda na płycie głównej obok procesora. Ten typ złącza jest standardem w branży komputerowej i jego zastosowanie jest istotne ze względu na rosnące zapotrzebowanie energetyczne nowoczesnych procesorów. Obecność takiego złącza pozwala na stabilną i efektywną pracę komputera, zwłaszcza w zadaniach wymagających dużej mocy obliczeniowej, jak gry komputerowe czy obróbka wideo. W praktyce, instalacja złącza ATX12V jest jednym z fundamentalnych kroków podczas montażu zestawu komputerowego, a jego poprawne podłączenie zapewnia niezawodność i trwałość systemu.

Pytanie 18

W dokumentacji technicznej procesora producent zamieścił wyniki analizy zrealizowanej przy użyciu programu CPU-Z. Z tych informacji wynika, że procesor dysponuje

Ilustracja do pytania
A. 5 rdzeni
B. 4 rdzenie
C. 6 rdzeni
D. 2 rdzenie
Procesor Intel Core i5 650, wskazany w wynikach testu CPU-Z, posiada 2 rdzenie. Jest to typowy przykład procesora dwurdzeniowego, który często znajduje zastosowanie w komputerach osobistych oraz niektórych serwerach. Dwurdzeniowe procesory są optymalne do wielu codziennych zadań, takich jak przeglądanie Internetu, praca biurowa czy odtwarzanie multimediów. Dzięki technologii Hyper-Threading każdy rdzeń może obsługiwać dwa wątki jednocześnie, co zwiększa efektywność przetwarzania zadań wielowątkowych. W praktyce oznacza to, że choć fizycznie mamy dwa rdzenie, system operacyjny widzi cztery jednostki wykonawcze, co jest szczególnie korzystne podczas uruchamiania aplikacji zoptymalizowanych pod kątem wielu wątków. Standardowe praktyki w branży sugerują, że wybór procesora powinien być dostosowany do specyficznych potrzeb użytkownika, a procesory dwurdzeniowe z technologią wielowątkową mogą być doskonałym wyborem dla użytkowników domowych i biurowych, którzy cenią sobie balans pomiędzy wydajnością a kosztem.

Pytanie 19

Protokół, który pozwala na ściąganie wiadomości e-mail z serwera, to

A. FTP
B. SMTP
C. DNS
D. POP3
POP3, czyli Post Office Protocol version 3, to standard, który pozwala na ściąganie wiadomości e-mail z serwera. Dzięki temu można mieć dostęp do swoich maili nawet offline, co jest mega przydatne. Ważne jest to, że po pobraniu wiadomości, zazwyczaj są one usuwane z serwera. To daje nam pełną kontrolę nad skrzynką i nie musimy się martwić o dostęp do internetu, żeby przeczytać swoje wiadomości. Poza tym, POP3 ma różne metody autoryzacji, co podnosi bezpieczeństwo. Wiele popularnych programów pocztowych, jak na przykład Outlook albo Thunderbird, korzysta z POP3 do obsługi maili. Łatwo jest też zastosować szyfrowanie, co zabezpiecza to, co przesyłamy. Z mojego doświadczenia, znajomość POP3 jest naprawdę ważna dla każdego, kto chce ogarniać swoją pocztę, czy to w życiu prywatnym, czy zawodowym.

Pytanie 20

Wskaź protokół działający w warstwie aplikacji, który umożliwia odbieranie wiadomości e-mail, a w pierwszym etapie pobiera jedynie nagłówki wiadomości, podczas gdy pobranie ich treści oraz załączników następuje dopiero po otwarciu wiadomości.

