Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 czerwca 2025 14:54
  • Data zakończenia: 9 czerwca 2025 14:55

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. zmniejszenia reaktancji uzwojeń silnika
B. obniżenia wartości napięcia zasilania
C. spadku obrotów silnika
D. wzrostu obrotów silnika
W odpowiedziach, które nie są zgodne z właściwym rozumieniem działania silników prądu przemiennego, pojawiają się merytoryczne nieścisłości. Spadek reaktancji uzwojeń silnika nie jest bezpośrednio związany z wzrostem częstotliwości napięcia zasilania. Reaktancja uzwojeń silnika, która wynika z indukcyjności, może zmieniać się w zależności od konstrukcji silnika, ale nie jest to czynnik decydujący o prędkości obrotowej. Ponadto, spadek obrotów silnika jest sprzeczny z zasadą działania falowników, które zaprojektowane są do zwiększania obrotów w odpowiedzi na wzrost częstotliwości. Silnik zasilany napięciem o niższej częstotliwości rzeczywiście zwolni, co może być mylnie zrozumiane jako normalne zachowanie. Spadek wartości napięcia zasilania również nie skutkuje wzrostem obrotów, ponieważ silnik wymaga odpowiedniego napięcia do osiągnięcia wymaganej mocy i wydajności. W praktyce, gdy napięcie spada, silnik może działać z mniejszą efektywnością, a w skrajnych przypadkach może dojść do jego zastoju. Zrozumienie tych zasad jest kluczowe dla prawidłowego projektowania i eksploatacji systemów napędowych, a także dla unikania typowych błędów myślowych prowadzących do nieefektywnego działania układów zasilania.

Pytanie 2

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić membranę
B. zmierzyć rezystancję cewki
C. wymienić uszczelkę
D. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
Zwiększenie napięcia zasilania i podawanie go na cewkę elektrozaworu jest podejściem, które może prowadzić do poważnych problemów. Przede wszystkim, jeżeli elektrozawór nie otwiera się przy podanym napięciu znamionowym, może to sugerować, że cewka jest uszkodzona lub występuje inny problem, a niekoniecznie zbyt niskie napięcie. Podawanie wyższego napięcia może spowodować przegrzanie cewki i jej trwałe uszkodzenie, co jest niezgodne z zasadami bezpiecznej eksploatacji. Kolejnym błędem jest zakładanie, że membrana lub inne elementy zaworu są odpowiedzialne za jego niesprawność bez wcześniejszego zbadania stanu cewki. Takie podejście może prowadzić do niepotrzebnych kosztów i przedłużających się czasów napraw. Należy pamiętać, że elektrozawory powinny być diagnozowane w sposób systematyczny i zgodny z procedurami ustalonymi przez producentów oraz branżowe standardy, aby zminimalizować ryzyko błędnych decyzji naprawczych. Właściwą praktyką jest najpierw sprawdzenie wszystkich elementów, zanim podejmie się decyzje o ich wymianie.

Pytanie 3

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. galwanometr.
B. prądnica tachometryczna.
C. tensometr.
D. resolver.
Tensometr to urządzenie służące do pomiaru odkształceń w materiałach, a nie prędkości obrotowej. Jego działanie opiera się na efekcie piezoelektrycznym lub zmiany oporu elektrycznego w zależności od naprężenia. Użycie tensometru w kontekście pomiaru prędkości obrotowej jest nieadekwatne, ponieważ ten typ sensora nie ma zdolności do bezpośredniego monitorowania ruchu obrotowego. Galwanometr, z kolei, jest przyrządem elektromechanicznym służącym do pomiaru prądu elektrycznego, a jego zastosowanie w pomiarze prędkości obrotowej jest ograniczone i nieefektywne. Galwanometry są użyteczne w aplikacjach wymagających pomiaru małych prądów, ale nie mogą dostarczać informacji o obrotach wirnika. Resolver, będący urządzeniem do pomiaru kątowego, także nie jest idealnym rozwiązaniem do pomiaru prędkości obrotowej, ponieważ jego głównym zadaniem jest określenie położenia kątowego, a nie bezpośredni pomiar prędkości. Często pojawiające się błędy w myśleniu polegają na myleniu zastosowań tych urządzeń, co prowadzi do niewłaściwych wyborów w kontekście pomiarów i automatyzacji. Zrozumienie specyfiki i przeznaczenia poszczególnych urządzeń pomiarowych jest kluczowe dla efektywnego projektowania układów automatyki i systemów kontrolnych.

Pytanie 4

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 2 000 mm2
C. 1 500 mm2
D. 3 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 5

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. wysyłanie impulsów sterujących w błędnej kolejności
B. nadmierne obciążenie silnika
C. zbyt wysokie napięcie zasilające
D. brak modyfikacji częstotliwości impulsów z kontrolera
Silnik krokowy, aby poprawnie zmieniać prędkość obrotową, wymaga odpowiedniego sterowania impulsami, które muszą być podawane z określoną częstotliwością. Gdy częstotliwość impulsów ze sterownika pozostaje niezmieniona, silnik nie jest w stanie dostosować swojej prędkości obrotowej do pożądanych wartości. W praktyce oznacza to, że jeśli na przykład wymagamy od silnika przyspieszenia lub zwolnienia, a częstotliwość impulsów nie zostaje zwiększona ani zmniejszona, silnik pozostaje w tej samej prędkości obrotowej. Dobrym przykładem zastosowania tej zasady jest w systemach CNC, gdzie zmiana prędkości obrotowej silnika krokowego jest kluczowa dla precyzyjnego wykonywania operacji obróbczych. Zgodnie z dobrymi praktykami w projektowaniu systemów sterowania, należy zapewnić odpowiednie algorytmy regulacji, które będą automatycznie dostosowywać częstotliwość impulsów na podstawie wymagań aplikacji, co gwarantuje optymalną pracę silnika i jego efektywność.

