Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 1 czerwca 2025 20:30
  • Data zakończenia: 1 czerwca 2025 20:31

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. wyłącznika nadprądowego
B. rozłącznika
C. wyłącznika różnicowoprądowego
D. odłącznika
Czasem pojawienie się napięcia na obudowie AGD może być mylone z innymi zabezpieczeniami, jak odłączniki czy rozłączniki. Odłącznik fizycznie przerywa obwód, ale nie chroni nas przed prądami upływowymi, które są tu kluczowe. Rozłącznik też rozłącza obwód, ale nie monitoruje różnic w prądzie, więc nie wyłapie potencjalnych problemów. Wyłącznik nadprądowy dba o przeciążenia i zwarcia, ale znów — nie sprawdza prądów, które mogą być niebezpieczne. Często mylimy te urządzenia z RCD, co prowadzi do błędnych wniosków o ich funkcjach. RCD jest jedynym z tych urządzeń, które rzeczywiście chroni przed skutkami prądów upływowych. Warto to zrozumieć, żeby właściwie korzystać z elektryczności i dbać o nasze bezpieczeństwo w domu.

Pytanie 2

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. przeciążenia obwodu elektrycznego
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zwarcia w obwodzie elektrycznym
Wielu ludzi myśli, że zamontowanie gniazda bez styku ochronnego może prowadzić do zwarcia w instalacji elektrycznej, co jest błędnym rozumowaniem. Zwarcie występuje, gdy następuje niezamierzony kontakt między przewodami o różnym potencjale, co prowadzi do nadmiernego przepływu prądu. W przypadku gniazda bez styku ochronnego nie dochodzi do sytuacji zwarcia, ale raczej do braku bezpiecznego uziemienia dla urządzenia. Kolejnym mylnym przekonaniem jest to, że brak styku ochronnego może prowadzić do przeciążenia instalacji elektrycznej. Przeciążenie ma miejsce, gdy zbyt wiele urządzeń pobiera prąd jednocześnie, co nie jest bezpośrednio związane z uziemieniem. Również uszkodzenie urządzenia elektrycznego nie jest bezpośrednim skutkiem braku styku ochronnego. Uszkodzenia mogą powstać w wyniku innych czynników, takich jak zbyt wysokie napięcie czy awaria wewnętrzna. W rzeczywistości, najważniejszym zagrożeniem wynikającym z zastosowania gniazda bez styku ochronnego jest możliwość porażenia prądem elektrycznym, co jest powszechnie bagatelizowane. Wynika to z braku zrozumienia zasad działania urządzeń elektrycznych i standardów bezpieczeństwa, takich jak PN-IEC 60439, które podkreślają znaczenie odpowiedniej ochrony w instalacjach elektrycznych. Edukacja na temat właściwego użytkowania i ochrony w instalacjach elektrycznych jest kluczowa dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 3

Zgodnie z normą PN-IEC 664-1 dotyczącą klasyfikacji instalacji, minimalna wytrzymałość udarowa urządzeń 230/400 V w I kategorii powinna wynosić

A. 2,5 kV
B. 1,5 kV
C. 6,0 kV
D. 4,0 kV
Odpowiedź 1,5 kV to absolutnie trafny wybór, bo odpowiada normie PN-IEC 664-1, która mówi o tym, jakie wymagania powinny spełniać urządzenia elektryczne w instalacjach niskonapięciowych. Kategoria I, na którą to pytanie wskazuje, dotyczy obwodów narażonych na różne niekorzystne warunki, więc ta wartość 1,5 kV naprawdę działa jako solidna ochrona przed przepięciami, na przykład z powodu uderzeń piorunów. To kluczowe z punktu widzenia bezpieczeństwa i trwałości naszych instalacji. W praktyce, używając urządzeń o tej wytrzymałości w budynkach, zmniejszamy ryzyko uszkodzeń sprzętu, a to sprawia, że wszystko działa stabilniej. Nie bez powodu zgodność z normami jest istotna; wpływa na efektywność i żywotność naszych urządzeń oraz pozwala uniknąć niepotrzebnych kosztów napraw czy wymiany sprzętu.