A. FTAM
B. MIME
C. SNMP
D. IMAP
Wybór jednego z pozostałych protokołów jako odpowiedzi na to pytanie może prowadzić do nieporozumień dotyczących podstawowych funkcji i zastosowań każdego z tych rozwiązań. Protokół SNMP (Simple Network Management Protocol) jest wykorzystywany do zarządzania urządzeniami w sieciach komputerowych, takich jak routery i przełączniki. Jego głównym celem jest monitorowanie i zarządzanie siecią, a nie obsługa poczty elektronicznej. Stąd, jego wybór w kontekście zarządzania wiadomościami e-mail jest błędny. MIME (Multipurpose Internet Mail Extensions) to z kolei standard, który pozwala na przesyłanie różnorodnych formatów danych, takich jak obrazy, dźwięki czy dokumenty w wiadomościach e-mail. MIME nie jest protokołem do odbierania poczty, ale raczej sposobem kodowania treści wiadomości, co czyni ten wybór również niewłaściwym. FTAM (File Transfer Access and Management) to protokół używany w kontekście transferu plików, a nie bezpośrednio do obsługi wiadomości e-mail. To również potwierdza, że nie jest to odpowiedni protokół do odpowiedzi na postawione pytanie. Zrozumienie różnic między tymi protokołami jest kluczowe dla efektywnego zarządzania systemami komunikacji elektronicznej. Dlatego ważne jest, aby nie mylić protokołów przeznaczonych do różnych zastosowań, co może prowadzić do niewłaściwego korzystania z technologii.

Pytanie 21

Która z kart graficznych nie będzie kompatybilna z monitorem, posiadającym złącza pokazane na ilustracji (zakładając, że nie można użyć adaptera do jego podłączenia)?

Ilustracja do pytania
A. Asus Radeon RX 550 4GB GDDR5 (128 bit), DVI-D, HDMI, DisplayPort
B. HIS R7 240 2GB GDDR3 (128 bit) HDMI, DVI, D-Sub
C. Fujitsu NVIDIA Quadro M2000 4GB GDDR5 (128 Bit) 4xDisplayPort
D. Sapphire Fire Pro W9000 6GB GDDR5 (384 bit) 6x mini DisplayPort
Dobra robota! Karta graficzna HIS R7 240 ma wyjścia HDMI, DVI i D-Sub, a te nie pasują do złączy w monitorze, który widzisz. Ten monitor ma złącza DisplayPort i VGA, więc bez specjalnych adapterów nie połączysz ich bezpośrednio. Z doświadczenia wiem, że przy wybieraniu karty graficznej warto zawsze sprawdzić, co będzie pasować do monitora. Zwłaszcza w pracy, gdzie liczy się szybkość i jakość przesyłania obrazu. Dobrze mieć karty z różnymi złączami, jak DisplayPort, bo dają one lepszą jakość i wspierają nowoczesne funkcje, jak np. konfiguracje z wieloma monitorami. Pamiętaj też o tym, żeby myśleć o przyszłej kompatybilności sprzętu. W technice wszystko się zmienia i dobrze mieć elastyczność na przyszłość.

Pytanie 22

Jakie polecenie w środowisku Linux pozwala na modyfikację uprawnień dostępu do pliku lub katalogu?

A. chattrib
B. chmod
C. iptables
D. attrib
Odpowiedź 'chmod' jest prawidłowa, ponieważ jest to standardowe polecenie w systemie Linux służące do zmiany praw dostępu do plików i katalogów. 'chmod' pozwala na modyfikację uprawnień zarówno dla właściciela pliku, grupy, jak i dla innych użytkowników. Uprawnienia te są definiowane w trzech kategoriach: odczyt (r), zapis (w) i wykonanie (x). Można je ustawiać na trzy poziomy: dla właściciela pliku, grupy oraz dla wszystkich użytkowników. Przykładowo, polecenie 'chmod 755 plik.txt' nadaje pełne uprawnienia właścicielowi, natomiast grupie i innym użytkownikom pozwala tylko na odczyt i wykonanie. Dobre praktyki w zarządzaniu uprawnieniami obejmują stosowanie zasady najmniejszych uprawnień, co oznacza, że użytkownicy powinni mieć dostęp tylko do tych zasobów, które są im niezbędne do pracy. Zrozumienie mechanizmów uprawnień w systemie Linux jest kluczowe dla bezpieczeństwa i zarządzania zasobami w każdym środowisku serwerowym.

Pytanie 23

Jak nazywa się system, który pozwala na konwersję nazwy komputera na adres IP w danej sieci?