Pytanie 6

Sprężarka typu śrubowego jest sprężarką

A. turbinową
B. wyporową
C. przepływową
D. rotacyjną
Sprężarki turbinowe nie są tym samym, co sprężarki śrubowe, ponieważ opierają się na zupełnie innej zasadzie działania. Turbiny sprężają gaz poprzez jego przyspieszenie w wirnikach, co prowadzi do wzrostu ciśnienia. Ta metoda jest bardziej charakterystyczna dla sprężarek używanych w silnikach lotniczych lub w systemach generacji energii. Z kolei sprężarki wyporowe działają na zasadzie zmiany objętości, gdzie tłok porusza się w cylindrze, sprężając gaz. To rozwiązanie, chociaż powszechnie stosowane w mniejszych urządzeniach, ma swoje ograniczenia w kontekście efektywności przy dużych przepływach. Ostatnią z wymienionych opcji, sprężarki przepływowe, również różnią się od sprężarek rotacyjnych, gdyż ich konstrukcja opiera się na ciągłym przepływie gazu przez układ, co czyni je bardziej odpowiednimi dla specyficznych zastosowań przemysłowych, a nie uniwersalnych. Mylenie tych różnych typów sprężarek wynika często z niewłaściwego zrozumienia ich mechanizmów działania, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każdy typ sprężarki ma swoje unikalne cechy, zalety i ograniczenia, które determinują ich zastosowanie w praktyce. Właściwy dobór sprężarki powinien być uzależniony od specyficznych wymagań procesu oraz warunków operacyjnych.

Pytanie 7

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Regulatora
B. Silnika
C. Chwytaka
D. Sondy
Chwytak jest kluczowym elementem w systemach manipulacyjnych, odpowiedzialnym za wykonywanie operacji manipulacyjnych. Jego zadaniem jest chwytanie, przenoszenie i wydawanie obiektów w zadanych lokalizacjach, co jest fundamentalne w automatyzacji procesów produkcyjnych i logistycznych. Chwytaki mogą mieć różne formy, takie jak chwytaki pneumatyczne, elektryczne czy hydrauliczne, co pozwala na dostosowanie ich do specyfiki manipulowanych obiektów. Przykładowo, w przemyśle motoryzacyjnym chwytaki są wykorzystywane do montażu komponentów, gdzie precyzyjne i szybkie operacje są kluczowe dla efektywności produkcji. W praktyce, dobór odpowiedniego chwytaka wymaga analizy właściwości manipulowanych przedmiotów, takich jak ich waga, kształt i materiał, co jest zgodne z dobrą praktyką projektowania systemów automatyzacji. Standardy, takie jak ISO 9283, dotyczące oceny wydajności chwytaków, są również istotne, zapewniając ich odpowiednią funkcjonalność w zastosowaniach industrialnych.

Pytanie 8

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Płaskiego
C. Nasadowego
D. Imbusowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 9

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
B. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
C. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
D. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
Zastosowanie niepoprawnych podejść do demontażu urządzeń skomplikowanych może prowadzić do poważnych problemów zarówno w zakresie bezpieczeństwa, jak i efektywności operacji. Ustalanie położenia poszczególnych zespołów bez ich demontażu w całości może skutkować nieprawidłowym zrozumieniem struktury urządzenia, co w konsekwencji prowadzi do trudności w dalszym procesie demontażu. Ignorowanie przynależności części do konkretnych zespołów oraz demontaż wszystkich elementów bez zachowania kolejności jest nieefektywne i może prowadzić do uszkodzeń. Takie podejście jest wbrew standardom branżowym, które kładą nacisk na systematyczność i precyzję w rozmontowywaniu. W przypadku złożonych urządzeń, takich jak maszyny CNC, każdy zespół może mieć różne wymagania dotyczące demontażu, które muszą być ściśle przestrzegane. Wiele osób popełnia błąd myślowy, zakładając, że demontaż można przeprowadzić w dowolnej kolejności, co często prowadzi do konieczności ponownego montażu lub wymiany uszkodzonych części. Dlatego kluczowe jest, by proces demontażu był dobrze przemyślany i zaplanowany, aby uniknąć potencjalnych komplikacji oraz zwiększyć bezpieczeństwo pracy.

Pytanie 10

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. kask ochronny
B. buty ochronne
C. okulary ochronne
D. maskę przeciwpyłową
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 11

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. halonowej
B. śniegowej
C. pianowej
D. proszkowej
Użycie gaśnic halonowych, proszkowych czy śniegowych do gaszenia pożarów urządzeń elektrycznych pod napięciem jest niewłaściwe z kilku powodów. Gaśnice halonowe, choć skuteczne w gaszeniu pożarów, nie są już produkowane z uwagi na ich negatywny wpływ na warstwę ozonową. Ponadto, w przypadku halonu, nie ma pewności co do pełnego usunięcia zagrożenia elektrycznego, co może prowadzić do groźnych sytuacji. Gaśnice proszkowe, mimo że mogą gasić pożary elektryczne, pozostawiają po sobie resztki chemiczne, które mogą być szkodliwe dla delikatnych urządzeń elektronicznych i mogą prowadzić do ich uszkodzenia. Dodatkowo, proszek jest materiałem, który, w przypadku niewłaściwego użycia, może prowadzić do rozprzestrzenienia ognia lub zwiększenia ryzyka porażeń prądem. Użycie gaśnic śniegowych, które wykorzystują dwutlenek węgla, również niesie ze sobą ryzyko, ponieważ CO2 nie ma żadnych właściwości izolacyjnych i może nie być wystarczające w sytuacjach z wyższym napięciem. Powszechnym błędem jest mylenie skuteczności różnych typów gaśnic w kontekście ich zastosowania w pożarach elektrycznych. Wiedza na temat odpowiedniego typu gaśnicy ma kluczowe znaczenie dla zapewnienia bezpieczeństwa, a niewłaściwy wybór może prowadzić do poważnych konsekwencji.

Pytanie 12

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 4 stopnie swobody
B. 5 stopni swobody
C. 3 stopnie swobody
D. 6 stopni swobody
Odpowiedzi, które mówią o mniejszych stopniach swobody, często wynikają z niepełnego zrozumienia, jak działają manipulatory w przestrzeni. Trzy czy cztery stopnie swobody mogą się sprawdzić w prostszych zadaniach, ale w bardziej skomplikowanych sytuacjach mogą nie dać rady. Na przykład manipulator z trzema stopniami swobody mógłby tylko ruszać się w trzech osiach, a to za mało, jeśli trzeba wykonywać trudniejsze operacje, które wymagają jednoczesnego ruchu i obrotu. Cztery stopnie swobody mogą sprawiać wrażenie, że robot jest bardziej zaawansowany, ale tak naprawdę ograniczają go do jednego, dość prostego ruchu. Ludzie często myślą, że mniej stopni swobody oznacza prostszą konstrukcję, ale w praktyce to może ograniczać roboty w ich działaniach. Jeśli chodzi o nowoczesną automatyzację, to pięć stopni swobody to minimum, by roboty mogły funkcjonować w dynamicznych warunkach. Rozumienie, jaką liczbę stopni swobody wybrać przy projektowaniu, jest naprawdę kluczowe, bo wpływa na efektywność i wszechstronność w automatyzacji.