Pytanie 4

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S193B10
B. S194B10
C. S192B16
D. S193B16
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 5

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Jednodrutowe
B. Sektorowe
C. Płaskie
D. Wielodrutowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 6

Osoba powinna kontrolować działanie stacjonarnych urządzeń różnicowoprądowych poprzez naciśnięcie przycisku kontrolnego

A. przeszkolona, co 6 miesięcy
B. mająca uprawnienia SEP, co 6 miesięcy
C. przeszkolona, co rok
D. posiadająca uprawnienia SEP, co rok
Odpowiedź, że stacjonarne urządzenia różnicowoprądowe powinny być sprawdzane przez osobę przeszkoloną co sześć miesięcy, jest zgodna z obowiązującymi normami i najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony przed skutkami porażenia prądem. Osoby przeszkolone mają odpowiednią wiedzę na temat działania tych urządzeń, potrafią ocenić ich stan techniczny oraz zidentyfikować ewentualne problemy. Przykładowo, w przypadku stacjonarnych urządzeń różnicowoprądowych, takich jak wyłączniki różnicowoprądowe, regularne testowanie przycisku kontrolnego pozwala na upewnienie się, że urządzenie działa prawidłowo i jest w stanie zareagować na zwarcia lub inne niebezpieczne sytuacje. Zgodnie z normami, takimi jak PN-EN 60947-2, zaleca się przeprowadzanie takich kontroli co najmniej dwa razy w roku, co potwierdza konieczność przeszkolenia personelu odpowiedzialnego za te działania.

Pytanie 7

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
B. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
Wybór innych odpowiedzi opiera się na mylnych założeniach dotyczących właściwości przewodu oraz jego zastosowania. W przypadku sznura mieszkaniowego pięciożyłowego w izolacji polietylenowej, zrozumienie oznaczeń jest kluczowe. Sznury mieszaniowe zazwyczaj mają zastosowanie w różnych aplikacjach niż przewody oponowe, których elastyczność i odporność na uszkodzenia mechaniczne są ich kluczowymi cechami. Izolacja polietylenowa jest z kolei mniej odporna na wysokie temperatury i substancje chemiczne, co czyni ją mniej odpowiednią do zastosowań, które wymagają wyższej ochrony. W odniesieniu do przewodu pięciożyłowego, nie jest on zgodny z oznaczeniem OMY, które odnosi się do przewodów trzyżyłowych. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej również nie pasuje do opisanego oznaczenia, gdyż przewody warsztatowe są przeznaczone do innych zastosowań, często związanych z przemysłem. Typowe błędy wynikają z nieprawidłowego rozumienia oznaczeń przewodów oraz ich właściwości. Kluczowe znaczenie ma zrozumienie, że wybór odpowiedniego przewodu powinien być oparty na jego zastosowaniu, a także na właściwych normach i standardach branżowych, takich jak PN-EN 50525, które precyzują, jakie przewody powinny być stosowane w określonych warunkach.

Pytanie 8

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. wyłącznie przewód neutralny
B. tylko przewody fazowe
C. przewody fazowe oraz ochronny
D. wszystkie przewody czynne
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 9

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn < UL
B. RA ∙ IΔn ≤ UL
C. RA ∙ IΔn > UL
D. RA ∙ IΔn ≥ UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 10

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,0% + 4 cyfry
B. ±1,5% + 3 cyfry
C. ±2,5% + 1 cyfra
D. ±2,0% + 2 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 11

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Twornika
B. Wzbudzenia
C. Komutacyjnego
D. Kompensacyjnego
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 12