A. ICMP
B. ARP
C. DNS
D. NetBEUI
DNS, czyli ten system nazw domenowych, jest naprawdę ważnym komponentem w sieciach komputerowych. Dzięki niemu możemy zamieniać skomplikowane adresy IP na proste, łatwe do zapamiętania nazwy, co na pewno ułatwia nam życie w sieci. Pomyśl o tym tak: kiedy wpisujesz w przeglądarkę adres www.przyklad.pl, to tak naprawdę DNS robi całą robotę, przetwarzając tę nazwę i wyszukując odpowiedni adres IP. To sprawia, że łączność z serwerem hostingowym staje się prosta jak drut. Co więcej, DNS nie tylko pomaga w codziennym surfowaniu po internecie, ale również w zarządzaniu lokalnymi sieciami. Administratorzy mogą tworzyć specjalne rekordy DNS dla różnych urządzeń, co znacznie ułatwia ich identyfikację i zarządzanie. Warto też wiedzieć, że DNS działa zgodnie z różnymi standardami, jak na przykład RFC 1035 i RFC 2136, które opisują, jak ten cały system powinien funkcjonować.

Pytanie 24

Programem wiersza poleceń w systemie Windows, który umożliwia kompresję oraz dekompresję plików i folderów, jest aplikacja

A. Expand.exe
B. CleanMgr.exe
C. Compact.exe
D. DiskPart.exe
Expand.exe to narzędzie, które głównie służy do rozpakowywania plików z archiwum, a nie do kompresji. Zwykle używa się go, kiedy trzeba przywrócić pliki z archiwum, ale nie ma tu mowy o kompresji, co jest najważniejsze w tym pytaniu. DiskPart.exe to zupełnie inna bajka – to program do zarządzania partycjami, a nie do kompresji plików. Można z jego pomocą tworzyć czy kasować partycje, ale to nic nie ma wspólnego z kompresowaniem danych. CleanMgr.exe, czyli Oczyszczanie dysku, działa na rzecz usuwania niepotrzebnych plików, co też nie dotyczy kompresji. Czasami może się wydawać, że te narzędzia mogą kompresować, ale każde ma inne przeznaczenie. Warto pamiętać, że kompresja i dekompresja to różne procesy, a odpowiedni wybór narzędzi jest kluczowy dla zachowania wydajności systemu.

Pytanie 25

Podaj prefiks, który identyfikuje adresy globalne w protokole IPv6?

A. 2000::/3
B. 2::/3
C. 200::/3
D. 20::/3
Inne odpowiedzi, takie jak 2::/3, 200::/3 i 20::/3, są niepoprawne, ponieważ nie identyfikują adresów globalnych w protokole IPv6. Prefiks 2::/3 w rzeczywistości nie jest przydzielany do żadnej znanej klasy adresów, co czyni go nieprzydatnym w praktycznych zastosowaniach. Adres 200::/3 obejmuje tylko mały zakres adresów, a nie pełne spektrum potrzebne dla globalnej komunikacji; z kolei prefiks 20::/3 jest również zbyt wąski do efektywnego adresowania globalnego. Użytkownicy często mylą prefiksy z lokalnymi adresami prywatnymi, które są używane w zamkniętych sieciach i nie są routowalne w Internecie. To może prowadzić do nieporozumień przy projektowaniu architektury sieci. Kluczowe jest zrozumienie, że adresy globalne muszą być routowalne przez Internet, co oznacza, że muszą należeć do odpowiednich prefiksów zgodnych z przydziałami RIR. Zastosowanie niewłaściwych adresów może skutkować brakiem łączności z siecią, co w praktyce uniemożliwia komunikację z innymi urządzeniami w Internecie. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi prefiksami oraz ich zastosowanie w praktyce, co również podkreśla znaczenie stosowania standardów i najlepszych praktyk w projektowaniu i wdrażaniu infrastruktury sieciowej.

Pytanie 26

Jakie czynności nie są realizowane przez system operacyjny?