Pytanie 13

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,6 V
B. 0 V
C. 1,4 V
D. 0,3 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 14

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. NOR
B. OR
C. AND
D. NAND
Wybór odpowiedzi innej niż AND może wynikać z nieporozumienia dotyczącego różnych funkcji logicznych i ich zastosowań. Funkcja NAND, oznaczająca negację AND, daje na wyjściu wartość fałsz (0) tylko wtedy, gdy wszystkie wejścia mają wartość prawda (1). Użytkownicy mogą mylić te dwie funkcje, szczególnie gdy nie są świadomi różnicy między negacją a koniunkcją. Funkcja OR działa w odwrotny sposób i daje wartość prawda (1), jeśli przynajmniej jedno z wejść jest prawdą. Często można spotkać się z sytuacjami, gdzie osoby przypisują funkcję OR do bloków, które są w rzeczywistości zaprojektowane do działania jako AND, co prowadzi do błędnych wniosków w projektowaniu obwodów. Z kolei funkcja NOR jest negacją OR i również nie jest zgodna z przedstawionym rysunkiem, ponieważ wymaga, aby wszystkie wejścia były fałszem (0), aby wyjście było prawdą (1). Typowym błędem w myśleniu jest zakładanie, że wszystkie bloki muszą reprezentować funkcje, które są intuicyjnie zrozumiałe, podczas gdy w rzeczywistości mogą one być bardziej złożone. W kontekście projektowania układów logicznych, zrozumienie różnic między tymi funkcjami jest kluczowe do osiągnięcia poprawnych wyników i niezawodności działania systemów elektronicznych.

Pytanie 15

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnotorezystancji (Gaussa)
C. magnetooptyczne (Faradaya)
D. piezoelektryczne
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 16

W jakiej maksymalnej odległości od czoła czujnika powinien znajdować się przedmiot, aby został wykryty przez czujnik o parametrach podanych w tabeli?

Napięcie zasilania: 12 ÷ 24V DC
Zasięg: 8 mm
Typ wyjścia: NPN N.O., NPN N.C., PNP N.O., PNP N.C.
Rodzaj czoła: odkryte
Obudowa czujnika: M18
Przyłącze: przewód 2 m
Maksymalny prąd pracy: 100 mA
Czas odpowiedzi układu: max. 2 ms
Materiał korpusu: metal
Stopień ochrony: IP66
Temperatura pracy: -20°C ÷ +60°C

A. 12mm
B. 2mm
C. 66mm
D. 8mm
Wybór odpowiedzi innej niż 8 mm może prowadzić do poważnych nieporozumień w zakresie działania czujników. Odpowiedzi takie jak 12 mm, 2 mm czy 66 mm nie są zgodne z rzeczywistymi parametrami czujnika. Przy wyborze 12 mm można sądzić, że czujnik wykrywa obiekty z większej odległości, co jest błędem, ponieważ jego zasięg to 8 mm. W sytuacji, gdy obiekt znajduje się dalej niż 8 mm, czujnik nie będzie w stanie go wykryć, co może skutkować awarią systemów, które polegają na dokładnym monitorowaniu otoczenia. Odpowiedź 2 mm z kolei sugeruje, że czujnik może skutecznie wykrywać obiekty w bardzo bliskiej odległości, co nie jest błędne, ale nie wykorzystuje w pełni potencjału detekcyjnego czujnika. Zbyt bliskie podejście do czujnika może prowadzić do nieprawidłowego działania, na przykład uszkodzenia czujnika lub obiektu, który ma być wykrywany. Ponadto, odpowiedź 66 mm wskazuje na całkowitą ignorancję specyfikacji technicznych czujników, które są projektowane z określonym zasięgiem detekcji. W praktyce, brak znajomości tych parametrów może prowadzić do nieefektywnego zaprojektowania systemu, co w przypadku aplikacji przemysłowych może skutkować znacznymi stratami finansowymi. Zrozumienie specyfiki detekcji czujników i ich parametrów jest kluczowe dla inżynierów i techników, aby zapewnić prawidłowe działanie systemów automatyzacji.

Pytanie 17

Podczas działania silnika prądu stałego zauważono intensywne iskrzenie na komutatorze spowodowane nagromadzeniem pyłu ze szczotek. Aby naprawić tę awarię, należy wyłączyć silnik, a następnie

A. umyć komutator wodą
B. przetrzeć komutator olejem
C. wykonać szlifowanie komutatora
D. posmarować olejem szczotki
Przetrwanie komutatora olejem, umycie go wodą lub smarowanie szczotek olejem to podejścia, które nie adresują podstawowego problemu, jakim jest iskrzenie spowodowane zanieczyszczeniami. Przetarcie komutatora olejem może chwilowo zmniejszyć tarcie, jednak nie eliminuje zanieczyszczeń, a wręcz może prowadzić do ich utrwalenia, co pogarsza sytuację. Woda, choć skutecznie usunie brud, nie jest odpowiednia do czyszczenia komutatorów silników elektrycznych, ponieważ może spowodować korozję oraz uszkodzić izolację. Dodatkowo, wprowadzenie wilgoci do wnętrza silnika może prowadzić do poważnych uszkodzeń. Smarowanie szczotek olejem również nie jest właściwym rozwiązaniem, ponieważ olej może osadzać się na komutatorze, co z kolei zwiększa ryzyko iskrzenia. To podejście pomija fundamentalny problem, jakim jest niewłaściwe działanie komutatora. Istotne jest zrozumienie, że każdy z wymienionych sposobów nie eliminuje problemu z iskrzeniem, a jedynie maskuje objawy, co może prowadzić do dalszego zużycia i uszkodzeń. Kluczowe w konserwacji silników prądu stałego jest regularne sprawdzanie stanu komutatora oraz jego szlifowanie, co jest uznawane za najlepszą praktykę w branży.

