Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 7 czerwca 2025 02:15
  • Data zakończenia: 7 czerwca 2025 02:30

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. siatek z drutu stalowego
B. stolika rozpływowego
C. stolika wibracyjnego
D. rusztów drewnianych
Stosowanie rusztów drewnianych do segregacji kruszywa jest technicznie niewłaściwe. Drewno, będąc materiałem organicznym, ma tendencję do wchłaniania wilgoci, co może prowadzić do zniekształcenia się rusztu oraz wpływać na jakość segregowanego kruszywa. Ponadto, drewno jest podatne na biodegradację oraz uszkodzenia mechaniczne, co obniża jego trwałość i użyteczność w kontekście długotrwałej pracy w warunkach budowlanych. Z kolei stolik rozpływowy, mimo że bywa używany w niektórych procesach budowlanych, nie jest przeznaczony do segregacji kruszywa na frakcje. Jego konstrukcja nie umożliwia efektywnego oddzielania ziaren o różnych rozmiarach, co jest kluczowe w kontekście uzyskania odpowiedniej jakości zaprawy murarskiej. Stoliki wibracyjne, choć mogą wspierać procesy związane z zagęszczaniem materiału, również nie są odpowiednie do ręcznej segregacji kruszywa, ponieważ ich zastosowanie jest skierowane głównie na kompresję i zagęszczanie materiałów sypkich. Typowym błędem jest zatem mylenie funkcji poszczególnych narzędzi i metod, co prowadzi do nieefektywności oraz obniżenia jakości finalnego produktu budowlanego.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Określona stawka robocizny za 1 m2wykonania tynku maszynowego cementowo-wapiennego wynosi 20 zł, natomiast koszt materiałów to 15 zł/ m2. Oblicz całkowity wydatek na tynkowanie 300 m2ścian?

A. 10 500 zł
B. 4 500 zł
C. 6 000 zł
D. 15 000 zł
Aby obliczyć całkowity koszt tynkowania 300 m² ścian, należy uwzględnić zarówno stawkę robocizny, jak i koszt materiału. Stawka robocizny za 1 m² wynosi 20 zł, co w przypadku 300 m² daje 300 m² * 20 zł/m² = 6000 zł. Koszt materiału wynosi 15 zł za m², co dla 300 m² daje 300 m² * 15 zł/m² = 4500 zł. Sumując te dwa koszty, otrzymujemy całkowity koszt tynkowania: 6000 zł + 4500 zł = 10500 zł. Taki sposób obliczeń jest zgodny z praktykami budowlanymi, gdzie często dzieli się koszty na robociznę i materiały. Wiedza o tym, jak obliczać całkowite koszty projektów budowlanych, jest niezwykle ważna dla planowania budżetu oraz negocjacji z podwykonawcami. Pozwala to na precyzyjne oszacowanie wydatków oraz optymalizację kosztów, co jest kluczowe w branży budowlanej.

Pytanie 5

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
B. tylko na zewnętrznej ścianie budynku, na której opiera się strop
C. na wszystkich ścianach nośnych wokół całego stropu
D. jedynie na ścianach osłonowych budynku
Zbrojenie wieńca stropu jest kluczowym elementem konstrukcyjnym, który ma za zadanie zapewnienie odpowiedniej nośności i stabilności całej konstrukcji budynku. Właściwe rozłożenie zbrojenia na wszystkich ścianach nośnych dookoła stropu jest zgodne z zasadami inżynierii budowlanej oraz standardami, które podkreślają konieczność wzmocnienia miejsc, gdzie przenoszone są obciążenia. Zbrojenie na wszystkich ścianach nośnych ma na celu równomierne rozłożenie sił działających na strop, co minimalizuje ryzyko powstania pęknięć i uszkodzeń w konstrukcji. Przykładem zastosowania tej zasady może być budowa budynków wielokondygnacyjnych, gdzie stropy przenoszą znaczące obciążenia z wyższych pięter. W takich przypadkach stosowanie zbrojenia na wszystkich ścianach nośnych jest niezbędne dla zapewnienia stabilności konstrukcji na całej wysokości budynku. Dobrą praktyką jest również projektowanie zbrojenia w oparciu o normy PN-EN 1992-1-1, które określają wymagania dotyczące projektowania konstrukcji betonowych, w tym zbrojenia wieńców stropowych.