A. umożliwianiem mechanizmów synchronizacji zadań oraz komunikacji między nimi
B. nadzorowaniem i alokowaniem pamięci operacyjnej dla aktywnych zadań
C. zarządzaniem czasem procesora oraz przydzielaniem go poszczególnym zadaniom
D. generowaniem źródeł aplikacji systemowych
System operacyjny (OS) to fundament, na którym opierają się aplikacje, ale nie zajmuje się bezpośrednim tworzeniem źródeł aplikacji systemowych. System operacyjny jest odpowiedzialny za zarządzanie zasobami komputera, takimi jak procesor, pamięć i urządzenia peryferyjne. W praktyce oznacza to, że OS dostarcza interfejsy i biblioteki, które umożliwiają programistom łatwe tworzenie aplikacji, ale nie jest odpowiedzialny za sam proces programowania. Na przykład, podczas gdy system Windows oferuje zestaw API, który pozwala programistom na tworzenie aplikacji wykorzystujących funkcje systemowe, to samo pisanie kodu i tworzenie źródeł aplikacji leży w gestii programistów. W branży informatycznej, dobrą praktyką jest oddzielanie odpowiedzialności między systemem operacyjnym a aplikacjami, co zwiększa efektywność i modularność projektów. Przykłady popularnych systemów operacyjnych, takich jak Linux czy macOS, również jasno pokazują tę separację, umożliwiając jednocześnie różnorodność aplikacji zbudowanych na ich bazie.

Pytanie 27

Symbol graficzny przedstawiony na ilustracji oznacza złącze

Ilustracja do pytania
A. COM
B. DVI
C. HDMI
D. FIRE WIRE
Symbol przedstawiony na rysunku to oznaczenie złącza FireWire znanego również jako IEEE 1394 Interfejs FireWire jest używany do przesyłania danych między urządzeniami elektronicznymi najczęściej w kontekście urządzeń multimedialnych takich jak kamery cyfrowe i zewnętrzne dyski twarde FireWire charakteryzuje się wysoką przepustowością i szybkością transmisji danych co czyni go idealnym do przesyłania dużych plików multimedialnych w czasie rzeczywistym Standard IEEE 1394 umożliwia podłączenie wielu urządzeń do jednego kontrolera co ułatwia tworzenie rozbudowanych systemów multimedialnych bez potrzeby stosowania skomplikowanych ustawień Dzięki szerokiej zgodności z wieloma systemami operacyjnymi FireWire jest ceniony w branżach kreatywnych takich jak produkcja filmowa i dźwiękowa choć w ostatnich latach jego popularność nieco zmalała z powodu wzrostu zastosowań USB i Thunderbolt Mimo to zrozumienie jego użycia jest kluczowe dla profesjonalistów zajmujących się archiwizacją cyfrową i edycją multimediów szczególnie w kontekście starszych urządzeń które nadal wykorzystują ten standard

Pytanie 28

Podaj właściwe przyporządkowanie usługi z warstwy aplikacji oraz standardowego numeru portu, na którym ta usługa działa?

A. DNS - 53
B. SMTP - 80
C. DHCP - 161
D. IMAP - 8080
Odpowiedzi wskazujące na inne usługi są nieprawidłowe z kilku powodów. Przykładowo, SMTP, czyli Simple Mail Transfer Protocol, służy do przesyłania wiadomości e-mail i standardowo działa na porcie 25, a nie 80. Port 80 jest zarezerwowany dla HTTP, co oznacza, że jest używany do przesyłania danych stron internetowych. W przypadku DHCP, to Dynamic Host Configuration Protocol, jego standardowy port to 67 dla serwera i 68 dla klienta, a nie 161, który jest zarezerwowany dla SNMP (Simple Network Management Protocol). IMAP, czyli Internet Message Access Protocol, używa portu 143 lub 993 w przypadku zabezpieczonej komunikacji SSL/TLS. Wybierając błędne odpowiedzi, można doświadczyć typowych pułapek myślowych, takich jak mylenie portów przypisanych do różnych protokołów lub nieznajomość standardów RFC, które dokładnie definiują te ustawienia. Zrozumienie, które porty są przypisane do konkretnych protokołów, jest kluczowe dla prawidłowej konfiguracji sieci oraz bezpieczeństwa, a mylenie tych wartości prowadzi do problemów z komunikacją w sieci oraz zwiększa ryzyko wystąpienia luk bezpieczeństwa.

Pytanie 29

Który z podanych adresów IPv4 stanowi adres publiczny?