Pytanie 18

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz

A. napięcie zasilania 24 V DC i prąd pracy 30 mA
B. napięcie zasilania 15 V DC i prąd pracy 0,02 A
C. napięcie zasilania 24 V DC i prąd pracy 0,02 A
D. napięcie zasilania 20 V AC i prąd pracy 0,02 A
Wybór innych wartości napięcia zasilania i prądu pracy wskazuje na brak zrozumienia specyfiki pracy czujników indukcyjnych oraz ich parametrów technicznych. Na przykład, napięcie zasilania 15 V DC jest poniżej standardowego zasilania stosowanego w nowoczesnych systemach automatyki, co może prowadzić do niewłaściwego działania czujnika lub jego całkowitego braku reakcji. Prąd pracy 0,02 A, będący równy 20 mA, również może nie być dostateczny dla niektórych zastosowań, w których wymagane są wyższe wartości prądów, co może skutkować niestabilnością działania urządzenia. W przypadku napięcia 20 V AC, pojawia się dodatkowy problem związany z typem prądu – czujniki indukcyjne zazwyczaj są projektowane do pracy z prądem stałym (DC), a niewłaściwe zasilanie prądem zmiennym (AC) może skutkować ich uszkodzeniem. Odpowiedź z napięciem zasilania 24 V DC i prądem pracy 30 mA jest zgodna z normami IEC oraz najlepszymi praktykami stosowanymi w branży, które zapewniają optymalne warunki pracy czujników oraz ich długotrwałą żywotność. Dodatkowo, stosowanie nieodpowiednich wartości może prowadzić do nieprawidłowych odczytów i błędnych decyzji w automatyzacji procesów, co podkreśla konieczność przemyślanej konfiguracji zasilania w systemach automatyki.

Pytanie 19

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Potrzeba zmian w parametrach programu
B. Brak baterii podtrzymującej zasilanie
C. Tryb funkcjonowania CPU
D. Tryb wstrzymania CPU
Zaświecenie się czerwonej diody oznaczonej skrótem BATF na panelu sygnalizacyjnym sterownika PLC informuje użytkownika o braku baterii podtrzymującej zasilanie. Baterie te są kluczowe dla prawidłowego działania urządzeń, które przechowują dane w pamięci nieulotnej, takich jak godzina systemowa czy ustawienia konfiguracyjne. Gdy bateria jest wyczerpana lub nieobecna, sterownik PLC może stracić wprowadzone dane po wyłączeniu zasilania, co może prowadzić do nieprawidłowego działania systemu oraz utraty istotnych informacji. W praktyce, w przypadku zaświecenia się diody BATF, zaleca się jak najszybszą wymianę baterii, aby uniknąć potencjalnych awarii. Ponadto, zgodnie z normami branżowymi, regularne przeglądy stanu baterii oraz systematyczne konserwacje są kluczowe dla zapewnienia ciągłości pracy urządzeń oraz ich niezawodności. Utrzymanie funkcji podtrzymywania zasilania nie tylko zabezpiecza dane, ale również zwiększa efektywność operacyjną całego systemu.

Pytanie 20

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. czujnik zegarowy
B. kątomierz
C. przymiar liniowy
D. poziomnicę
Użycie kątomierza, czujnika zegarowego lub przymiaru liniowego do montażu siłowników bramy nie jest właściwe z kilku powodów. Kątomierz, mimo że służy do pomiaru kątów, nie jest narzędziem przeznaczonym do pomiarów poziomu, co sprawia, że nie można nim dokładnie ustawić siłowników w pozycji poziomej. Montaż siłowników w odpowiednim ustawieniu poziomym jest kluczowy dla ich działania, a użycie kątomierza może prowadzić do błędnych interpretacji kątów, co w efekcie zagraża stabilności całej konstrukcji bramy. Czujnik zegarowy, który zazwyczaj służy do precyzyjnego pomiaru odchyleń w urządzeniach mechanicznych, również nie jest odpowiednim narzędziem do poziomowania. W kontekście montażu siłowników, kluczowe jest, aby zastosować narzędzie, które bezpośrednio mierzy poziom, a czujnik zegarowy może jedynie wskazać nieprawidłowości w ruchu, ale nie dostarczy informacji o poziomej orientacji. Przymiar liniowy, choć przydatny do pomiarów długości, nie ma zastosowania w kontekście pomiaru poziomu. Użytkownicy często mylą funkcje tych narzędzi, nie zdając sobie sprawy, że stosowanie niewłaściwych przyrządów pomiarowych może prowadzić do uszkodzenia całego systemu, a także zwiększa ryzyko nieprawidłowego działania bramy, co może stwarzać zagrożenie dla użytkowników. Właściwe narzędzie do poziomowania jest więc kluczowe dla zachowania bezpieczeństwa i funkcjonalności instalacji.

Pytanie 21

Napięcie składa się z dwóch elementów: zmiennej sinusoidalnej oraz stałej. Aby zmierzyć stałą część tego napięcia, można użyć oscyloskopu w trybie

A. DC
B. ADD
C. AC
D. GND
Wybór jednego z pozostałych trybów oscyloskopu, takich jak AC, GND czy ADD, prowadzi do błędnej interpretacji składowych napięcia. W trybie AC oscyloskop filtruje składową stałą, co oznacza, że użytkownik nie zobaczy wartości stałej napięcia, a jedynie zmienną część sygnału. To uniemożliwia dokładne pomiary, gdyż w wielu aplikacjach inżynieryjnych istotna jest analiza zarówno składowej stałej, jak i zmiennej. Z kolei tryb GND wyłącza sygnał całkowicie, co również nie pozwala na obserwację jakichkolwiek składowych napięcia. Wybór trybu ADD może wprowadzać w błąd, ponieważ nie służy on do wydobywania składowych stałych, a do dodawania dwóch sygnałów. Typowe błędy myślowe obejmują utożsamianie pomiaru sygnałów AC z pomiarem całkowitym napięcia, co może prowadzić do fałszywych wniosków na temat działania układów. Właściwe rozumienie trybu DC na oscyloskopie jest kluczowe dla efektywnej diagnostyki i analizy systemów elektronicznych, a także dla przestrzegania standardów branżowych, które podkreślają znaczenie całościowego podejścia do pomiarów.