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
B. Naciskając przycisk TEST na wyłączonym wyłączniku
C. Naciskając przycisk TEST na załączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Naciskanie przycisku TEST na wyłączniku wyłączonym jest niewłaściwe, ponieważ nie spowoduje ono żadnej reakcji ze strony urządzenia. Wyłącznik różnicowoprądowy działa na zasadzie monitorowania różnicy prądów wpływających i wypływających z obwodu. Jeśli wyłącznik jest wyłączony, nie ma aktywnego obwodu, w którym mogłoby dojść do wykrycia różnicy prądów. Takie podejście prowadzi do błędnych wniosków, że urządzenie jest sprawne, podczas gdy w rzeczywistości nie zostało poddane żadnemu testowi. Obserwacja reakcji wyłącznika na odłączenie przewodu ochronnego lub zwarcie przewodów czynnych to również nieprawidłowe metody sprawdzania. Te działania mogą prowadzić do niebezpiecznych sytuacji, takich jak uszkodzenie urządzenia czy nawet porażenie prądem. Użytkownicy często mylą te metody, myśląc, że wystarczy jedynie obserwacja, aby potwierdzić sprawność wyłącznika. Rzeczywistość jest taka, że wyłącznik RCD musi być testowany w warunkach jego normalnej pracy, co oznacza, że powinien być włączony, aby móc skutecznie zareagować na symulację wycieku prądu. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji w sytuacjach awaryjnych.

Pytanie 13

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Transformator słupowy z rozłącznikiem
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Zabezpieczenia nadprądowe poszczególnych obwodów
D. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
Jak wybierzesz złe odpowiedzi na to pytanie, to może być ciut mylące, bo pomyślisz, że wszystkie wymienione urządzenia są częścią przyłącza budowlanego, a tak nie jest. Wyłącznik różnicowoprądowy czy ograniczniki przepięć są ważne w instalacjach elektrycznych, ale nie są częścią samego przyłącza budynku. Ich rola to ochrona użytkowników i sprzętu w środku, a nie w punkcie, gdzie łączymy się z siecią. Wyłączniki różnicowoprądowe działają tak, że wykrywają prądy, które mogą być niebezpieczne, i wtedy odcinają zasilanie, co jest super ważne, ale nie dotyczy samego przyłącza. Z kolei transformator słupowy z rozłącznikiem to element sieci energetycznej, a nie konkretnego budynku. Może być częścią systemu dystrybucji energii, ale nie jest bezpośrednio związany z przyłączem budowlanym, które powinno być skupione na zabezpieczeniach i licznikach. Zabezpieczenia nadprądowe w obwodach są też istotne, ale ich miejsce jest wewnątrz budynku. Powszechnym błędem jest mylenie różnych poziomów instalacji elektrycznej i ich funkcji, co może prowadzić do błędów w projektowaniu i realnych zagrożeń dla bezpieczeństwa użytkowników.

Pytanie 14

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Regulator temperatury.
C. Lampkę sygnalizacyjną trójfazową.
D. Czujnik zaniku fazy.
Wybór przekaźnika czasowego, regulatora temperatury czy czujnika zaniku fazy jako elementu przedstawionego na ilustracji wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania tych urządzeń w rozdzielnicach elektrycznych. Przekaźnik czasowy służy do automatyzacji procesów, włączając i wyłączając obwody zgodnie z zaprogramowanym czasem, a nie do sygnalizacji obecności napięcia. Regulator temperatury jest urządzeniem służącym do monitorowania i kontrolowania temperatury, co jest całkowicie inną funkcją w kontekście rozdzielnic elektrycznych. Z kolei czujnik zaniku fazy jest przeznaczony do ochrony instalacji przed nieprawidłowym działaniem spowodowanym brakiem jednej z faz, ale również nie pełni funkcji sygnalizacji napięcia. Wybierając jedną z tych odpowiedzi, można mylnie łączyć różne funkcje urządzeń, co prowadzi do nieporozumień w zakresie ich zastosowania. Ważne jest, aby w kontekście instalacji elektrycznych rozumieć rolę każdego urządzenia oraz ich specyfikę, co pozwala na poprawne podejmowanie decyzji dotyczących ich instalacji i użytkowania. W praktyce, błędne zrozumienie ról tych elementów może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 15

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 5-10 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 20-30 krotności prądu znamionowego
D. 3-5 krotności prądu znamionowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 16