A. 10.0.3.42
B. 172.16.32.7
C. 192.168.0.4
D. 194.204.152.34
Adresy 10.0.3.42, 172.16.32.7 oraz 192.168.0.4 to przykłady adresów prywatnych, które są stosowane w sieciach lokalnych. Adresy prywatne są definiowane przez standardy RFC 1918 i RFC 4193 i nie mogą być routowane w Internecie. Z tego powodu nie mogą być używane do komunikacji z zewnętrznymi sieciami. W przypadku 10.0.3.42, to adres z zakresu 10.0.0.0/8, który jest przeznaczony dla dużych sieci lokalnych. Adres 172.16.32.7 znajduje się w zakresie 172.16.0.0/12, również dedykowany dla prywatnych sieci. Z kolei 192.168.0.4, który jest jednym z najbardziej popularnych adresów w użyciu domowym, należy do zakresu 192.168.0.0/16. Typowym błędem jest mylenie adresów prywatnych z publicznymi, co prowadzi do nieprawidłowego planowania infrastruktury sieciowej. Osoby projektujące sieci lokalne często nie zdają sobie sprawy, że adresy prywatne są widoczne tylko wewnątrz danej sieci i nie można ich używać do komunikacji z innymi sieciami w Internecie. Dlatego ważne jest, aby przy projektowaniu sieci lokalnych zrozumieć różnicę między adresami prywatnymi a publicznymi oraz zastosować odpowiednie praktyki, takie jak używanie NAT (Network Address Translation) w celu umożliwienia komunikacji z Internetem przy użyciu adresu publicznego.

Pytanie 30

Jakie jest źródło pojawienia się komunikatu na ekranie komputera, informującego o wykryciu konfliktu adresów IP?

A. Usługa DHCP nie funkcjonuje w sieci lokalnej
B. Adres IP komputera znajduje się poza zakresem adresów w sieci lokalnej
C. Inne urządzenie w sieci posiada ten sam adres IP co komputer
D. Adres bramy domyślnej w ustawieniach protokołu TCP/IP jest nieprawidłowy
Poprawna odpowiedź odnosi się do sytuacji, w której dwa lub więcej urządzeń w tej samej sieci lokalnej zostało skonfigurowanych z tym samym adresem IP. Jest to klasyczny przypadek konfliktu adresów IP, który prowadzi do zakłóceń w komunikacji sieciowej. Gdy system operacyjny wykrywa taki konflikt, wyświetla odpowiedni komunikat, aby użytkownik mógł podjąć odpowiednie kroki w celu rozwiązania problemu. Przykładem może być sytuacja, gdy podłączysz nowy laptop do sieci, a jego adres IP został ręcznie przypisany do tego samego zakresu co inny, już działający w sieci komputer. W takich przypadkach zaleca się korzystanie z protokołu DHCP, który automatycznie przydziela adresy IP, minimalizując ryzyko konfliktów. Zastosowanie DHCP to jedna z najlepszych praktyk w zarządzaniu adresacją IP, gdyż pozwala na centralne zarządzanie i kontrolę nad przydzielanymi adresami, zapewniając ich unikalność oraz optymalizując wykorzystanie dostępnych zasobów sieciowych.

Pytanie 31

Który z adresów protokołu IP w wersji 4 jest poprawny pod względem struktury?

A. 192.309.1.255
B. 192.10.255.3A
C. 192.0.FF.FF
D. 192.21.140.16
Adres IP w wersji 4 (IPv4) składa się z czterech oktetów oddzielonych kropkami, a każdy oktet jest liczbą całkowitą w zakresie od 0 do 255. Odpowiedź 192.21.140.16 spełnia te kryteria, gdyż wszystkie cztery oktety są w odpowiednich granicach. Przykład ten jest typowym adresem przypisanym do urządzeń w sieci i jest używany w wielu lokalnych oraz globalnych konfiguracjach sieciowych. W praktyce adresy IPv4 są wykorzystywane do routingu pakietów danych w Internecie oraz w sieciach lokalnych. Zgodnie z protokołem Internetowym (RFC 791), ważne jest, aby adresy IP były poprawnie skonstruowane, aby zapewnić ich poprawne przesyłanie i odbieranie w sieci. Dodatkowo, w kontekście bezpieczeństwa i zarządzania siecią, administrowanie adresami IP wymaga ich prawidłowej struktury, co pozwala na skuteczne zarządzanie ruchem sieciowym oraz unikanie konfliktów adresowych.