Pytanie 22

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Regularna wymiana rozdzielacza
B. Codzienna wymiana oleju
C. Miesięczny demontaż oraz montaż pomp
D. Regularna wymiana filtrów
Pojęcie okresowej wymiany rozdzielacza, która wydaje się być ważnym działaniem, jest mylnie zinterpretowane jako kluczowy element utrzymania sprawności urządzeń hydraulicznych. Rozdzielacze w systemach hydraulicznych pełnią funkcję kierowania przepływu oleju do odpowiednich obwodów i ich wymiana powinna być ograniczona do sytuacji, gdy występują wyraźne oznaki uszkodzenia, takie jak nieszczelności czy zablokowania. Częsta wymiana rozdzielacza może prowadzić do niepotrzebnych kosztów oraz ryzyka wprowadzenia dodatkowych zanieczyszczeń do systemu. Dodatkowo, nie jest konieczne comiesięczne demontaż i montaż pomp, co jest czasochłonne i może w efekcie spowodować uszkodzenia elementów układu. Prawidłowe działania konserwacyjne powinny być oparte na analizie stanu technicznego urządzania, a nie na sztywnych harmonogramach. Kolejnym błędnym podejściem jest codzienna wymiana oleju, co jest nie tylko niepraktyczne, ale również kosztowne, a w rzeczywistości wymiana oleju powinna być przeprowadzana zgodnie z zaleceniami producentów, które zazwyczaj sugerują długie interwały między wymianami. Właściwe zrozumienie, które komponenty wymagają regularnej konserwacji i w jakim zakresie, jest kluczowe dla efektywności systemu hydraulicznego oraz optymalizacji kosztów jego eksploatacji.

Pytanie 23

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 7 300 obr/min
B. 7,3 obr/min
C. 730 obr/min
D. 73 obr/min
Odpowiedź 7 300 obr/min jest poprawna, ponieważ prędkość obrotowa prądnicy tachometrycznej bezpośrednio wpływa na generowane napięcie wyjściowe. Prądnice te pracują na zasadzie indukcji elektromagnetycznej, gdzie napięcie jest proporcjonalne do prędkości obrotowej. Przy stałej prędkości obrotowej 1000 obr/min i napięciu wyjściowym 7,3 V, można obliczyć, że przy prędkości 7 300 obr/min napięcie wzrośnie do wartości 73 V, co wykracza poza standardowe parametry pracy prądnicy. Tego typu prądnice są powszechnie wykorzystywane w systemach automatyki i pomiarach, gdzie precyzyjna kontrola prędkości obrotowej ma kluczowe znaczenie. Przykładowo, w aplikacjach takich jak regulacja prędkości silników czy systemy pomiarowe, prądnice tachometryczne pozwalają na efektywne monitorowanie i zarządzanie parametrami pracy urządzeń. Zrozumienie zasad działania tych prądnic jest istotne dla inżynierów i techników pracujących w branży automatyki i elektronicznej.

Pytanie 24

Mocno podgrzana ciecz hydrauliczna wytwarza podczas awarii w słabo wentylowanym pomieszczeniu tzw. "mgłę olejową", która może prowadzić do różnych schorzeń

A. układu sercowego
B. dermatologicznych
C. układu słuchu
D. układu pokarmowego
Zrozumienie wpływu rozgrzanej cieczy hydraulicznej na zdrowie człowieka wymaga znajomości mechanizmów działania substancji chemicznych oraz ich skutków zdrowotnych. Odpowiedzi dotyczące narządu słuchu i serca są mylące, ponieważ mgła olejowa głównie działa na skórę, a nie na te narządy. Problemy ze słuchem mogą być wynikiem hałasu w środowisku pracy, nie zaś kontaktu z mgłą olejową. Mylne jest również myślenie, że mgła olejowa wpływa na serce; skutki zdrowotne związane z substancjami chemicznymi, takimi jak oleje hydrauliczne, nie są bezpośrednio związane z układem sercowo-naczyniowym. Do najczęstszych dolegliwości związanych z narażeniem na oleje i smary należą problemy dermatologiczne, związane z podrażnieniem skóry. Problemy z przewodem pokarmowym w tym kontekście także są nieprawidłowe, ponieważ substancje te nie są wprowadzane do organizmu doustnie, a ich wpływ na układ pokarmowy nie jest bezpośredni. Odpowiedź wskazująca na problemy dermatologiczne uwzględnia natomiast rzeczywiste ryzyko zdrowotne, które może wystąpić w wyniku kontaktu ze szkodliwymi substancjami w formie mgły olejowej.

Pytanie 25

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Obtoczyć oraz przeszlifować komutator
B. Ustawić szczotki w strefie neutralnej
C. Zamienić łożyska
D. Znormalizować nacisk szczotek
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 26

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 27

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22

A. niesprawny NC.
B. sprawny NC.
C. niesprawny NO.
D. sprawny NO.
Wygląda na to, że odpowiedzi dotyczące przycisku NO wynikają z nieco mylnego zrozumienia, jak działają przyciski. Zestyk NO (Normalnie Otwarty) powinien być otwarty w spoczynku i zamykać się dopiero po naciśnięciu przycisku. Jeśli jednak rezystancja dla przycisku S1 to 0,22 Ω przed naciśnięciem, to znaczy, że obwód jest zamknięty. Więc to, że przypisujesz mu status sprawnego NO, to spory błąd. Mówiąc o niesprawnym zestyk NC, sugerujesz, że przycisk powinien działać nieprawidłowo, co nie jest prawdą, bo dane pokazują, że obwód działa dobrze w normalnych warunkach. Typowa pomyłka to właśnie mylenie zestyków NO i NC, co może prowadzić do złych decyzji, gdy sprawdzamy sprzęt. Wiedza o różnicach między tymi rodzajami przycisków jest kluczowa w automatyce, bo niepoprawne wnioski mogą prowadzić do niebezpiecznych sytuacji. Umiejętność prawidłowego odczytywania wyników pomiarów rezystancji jest super ważna, bo pozwala ocenić stan techniczny tych przycisków, co powinno być podstawą do ich dalszego używania.