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. niemożność załączenia wyłącznika pod obciążeniem
B. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
C. prawidłowe działanie wyłącznika
D. brak możliwości zadziałania załączonego wyłącznika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomyłkowe podłączenie przewodu PE (ochronnego) zamiast N (neutralnego) na wejściu i wyjściu wyłącznika różnicowoprądowego rzeczywiście skutkuje niemożnością załączenia urządzenia pod obciążeniem. Wyłączniki różnicowoprądowe są zaprojektowane tak, aby wykrywać różnice prądów między przewodem fazowym a neutralnym. Jeśli przewód PE zostanie użyty zamiast N, to nie będzie możliwe prawidłowe pomiarowanie tych różnic, co uniemożliwi zadziałanie mechanizmu wyłączającego. Z punktu widzenia praktycznego, w takich przypadkach, użytkownik nie będzie mógł korzystać z instalacji, co podkreśla krytyczną rolę poprawnego podłączenia przewodów w systemach elektrycznych. W ramach dobrych praktyk, zawsze należy stosować oznaczenia przewodów zgodne z normami, aby zminimalizować ryzyko takich pomyłek. W Polsce stosuje się normy PN-IEC 60446 dotyczące oznaczania przewodów, które pomagają w poprawnym podłączeniu instalacji elektrycznej.

Pytanie 17

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik świecznikowy
B. Łącznik schodowy podwójny
C. Łącznik krzyżowy
D. Łącznik schodowy pojedynczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 18

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, przymiar kreskowy, rysik
B. Kątownik, ołówek traserski, sznurek traserski
C. Kątownik, młotek, punktak
D. Ołówek traserski, poziomnica, przymiar taśmowy
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 19

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
B. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Ołówek, poziomnica, miarka taśmowa, sznurek traserski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 20

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. zdejmowania powłoki z przewodu.
B. profilowania żył przewodów.
C. zaciskania końcówek oczkowych.
D. zaciskania końcówek tulejkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Profilowanie żył przewodów jest kluczowym procesem w pracach elektrycznych, który zapewnia właściwe przygotowanie przewodów do dalszej obróbki, takiej jak ich łączenie czy izolacja. Narzędzie przedstawione na ilustracji, mianowicie szczypce okrągłe, jest idealne do tego celu dzięki swojej stożkowej budowie, która umożliwia formowanie przewodów w różne kształty. Takie profilowanie pozwala na łatwe wprowadzenie żył do złączek, co zwiększa efektywność i bezpieczeństwo całej instalacji. Zgodnie z normami branżowymi, odpowiednie przygotowanie końców przewodów ma kluczowe znaczenie dla zapewnienia ich stabilności i minimalizacji ryzyka zwarć. W praktyce, profesjonalni elektrycy często korzystają z tego rodzaju narzędzi, aby dostosować przewody do specyficznych wymogów instalacji, co poprawia jakość wykonywanej pracy oraz wpływa na trwałość całej instalacji. Dobrą praktyką jest również przeszkolenie pracowników w zakresie używania takich narzędzi oraz regularne kontrolowanie ich stanu technicznego, aby uniknąć błędów w obróbce przewodów.

Pytanie 21

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 22

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 20 A, 16 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 23

Jakim narzędziem należy przeprowadzić demontaż oraz montaż połączeń kabli w puszce instalacyjnej rozgałęźnej z gwintowaną płytką?

A. Kluczem płaskim
B. Wkrętakiem
C. Nożem monterskim
D. Neonowym wskaźnikiem napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkrętaka jako narzędzia do demontażu i montażu połączeń przewodów w puszce instalacyjnej rozgałęźnej z płytką gwintowaną jest prawidłowy, ponieważ wkrętaki służą do pracy z różnymi typami śrub i wkrętów. W przypadku puszek instalacyjnych, często stosuje się śruby, które mocują przewody lub elementy w puszce. Wkrętak umożliwia precyzyjne i bezpieczne dokręcanie lub odkręcanie śrub, co jest kluczowe dla zapewnienia poprawności połączeń elektrycznych. Przykładem zastosowania wkrętaka może być instalacja gniazdka elektrycznego, gdzie wkrętak służy do montażu zacisków przewodów. Zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, ważne jest, aby wszystkie połączenia były odpowiednio zabezpieczone i mocno trzymane, co można osiągnąć za pomocą właściwego wkrętaka. Warto również zwrócić uwagę na wybór odpowiedniego wkrętaka - płaski lub krzyżakowy, w zależności od rodzaju użytych śrub. Dobrą praktyką jest także stosowanie odpowiednich narzędzi do momentu dokręcania, aby uniknąć uszkodzenia elementów instalacji.