Pytanie 32

Aby zweryfikować mapę połączeń kabla UTP Cat 5e w sieci lokalnej, konieczne jest wykorzystanie

A. analizatora protokołów sieciowych
B. testera okablowania
C. reflektometru optycznego OTDR
D. reflektometru kablowego TDR
Wybór między reflektometrem kablowym TDR a reflektometrem optycznym OTDR, żeby badać kable UTP Cat 5e, to dość powszechny błąd. Reflektometr TDR działa na zasadzie fal elektromagnetycznych i pomaga znaleźć uszkodzenia, ale głównie w kablach coaxialnych i miedzianych, a nie w UTP. Ludzie często mylą TDR z testerem okablowania, ale to nie to samo. TDR nie testuje ciągłości połączeń jak tester okablowania. Z drugiej strony, OTDR służy do badania kabli światłowodowych, więc nie przyda się do miedzianych, jak UTP Cat 5e. Używanie OTDR do testowania miedzianych kabli to trochę bez sensu. A analizator protokołów sieciowych, choć mega przydatny w diagnostyce sieci, to nie służy do testowania fizycznych cech kabli. On bardziej monitoruje i analizuje dane w sieci, co nie zastąpi tego, co robi tester okablowania. Rozumienie tych narzędzi jest naprawdę ważne dla skutecznej diagnostyki i utrzymania sieci, bo ich złe użycie może prowadzić do pomyłek i zbędnych wydatków na naprawy.

Pytanie 33

Jaka jest równoważna forma 232 bajtów?

A. 8GB
B. 4GiB
C. 1GiB
D. 2GB
Odpowiedzi przedstawione jako 1GiB, 2GB i 8GB są błędne, ponieważ wynikają z nieprawidłowych przeliczeń jednostek pamięci. 1GiB to równowartość 1 073 741 824 bajtów, co oznacza, że 232 bajty są zaledwie ułamkiem tego rozmiaru. Podobnie 2GB (2 147 483 648 bajtów) i 8GB (8 589 934 592 bajtów) są znacznie większe niż 232 bajty, co sprawia, że ich wybór jest nieodpowiedni. Często mylone są różnice między gigabajtami (GB) a gibibajtami (GiB), gdzie 1 GiB jest równy 1024 MB, a 1 GB jest równy 1000 MB. Standardy te są kluczowe w branży IT, gdzie precyzyjne zrozumienie jednostek pamięci jest niezbędne dla efektywnego zarządzania danymi i projektowania systemów. Typowym błędem jest nieodróżnianie tych dwóch jednostek, co prowadzi do nadmiernych oszacowań potrzebnej pamięci. W praktyce, zrozumienie kontekstu, w jakim używamy jednostek, jest kluczowe, zwłaszcza gdy mówimy o ich zastosowaniu w różnych technologiach, takich jak dyski twarde, pamięci flash i sieci komputerowe, gdzie efektywność przechowywania danych jest kluczowym czynnikiem sukcesu.

Pytanie 34

Który z portów na zaprezentowanej płycie głównej umożliwia podłączenie zewnętrznego dysku przez interfejs e-SATA?

Ilustracja do pytania
A. 2
B. 4
C. 3
D. 1
Port numer 2 to e-SATA, czyli ten typ złącza, który pozwala na szybkie przesyłanie danych. W praktyce działa to tak, że podłączasz do niego zewnętrzne dyski twarde i masz możliwość przenoszenia dużych ilości info z naprawdę niezłą prędkością, sięgającą nawet 6 Gb/s. To czyni go całkiem konkurencyjnym wobec USB 3.0 i Thunderbolt. Z mojego doświadczenia wynika, że e-SATA jest świetny, gdy potrzebujesz szybko przesłać dane bez zbędnych opóźnień. Fajnie, że nie ma problemów z zakłóceniami elektromagnetycznymi, bo złącze jest dość solidnie zrobione. Jednak trzeba pamiętać, że e-SATA nie zapewnia zasilania przez kabel, dlatego zewnętrzne urządzenia często potrzebują swojego osobnego źródła zasilania. Generalnie, jest to technologia, która sprawdza się w pracy z dużymi zbiorem danych, takimi jak edycja wideo czy duże bazy danych.