Pytanie 28

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Zwiększa prąd
C. Wytwarza sygnały sinusoidalne
D. Izoluje galwanicznie sygnały
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 29

Ile oleju, zgodnie z przedstawionymi w tabeli wskazaniami producenta, należy przygotować do całkowitej wymiany zużytego oleju w pompie IF1 400?

Typ pompyIlość oleju w silniku
l
Ilość oleju w komorze olejowej
l
Całkowita ilość
oleju w pompie
l
IF1 100; 150; 2000,40-0,40
IF1 50; 75; 100; 150; 2000,40-0,40
IF2 3000,900,121,02
IF1 300; 4001,700,121,82
IF2 4001,700,121,82
IF1 5501,700,121,82
IF2 5501,700,121,82
IF1 7502,000,122,12
IF1 10002,000,122,12
IF1 1500; 20005,000,185,18

A. 1,82 l
B. 1,70 l
C. 0,40 l
D. 0,90 l
Odpowiedź 1,82 l jest prawidłowa, ponieważ dokładnie odpowiada całkowitej ilości oleju potrzebnej do wymiany w pompie IF1 400. Aby obliczyć tę wartość, należy zsumować ilości oleju wymagane w silniku oraz w komorze olejowej, które są przedstawione w tabeli producenta. W praktyce, zapewnienie odpowiedniej ilości oleju jest kluczowe dla prawidłowego funkcjonowania urządzenia, gdyż niedobór oleju może prowadzić do przegrzewania się pompy i jej szybszego zużycia. W branży inżynieryjnej i mechanicznej, przestrzeganie zaleceń producentów dotyczących wymiany oleju i jego ilości jest uznawane za standardową praktykę, która wpływa na niezawodność oraz efektywność działania maszyn. Dobór właściwego oleju i jego ilości ma również znaczenie dla utrzymania optymalnych parametrów pracy, co w efekcie przekłada się na dłuższą żywotność urządzenia oraz oszczędności w kosztach eksploatacji.

Pytanie 30

Maksymalne napięcie na analogowym wejściu kontrolera PLC wynosi 10 V DC, a rozdzielczość tego wejścia, wynosząca około 40 mV, zapewnia zastosowanie kontrolera PLC z przetwornikiem A/C.

A. 64-bitowym
B. 8-bitowym
C. 16-bitowym
D. 32-bitowym
Wybór odpowiedzi 16-bitowej, 32-bitowej czy 64-bitowej jest błędny w kontekście określonej rozdzielczości 40 mV. Te formaty oferują znacznie większą liczbę poziomów rozdzielczości, co prowadzi do nieadekwatnych wyników w tym przypadku. Przykładowo, 16-bitowy przetwornik A/C generuje 65,536 poziomów (2^16), co w przypadku 10 V daje krok napięcia równy około 0,15 mV. Tak mała rozdzielczość jest niepraktyczna, gdy wymagana rozdzielczość wynosi 40 mV. Podobnie, 32-bitowe i 64-bitowe przetworniki oferują jeszcze wyższą precyzję, która w tym kontekście jest zbyteczna. Wybierając zbyt wysoką rozdzielczość, można napotkać problemy związane z przetwarzaniem danych i ich interpretacją, co w praktyce może obniżyć efektywność systemu. Często użytkownicy mylnie zakładają, że wyższa rozdzielczość jest zawsze lepsza, co prowadzi do nieefektywnego wykorzystania zasobów. Dobór odpowiedniego przetwornika A/C powinien być dostosowany do specyficznych wymagań aplikacji, biorąc pod uwagę zarówno wymagania dotyczące rozdzielczości, jak i szybkości pomiaru. W rzeczywistości, dla wielu zastosowań przemysłowych, 8-bitowy przetwornik A/C zapewnia wystarczającą dokładność, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 31

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po wezwaniu pomocy medycznej
B. po poinformowaniu osoby przełożonej
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
Odpowiedzi, które sugerują podejmowanie działań po wezwaniu pomocy lekarskiej, odczekaniu kilkunastu sekund na sprawdzenie tętna lub po zawiadomieniu przełożonego, nie uwzględniają krytycznego znaczenia czasu w sytuacji zagrożenia życia. W przypadku porażenia prądem elektrycznym, każda sekunda opóźnienia w podjęciu akcji ratunkowej może prowadzić do nieodwracalnych skutków zdrowotnych. Czekanie na przybycie pomocy medycznej bez podjęcia jakichkolwiek działań wstępnych jest nieodpowiedzialne. W sytuacji, w której osoba nie oddycha, najważniejsze jest rozpoczęcie resuscytacji krążeniowo-oddechowej. Sprawdzanie tętna również nie jest uzasadnione, gdyż w przypadku braku oddechu, priorytetem powinno być jak najszybsze podjęcie działań w celu przywrócenia krążenia, a nie diagnostyka stanu pacjenta poprzez sprawdzenie tętna. Ponadto, czekanie na decyzję przełożonego w tak kryzysowej sytuacji może prowadzić do zaniechania niezbędnych działań, co może mieć tragiczne konsekwencje. Właściwe postępowanie zgodne z normami pierwszej pomocy i zaleceniami ERC wymaga natychmiastowej reakcji oraz umiejętności działania w sytuacjach stresowych, a nie odkładania decyzji na później.