Pytanie 24

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. III
B. I
C. 0
D. II

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 25

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Żarówki
B. Lampy ze rtęcią
C. Lampy fluorescencyjne
D. Lampy indukcyjne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 26

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225

A. Oba sprawne.
B. 1 - sprawny, 2 - niesprawny.
C. Oba niesprawne.
D. 1 - niesprawny, 2 - sprawny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 27

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Szynowe
B. Kabelkowe
C. Rdzeniowe
D. Uzbrojone

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 28

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. instalacji wewnętrznej
B. przyłącza napowietrznego
C. przyłącza kablowego
D. wewnętrznej linii zasilającej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 29

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B

A. Wyłączników nadprądowych.
B. Wyłączników różnicowoprądowych.
C. Transformatorów.
D. Styczników.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki nadprądowe to naprawdę ważne elementy w systemach elektrycznych, bo chronią nas przed przeciążeniami i zwarciami. Patrząc na parametry w tabeli, takie jak prąd znamionowy (In) czy szerokość 17,5 mm, to są one typowe dla takich urządzeń, które zakłada się na szynę TH 35. Ciekawostką jest, że wyłączniki z charakterystyką B są idealne do obwodów, gdzie mogą występować krótkotrwałe skoki prądu, co często zdarza się w instalacjach oświetleniowych czy gniazdkowych. Dzięki nim, jak prąd przekroczy ustalony poziom, to automatycznie odłączają zasilanie, co zapobiega uszkodzeniu sprzętu i zmniejsza ryzyko pożaru. Warto pamiętać, że zgodnie z normą PN-EN 60898, musi się je regularnie testować, żeby wszystko działało jak należy. Dlatego ważne jest, żeby dobrze dobierać i instalować te wyłączniki, bo mają ogromne znaczenie dla bezpieczeństwa i niezawodności naszych instalacji elektrycznych.

Pytanie 30

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. silnik znajdzie się w stanie jałowym.
B. wirnik silnika zostanie dogoniony.
C. silnik zostanie zasilony prądem przeciwnym.
D. wirnik silnika będzie w bezruchu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poślizg silnika indukcyjnego wyraża się jako różnica między prędkością wirnika a prędkością obrotową pola magnetycznego, wyrażona jako procent. Gdy wirnik jest zatrzymany, jego prędkość (ω_wirnika) wynosi 0, a pole magnetyczne wiruje z prędkością synchronizacyjną (ω_s). W takim przypadku poślizg jest równy 1 (100%), co oznacza maksymalne opóźnienie wirnika. W praktyce, taka sytuacja występuje w przypadku rozruchu silnika, gdy nie ma jeszcze momentu obrotowego, a silnik pracuje na pełnym poślizgu. Zrozumienie poślizgu w silniku indukcyjnym ma kluczowe znaczenie dla projektowania i eksploatacji systemów napędowych, zwłaszcza w aplikacjach wymagających precyzyjnego sterowania momentem obrotowym, takich jak w przypadku silników napędzających prasy czy taśmy transportowe. Wiedza ta pozwala na lepsze dostosowanie parametrów eksploatacyjnych silników oraz na zminimalizowanie strat energetycznych i optymalizację ich pracy w różnych warunkach obciążenia.