Pytanie 35

Aby skanera działał prawidłowo, należy

A. zweryfikować temperaturę komponentów komputera
B. smarować łożyska wentylatorów chłodzenia jednostki centralnej
C. mieć w systemie zainstalowany program antywirusowy
D. nie umieszczać kartek ze zszywkami w podajniku urządzenia, gdy jest on automatyczny
Właściwe funkcjonowanie skanera, zwłaszcza w przypadku automatycznych podajników, jest kluczowe dla efektywności procesu skanowania. Wkładanie kartek ze zszywkami do podajnika może prowadzić do zacięć lub uszkodzeń mechanizmu skanującego, co w konsekwencji skutkuje zwiększonym czasem przestoju urządzenia oraz kosztami naprawy. Zszywki mogą również porysować powierzchnię skanera, co obniża jakość skanowanych dokumentów. Aby zminimalizować ryzyko awarii, należy przestrzegać zasad użytkowania urządzenia, które zazwyczaj są opisane w instrukcji obsługi. Zgodnie z najlepszymi praktykami, przed umieszczeniem dokumentów w podajniku, warto upewnić się, że są one wolne od wszelkich elementów, które mogą zakłócić ich przepływ przez urządzenie. Prowadzenie regularnych przeglądów i konserwacji skanera, zgodnie z zaleceniami producenta, również przyczynia się do jego długoterminowej niezawodności oraz efektywności operacyjnej.

Pytanie 36

Regulacje dotyczące konstrukcji systemu okablowania strukturalnego, parametry kabli oraz procedury testowania obowiązujące w Polsce są opisane w normach

A. EN 50167
B. PN-EN 50173
C. EN 50169
D. PN-EN 50310
Norma PN-EN 50173 odnosi się do systemów okablowania strukturalnego w budynkach i przestrzeniach biurowych. Określa ona zasady projektowania, instalacji oraz testowania okablowania, co jest fundamentalne dla zapewnienia wysokiej jakości infrastruktury telekomunikacyjnej. W ramach tej normy opisano różne klasy okablowania, jak również wymagania dotyczące parametrów kabli, takich jak pasmo przenoszenia, tłumienie sygnału czy odporność na zakłócenia. Dzięki zastosowaniu tych norm, inżynierowie mogą projektować sieci, które będą zgodne z aktualnymi standardami technicznymi, co przekłada się na ich niezawodność i wydajność. Przykładem zastosowania tej normy może być projektowanie systemu LAN w nowo powstającym biurowcu, gdzie odpowiednie kable są dobrane na podstawie specyfikacji z PN-EN 50173, co zapewnia ich optymalne działanie w przyszłości.

Pytanie 37

Które z poniższych stwierdzeń odnosi się do sieci P2P – peer to peer?

A. Komputer w tej sieci może jednocześnie działać jako serwer i klient
B. Udostępnia jedynie zasoby na dysku
C. Wymaga istnienia centralnego serwera z odpowiednim oprogramowaniem
D. Jest to sieć zorganizowana w strukturę hierarchiczną
W przypadku sieci P2P, nie można mówić o hierarchicznej strukturze, ponieważ taka architektura opiera się na równorzędnych relacjach pomiędzy uczestnikami. W sieciach hierarchicznych istnieje wyraźny podział na urządzenia serwerowe i klienckie, co nie ma miejsca w P2P, gdzie każdy węzeł ma równą moc. Odpowiedź zakładająca, że sieci P2P udostępniają wyłącznie zasoby dyskowe, jest również myląca. Chociaż udostępnianie plików to jedna z głównych funkcji, sieci P2P mogą obsługiwać także inne typy zasobów, takie jak moc obliczeniowa, co widać w projektach takich jak SETI@home, które wykorzystują moc obliczeniową użytkowników do analizy danych. Ponadto, fakt, że sieci P2P wymagają centralnego serwera z dedykowanym oprogramowaniem, jest całkowicie sprzeczny z ich istotą, ponieważ to właśnie decentralizacja i brak centralnego zarządzania stanowią o ich unikalności. Typowym błędem myślowym jest utożsamianie P2P z tradycyjnymi modelami klient-serwer, co prowadzi do nieporozumień dotyczących ich funkcji i zastosowania. Zrozumienie różnic między tymi modelami jest kluczowe dla skutecznego korzystania z technologii sieciowych.

Pytanie 38

Jaki symbol urządzenia jest pokazany przez strzałkę na rysunku?