Pytanie 32

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. obróbki
B. oględzin
C. pomiarów
D. montażu
W ocenie stanu technicznego podzespołów mechanicznych kluczowe jest zrozumienie, że każdy etap procesu diagnostycznego ma swoje miejsce i znaczenie. Rozpoczęcie od obróbki, pomiarów czy montażu jest niepoprawne, ponieważ te działania zakładają wcześniejsze zweryfikowanie ogólnego stanu urządzenia. Obróbka podzespołów, na przykład, odbywa się zazwyczaj po stwierdzeniu, że są one w odpowiednim stanie do dalszych działań. Pomiar, z kolei, bez uprzednich oględzin, może prowadzić do niepoprawnych wniosków, gdyż istotne niedoskonałości mogą zniekształcać wyniki. Montaż zestawów mechanicznych bez wcześniejszej analizy stanu podzespołów może skutkować niewłaściwym działaniem finalnego produktu, co jest niezwykle kosztowne i czasochłonne w naprawie. W praktyce inżynierskiej istotne jest stosowanie metodologii, które zaczynają się od detekcji widocznych problemów, co wpływa na efektywność całego procesu oceny i konserwacji. Prawidłowe podejście do diagnostyki jest kluczowe dla zapewnienia długotrwałej żywotności i niezawodności podzespołów, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 33

Najważniejszym parametrem opisującym kondensator jest

A. ładunek
B. indukcyjność
C. pojemność
D. rezystancja
Pojemność jest podstawowym parametrem charakteryzującym kondensator, który określa zdolność tego elementu do magazynowania ładunku elektrycznego. Pojemność kondensatora, oznaczana symbolem C, wyrażana jest w faradach (F) i definiowana jest jako stosunek zgromadzonego ładunku (Q) do przyłożonego napięcia (U). W praktycznych zastosowaniach kondensatory odgrywają kluczową rolę w różnych dziedzinach, takich jak filtry, układy zasilania, czy obwody rezonansowe. Na przykład w zasilaczach impulsowych kondensatory stabilizują napięcie wyjściowe, a w obwodach audio są używane do odfiltrowania niepożądanych częstotliwości. W związku z tym, znajomość pojemności kondensatora jest niezbędna dla inżynierów i techników pracujących w elektronice. Dodatkowo, standardy takie jak IEC 60384 określają wymagania dotyczące kondensatorów, co potwierdza ich istotność w projektowaniu oraz produkcji urządzeń elektronicznych.

Pytanie 34

Do połączeń spoczynkowych trwałych nie wlicza się

A. kołkowania
B. spawania
C. nitowania
D. klejenia
Spawanie, klejenie i nitowanie to techniki, które rzeczywiście tworzą połączenia spoczynkowe nierozłączne, co oznacza, że połączenia te są trwale związane i nie mogą być łatwo rozdzielone bez uszkodzenia materiału. Spawanie polega na połączeniu dwóch elementów poprzez stopienie ich brzegów, co skutkuje utworzeniem mocnego i trwałego złącza. Jest to powszechnie stosowana metoda w przemyśle metalowym, a także w budownictwie, gdzie wymagana jest wysoka wytrzymałość konstrukcji. Klejenie, z drugiej strony, wykorzystuje różnorodne kleje, które łączą elementy na poziomie molekularnym, co również skutkuje połączeniem trwale związanym, choć z innymi właściwościami mechanicznymi niż spawanie. Wreszcie, nitowanie polega na wprowadzeniu nitów w przygotowane otwory i ich zagięciu, co tworzy solidne połączenie, które jest odporne na dynamiczne obciążenia. Wszelkie wyżej wymienione techniki są zgodne z normami branżowymi, które określają odpowiednie metody oraz materiały stosowane w poszczególnych procesach łączenia. Typowym błędem w ocenie tych metod jest założenie, że każde połączenie wykonywane w sposób mechaniczny jest tymczasowe, co jest niezgodne z rzeczywistością w przypadku spawania, klejenia i nitowania.

Pytanie 35

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. rękawic dielektrycznych
B. kasku ochronnego
C. okularów ochronnych
D. ochronników słuchu
Wybór niewłaściwego środka ochrony osobistej może prowadzić do poważnych konsekwencji zdrowotnych. Na przykład stosowanie kasku ochronnego w warunkach nadmiernego hałasu nie przyniesie pożądanych efektów ochronnych dla słuchu, ponieważ kask koncentruje się na ochronie głowy przed uderzeniami, a nie na redukcji hałasu. Okulary ochronne są ważne w kontekście ochrony wzroku przed odpryskami i innymi zagrożeniami optycznymi, jednak nie mają żadnego wpływu na ochronę słuchu w hałaśliwym otoczeniu. Rękawice dielektryczne są przeznaczone do ochrony przed porażeniem elektrycznym i nie są związane z hałasem, co czyni je niewłaściwym wyborem na tym etapie oceny ryzyka. Często popełnianym błędem jest mylenie różnych rodzajów zagrożeń i nieadekwatne dobieranie środków ochrony osobistej do specyficznych warunków pracy. Ważne jest, aby pracownicy byli odpowiednio szkoleni w zakresie zagrożeń związanych z hałasem i umieli dobierać odpowiednie środki ochrony na podstawie przeprowadzonych ocen ryzyka. Niezastosowanie ochronników słuchu w głośnym środowisku może prowadzić do trwałych uszkodzeń słuchu, co jest nieodwracalne i wpływa na jakość życia pracownika, dlatego kluczowe jest zrozumienie, kiedy i jakie środki ochrony są wymagane.

Pytanie 36

W sieci TN - C doszło do przerwania przewodu PEN. Jakie są tego konsekwencje?

A. pojawieniem się napięcia na obudowie urządzeń podłączonych do gniazda z bolcem ochronnym
B. przepaleniem bezpieczników w obwodzie
C. spadkiem napięcia zasilającego do 0,5 UN
D. brakiem zasilania dla wszystkich odbiorników
Nieprawidłowe odpowiedzi błędnie wskazują na skutki przerwania przewodu PEN. Przepalenie się bezpieczników w obwodzie nie jest bezpośrednim skutkiem przerwania tego przewodu, ponieważ bezpieczniki działają na zasadzie zabezpieczenia przed przeciążeniem lub zwarciem. W przypadku przerwania przewodu PEN, nie następuje natychmiastowe przeciążenie, które mogłoby prowadzić do przepalenia bezpieczników. Wskazanie braku napięcia zasilającego dla wszystkich odbiorników również jest błędne, ponieważ przerwanie przewodu PEN nie powoduje całkowitego wyłączenia zasilania, lecz może prowadzić do niebezpiecznych sytuacji, takich jak pojawienie się napięcia na obudowach. Spadek napięcia zasilającego do 0,5 UN również nie jest realistyczną konsekwencją. Tego rodzaju zjawisko nie jest standardowym efektem przerwania przewodu PEN, a spadki napięcia są bardziej związane z obciążeniem instalacji lub innymi problemami z siecią. W praktyce, należy pamiętać, że sieć TN-C wymaga szczególnej uwagi w kontekście ochrony przed porażeniem prądem, a kluczowym środkiem ochrony są wyłączniki różnicowoprądowe, które powinny być stosowane w takich systemach, aby zapewnić bezpieczeństwo użytkowników oraz minimalizować ryzyko wystąpienia napięcia na obudowach urządzeń.