Pytanie 31

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
B. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
C. nałożyć warstwę cyny na końcówki przewodów
D. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca przyłączenia poszczególnych przewodów do właściwych zacisków gniazda jest poprawna, ponieważ jest to kluczowy krok w procesie instalacji elektrycznej. W instalacjach elektrycznych podtynkowych, szczególnie w sieci TN-S, ważne jest, aby przewody były podłączone do odpowiednich zacisków, co zapewnia zarówno bezpieczeństwo, jak i prawidłowe funkcjonowanie obwodu. Przyłączenie przewodów do właściwych zacisków gwarantuje, że neutralny przewód nie będzie pomylony z przewodem fazowym, co mogłoby prowadzić do zwarć lub uszkodzeń sprzętu. Dobór gniazda musi być zgodny z normami, takimi jak PN-EN 60309, które określają wymagania dotyczące gniazd wtykowych. Ponadto, podczas instalacji warto zwrócić uwagę na kolorystykę przewodów zgodnie z normami, co ułatwia identyfikację ich funkcji. W praktyce, prawidłowe podłączenie przewodów zwiększa bezpieczeństwo użytkowania instalacji i minimalizuje ryzyko awarii.

Pytanie 32

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w rozdzielnicach mieszkaniowych
C. na linii zasilającej budynek
D. w puszkach instalacyjnych gniazd odbiorczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na rozdzielnice mieszkaniowe jako miejsce instalacji ochronników przeciwprzepięciowych klasy C jest poprawna, ponieważ rozdzielnice te pełnią kluczową rolę w zarządzaniu i dystrybucji energii elektrycznej w budynku. Ochronniki klasy C są projektowane do ochrony przed przepięciami wynikającymi z różnorodnych zjawisk, takich jak wyładowania atmosferyczne czy zakłócenia w sieci. Montaż tych urządzeń w rozdzielnicach mieszkaniowych pozwala na skuteczną ochronę wszystkich obwodów, które z nich zasilają, co jest zgodne z normą PN-EN 61643-11 oraz wytycznymi zawartymi w dokumentach technicznych dotyczących instalacji elektrycznych. Przykładowo, w przypadku wyładowania atmosferycznego, przepięcia mogą przedostać się do instalacji, co może prowadzić do uszkodzenia sprzętu elektronicznego. Umiejscowienie ochronników w rozdzielnicach minimalizuje te ryzyka, zapewniając bezpieczeństwo i ciągłość działania urządzeń w gospodarstwie domowym.

Pytanie 33

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Niewłaściwe napięcie zasilania
B. Słabo dokręcone złącza wyłącznika
C. Zbyt niski prąd znamionowy wyłącznika
D. Zbyt wysoka moc zasilanego odbiornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Słabo dokręcone zaciski wyłącznika nadmiarowo-prądowego mogą prowadzić do nadmiernego nagrzewania się tego urządzenia z kilku powodów. Gdy zaciski są niedostatecznie dokręcone, opór elektryczny w miejscach połączeń wzrasta, co skutkuje generowaniem dodatkowego ciepła. Zjawisko to jest zgodne z prawem Joule'a, które mówi, że moc wydzielana w postaci ciepła jest proporcjonalna do kwadratu prądu przepływającego przez opór. W praktyce, niedostateczne dokręcenie zacisków może również prowadzić do niestabilności połączenia, co zwiększa ryzyko wystąpienia łuków elektrycznych, które mogą znacznie podnieść temperaturę wyłącznika. Aby temu zapobiec, zaleca się regularne kontrolowanie stanu zacisków oraz korzystanie z narzędzi pomiarowych, takich jak kamery termograficzne, w celu identyfikacji miejsc o podwyższonej temperaturze. Właściwe dokręcenie elementów montażowych powinno być zgodne z normami IEC 60947 oraz ogólnymi zasadami instalacji elektrycznych, co zapewnia bezpieczne i efektywne działanie wyłącznika nadmiarowo-prądowego.