Ilustracja do pytania
A. Routera
B. Przełącznika
C. Koncentratora
D. Serwera
Router to takie urządzenie, które pomaga kierować danymi między różnymi sieciami. W sumie to jego główna rola – znaleźć najlepszą trasę dla danych, które przelatują przez sieć. Router patrzy na nagłówki pakietów i korzysta z tablicy routingu, żeby wiedzieć, gdzie te dane mają iść dalej. Jest mega ważny, bo łączy różne lokalne sieci LAN z większymi sieciami WAN, co pozwala im się komunikować. Dzięki temu ruch sieciowy jest lepiej zarządzany, co zmniejsza opóźnienia i sprawia, że wszystko działa sprawniej. Routery mogą robić też różne sztuczki, np. routing statyczny i dynamiczny – ten dynamiczny, jak OSPF czy BGP, pozwala na automatyczne aktualizacje tablicy routingu, gdy coś się zmienia w sieci. W praktyce, routery są kluczowe w firmach i w domach, nie tylko do przesyłania danych, ale też do zapewnienia bezpieczeństwa, jak NAT czy firewalle, co jest ważne w dzisiejszych czasach z tyloma zagrożeniami.

Pytanie 39

Na ilustracji widoczny jest

Ilustracja do pytania
A. zaślepka kabla światłowodowego
B. zastępczy wtyk RJ-45
C. terminator BNC
D. zaślepka gniazda RJ-45
Wybór zastępczego wtyku RJ-45 jako odpowiedzi na przedstawione pytanie wskazuje na myślenie w kontekście nowoczesnych sieci przewodowych, gdzie RJ-45 jest standardowym złączem wykorzystywanym w kablach Ethernet. Jednak wtyk RJ-45 nie jest związany z systemami opartymi na kablach koncentrycznych, jak te, które wymagają użycia terminatora BNC. Zaślepka gniazda RJ-45 to element ochronny, mający na celu zabezpieczenie nieużywanych portów przed kurzem i uszkodzeniami, ale nie ma funkcji elektrycznych takich jak terminator. Kolejnym błędem jest identyfikacja elementu jako zaślepki kabla światłowodowego, co wskazuje na niepoprawne przypisanie funkcji terminatora BNC do technologii światłowodowej. Światłowody w ogóle nie wymagają terminatorów w tradycyjnym sensie znanym z kabli koncentrycznych, gdyż sygnał optyczny jest inaczej zarządzany i nie występują w nim takie same zjawiska odbiciowe. Takie zrozumienie funkcji terminatora BNC i jego kontekstu technologicznego jest kluczowe do prawidłowego rozwiązywania problemów związanych z projektowaniem i utrzymaniem sieci opartych na różnych standardach transmisji danych. Rozpoznanie i zrozumienie specyfiki działania elementów sieciowych pozwala uniknąć błędów w konfiguracji i diagnostyce sieci, co jest istotne dla skutecznego zarządzania infrastrukturą IT.

Pytanie 40

Jakim protokołem posługujemy się do przesyłania dokumentów hipertekstowych?

A. FTP
B. SMTP
C. HTTP
D. POP3
HTTP, czyli Hypertext Transfer Protocol, jest protokołem, który umożliwia przesyłanie dokumentów hipertekstowych w sieci World Wide Web. Jest to kluczowa technologia, która umożliwia przeglądanie stron internetowych poprzez przesyłanie danych pomiędzy klientem (np. przeglądarką) a serwerem. Protokół ten działa w modelu klient-serwer, gdzie klient wysyła żądania (requests), a serwer odpowiada, dostarczając odpowiednie zasoby. HTTP jest protokołem bezstanowym, co oznacza, że każde żądanie jest niezależne od wcześniejszych, co pozwala na skalowalność i efektywność działania. W praktyce, gdy wpisujesz adres URL w przeglądarkę, przeglądarka korzysta z HTTP, aby zażądać odpowiednich danych z serwera. HTTP jest również podstawą dla bardziej zaawansowanych protokołów, takich jak HTTPS, który dodaje warstwę bezpieczeństwa do komunikacji, szyfrując dane między klientem a serwerem. Zgodnie z najlepszymi praktykami, dobrze skonfigurowane serwery HTTP powinny również wspierać mechanizmy cache'owania oraz kompresji, co znacząco wpływa na wydajność przesyłania danych.