Pytanie 37

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 2,0 mm
C. 2,1 mm
D. 1,9 mm
Wybór średnicy 2,0 mm sugeruje, że otwór powinien być identyczny z średnicą nitu, co jest niewłaściwe w kontekście praktycznego montażu. Taki otwór może być zbyt ciasny, co prowadzi do problemów przy wprowadzaniu nitu. W przypadku nitu o średnicy 2 mm, otwór musi być większy, aby zapewnić odpowiedni luz, który jest niezbędny do komfortowego montażu. Ponadto, wybór 1,9 mm również jest błędny, ponieważ zmniejsza luz, co znów może prowadzić do trudności w wprowadzeniu nitu oraz zwiększa ryzyko uszkodzenia materiału. Z kolei 2,3 mm, czyli zbyt duży otwór, może skutkować niewłaściwym osadzeniem nitu, co z kolei wpływa na trwałość i funkcjonalność połączenia. Wszelkie nieprawidłowe podejścia w kontekście średnicy otworu mogą prowadzić do niskiej jakości połączeń, co w konsekwencji zagraża integralności konstrukcji. W inżynierii montażowej stosuje się standardowe tolerancje, które pomagają w określeniu odpowiednich wymiarów otworów. Niezrozumienie tych zasad może prowadzić do nieodwracalnych błędów w produkcie końcowym czy w zakresie bezpieczeństwa. Dlatego tak istotne jest, aby przy projektowaniu połączeń zwracać uwagę na standardy dotyczące luzu, co jest kluczowe w każdym procesie technologii montażu.

Pytanie 38

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
B. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
C. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
D. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
Błędne odpowiedzi na to pytanie często wynikają z niepełnego zrozumienia procedur bezpieczeństwa związanych z demontażem urządzeń pneumatycznych. Wyłączenie napięcia i zasilania sprężonym powietrzem to absolutna podstawa, ale nie można pomijać kolejności kolejnych czynności. W przypadku podania błędnych odpowiedzi, brak odpowiedniej sekwencji działań może prowadzić do poważnych wypadków. Przykładowo, odkręcenie siłownika bez wcześniejszego wyłączenia zasilania sprężonym powietrzem stwarza ryzyko niekontrolowanego ruchu siłownika, co może skutkować uszkodzeniem sprzętu lub obrażeniami operatora. Ponadto, nieodłączenie przewodów pneumatycznych przed rozkręceniem siłownika stwarza możliwość wycieku sprężonego powietrza, co również jest niebezpieczne. Wiele osób nie zdaje sobie sprawy z konieczności odłączenia przewodów czujników przed demontażem, co jest istotne, ponieważ ich usunięcie bez wcześniejszego wyłączenia może prowadzić do uszkodzenia tych komponentów. Dlatego kluczowe jest zrozumienie, że każdy krok w procedurze demontażu musi być poprzedzony odpowiednimi środkami ostrożności oraz logiczną sekwencją działań, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności w pracy z układami pneumatycznymi.

Pytanie 39

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
B. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
C. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
D. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
Demontaż urządzenia mechatronicznego wymaga precyzyjnego podejścia, a niektóre z zaproponowanych kolejności działań mogą prowadzić do poważnych problemów. Na przykład, rozpoczynanie demontażu od wyciągnięcia elementów zabezpieczających bez wcześniejszego odłączenia instalacji zewnętrznych jest niebezpieczne. Tego typu podejście może prowadzić do przypadkowego uruchomienia urządzenia albo porażenia prądem. W kontekście kolejności działań przy demontażu, niezwykle istotne jest, aby najpierw zadbać o bezpieczne usunięcie źródeł zasilania oraz innych podłączonych systemów, zanim przystąpi się do rozkręcania lub wyjmowania jakichkolwiek elementów. Kolejnym błędem jest pomijanie kolejności przy zdjęciu osłon i pokryw, co może skutkować uszkodzeniem delikatnych części wewnętrznych czy narzędzi. Niepoprawne podejścia do demontażu są często wynikiem braku wiedzy na temat struktury urządzenia i znaczenia zachowania odpowiedniej sekwencji działań. Zrozumienie mechaniki działania urządzenia oraz przestrzeganie standardów bezpieczeństwa to kluczowe elementy, które mają na celu nie tylko skuteczność demontażu, ale także ochronę osoby dokonującej tych czynności oraz samego urządzenia. Ignorowanie tych zasad prowadzi do błędów, które mogą skutkować kosztownymi naprawami i narażeniem zdrowia pracowników.

Pytanie 40

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca przerywana
B. Praca dorywcza
C. Praca ciągła
D. Praca długotrwała
Wybór innych typów pracy silnika, takich jak praca dorywcza, długotrwała czy ciągła, nie odzwierciedla specyfiki działania silników, co prowadzi do nieprawidłowego rozumienia ich zastosowania. Praca dorywcza zakłada sporadyczne użycie silnika, co nie odpowiada jego funkcjonalności w kontekście pracy przerywanej. W rzeczywistości, praca dorywcza jest bardziej związana z zastosowaniami, gdzie silnik jest uruchamiany rzadko, co nie jest typowe dla większości zastosowań przemysłowych. W przypadku pracy długotrwałej, mowa o ciągłym działaniu bez przerw, co może prowadzić do przegrzania silnika, jeśli nie jest on odpowiednio chłodzony, a to jest przeciwieństwem pracy przerywanej. Praca ciągła, z kolei, odnosi się do trybu pracy, w którym silnik funkcjonuje w pełnym obciążeniu przez dłuższy czas, co również jest nieadekwatne w odniesieniu do symbolu S3, który wymaga przerw w eksploatacji. Często w branży można spotkać mylne interpretacje związane z długotrwałym eksploatowaniem silników, co prowadzi do niewłaściwego doboru urządzeń do aplikacji. Poznanie specyfiki klasyfikacji pracy silników jest kluczowe, aby uniknąć uszkodzeń i zwiększyć efektywność energetyczną urządzeń.