Pytanie 34

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. izolowanie części czynnych
B. urządzenia II klasy ochronności
C. połączenia wyrównawcze
D. izolowanie miejsca pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 35

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω

A. Zwarcie międzyzwojowe w fazie W
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie V
D. Przerwa w uzwojeniu fazy V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w fazie V jest poprawną odpowiedzią, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego ujawnia asymetrię, która wskazuje na uszkodzenie. W prawidłowo działającym silniku rezystancje uzwojeń powinny być zbliżone do siebie. W przypadku, gdy rezystancje między zaciskami U-V i V-W wynoszą 15 Ω, a rezystancja W-U wynosi 20 Ω, wyraźnie widać, że różnice te mogą być efektem zwarcia międzyzwojowego. Zwarcia te prowadzą do zmiany charakterystyki prądowej uzwojenia, co skutkuje obniżeniem rezystancji w fazie, w której występuje uszkodzenie. W praktyce, takie uszkodzenia mogą być niebezpieczne, prowadząc do przegrzania silnika i jego uszkodzenia. W związku z tym, regularne pomiary rezystancji uzwojeń są istotne dla utrzymania sprawności sprzętu. Zgodnie z normami branżowymi, takie kontrole powinny być częścią rutynowego przeglądu konserwacyjnego, co pozwala na wczesne wykrycie problemów i ich eliminację.

Pytanie 36

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy instalacyjny nadprądowy
B. Dwubiegunowy przepięciowy
C. Dwubiegunowy podnapięciowy
D. Dwubiegunowy różnicowoprądowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 37

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Przymiar taśmowy, poziomnica, ołówek traserski
B. Rysik, kątownik, punktak, młotek
C. Sznurek traserski, młotek, punktak
D. Przymiar kreskowy, ołówek traserski, rysik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to przymiar taśmowy, poziomnica oraz ołówek traserski. Te narzędzia są kluczowe w procesie trasowania, ponieważ zapewniają precyzję oraz dokładność wymagane przy montażu rozdzielnicy podtynkowej. Przymiar taśmowy pozwala na dokładne mierzenie odległości i wyznaczanie miejsca, gdzie rozdzielnica powinna być umiejscowiona. Poziomnica jest niezbędna do sprawdzenia, czy zamontowana rozdzielnica jest w idealnej pozycji, co ma kluczowe znaczenie dla dalszych prac instalacyjnych. Ołówek traserski umożliwia zaznaczenie punktów na ścianie, co ułatwia przeniesienie wymiarów na materiał budowlany. Standardy branżowe podkreślają znaczenie precyzyjnego pomiaru w instalacjach elektrycznych, co bezpośrednio przekłada się na bezpieczeństwo oraz funkcjonalność całego systemu. Użycie tych narzędzi w odpowiednich technikach trasowania, takich jak wyznaczanie pionów i poziomów, zapewnia, że instalacja będzie zgodna z normami budowlanymi i elektrycznymi, co jest kluczowe dla zachowania bezpieczeństwa użytkowania.

Pytanie 38

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Płaskim.
B. Nasadowym.
C. Oczkowym.
D. Imbusowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 39

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik obwodu zwarcia
B. miernik indukcyjny uziemień
C. megaomomierz
D. omomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 40

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. przyjęcia do eksploatacji
B. pomiarów napięcia oraz rezystancji izolacji
C. oględzin
D. przeprowadzania konserwacji i napraw

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyjęcie do eksploatacji instalacji elektrycznej to proces, który następuje po zakończeniu wszystkich działań związanych z jej budową oraz po przeprowadzeniu wymaganych testów i pomiarów. Proces ten nie jest częścią regularnych przeglądów instalacji elektrycznej, które koncentrują się głównie na ocenie stanu technicznego, wykonaniu pomiarów, takich jak napięcia oraz rezystancje izolacji, a także na przeprowadzaniu oględzin wizualnych oraz ocenie bezpieczeństwa użytkowania instalacji. Przyjęcie do eksploatacji obejmuje natomiast sprawdzenie, czy instalacja została wykonana zgodnie z projektem oraz obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce oznacza to, że przed oddaniem instalacji do użytku, wszystkie jej elementy muszą być starannie skontrolowane, a wyniki pomiarów muszą spełniać określone normy, co przekłada się na bezpieczeństwo użytkowników oraz standardy jakości. Warto zauważyć, że odpowiednie dokumenty potwierdzające przyjęcie do eksploatacji są niezbędne dla przyszłych przeglądów oraz konserwacji.