Pytanie 6

Gdy podłoże przeznaczone do tynkowania składa się z różnych materiałów, należy zabezpieczyć miejsce ich styku przed nałożeniem tynku

A. taśmą z papieru laminowanego folią
B. kształtką z plastiku
C. pasem z siatki z włókna szklanego
D. listwą aluminiową
Wybór pasa z siatki z włókna szklanego jako materiału do zakrywania miejsc styku różnych podłoży przed tynkowaniem jest uzasadniony z kilku powodów. Siatka z włókna szklanego charakteryzuje się wysoką odpornością na działanie wilgoci oraz stabilnością wymiarową, co czyni ją idealnym rozwiązaniem w kontekście różnorodnych materiałów budowlanych. Umieszczenie siatki w miejscu styku materiałów pozwala na zminimalizowanie ryzyka pęknięć tynku, które mogą powstać w wyniku różnej rozszerzalności cieplnej tych materiałów. Dodatkowo, siatka wzmacnia połączenie krawędzi, co jest szczególnie ważne w przypadku tynków cienkowarstwowych, które są bardziej wrażliwe na uszkodzenia. Przykładem praktycznego zastosowania może być przygotowanie elewacji budynku, gdzie różne materiały, takie jak beton, cegła czy płyty gipsowo-kartonowe, są ze sobą połączone. W takich sytuacjach zastosowanie siatki z włókna szklanego jest kluczowe dla trwałości i estetyki wykończenia. Siatka powinna być również zgodna z normami budowlanymi, co zapewnia jej wysoką jakość i funkcjonalność.

Pytanie 7

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n n n n n n
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"

A. Na styku kolorów.
B. W załamaniach budynku.
C. W narożnikach budynku.
D. Na środku ściany.
Odpowiedź "Na środku ściany" jest prawidłowa, ponieważ zgodnie z fragmentem specyfikacji technicznej, przerwy technologiczne powinny być planowane w miejscach, które są naturalnymi punktami podziału tynku, takimi jak narożniki budynków, załamania, odprowadzanie wody czy styki kolorów. Przerwy te są niezbędne, aby uniknąć pęknięć i deformacji, które mogą pojawić się w wyniku różnic w rozszerzalności termicznej oraz osiadania budynku. Na środku ściany, tworzenie przerw technologicznych może prowadzić do nieestetycznych połączeń i widocznych linii, które negatywnie wpływają na estetykę elewacji. W praktyce architektonicznej i budowlanej, ważne jest, aby przerwy były umieszczane w tak zwanych punktach krytycznych, które mogą zminimalizować ryzyko uszkodzeń tynku. Warto również zwrócić uwagę na zalecane praktyki, takie jak stosowanie odpowiednich materiałów do wypełnienia przerw, co zapewnia długowieczność i odporność na czynniki atmosferyczne.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Element architektoniczny rozciągający się poziomo i wystający przed lico ściany, który zabezpiecza budynek przed spływającą wodą to

A. nadproże
B. gzyms
C. attyka
D. cokół
Nadproże, attyka i cokół to różne elementy architektoniczne, ale nie mają nic wspólnego z gzymsami. Nadproże jest umieszczane nad otworami, jak okna czy drzwi, i jego zadaniem jest przenoszenie ciężaru z góry. Więc to bardziej o wzmacnianiu konstrukcji niż o ochronie przed wodą. Attyka to coś, co mamy na szczycie murów, często zdobiona, która ma zamykać budynek i dodaje mu lekkości. Może wpłynąć na kierunek spływu wody, ale nie jest odpowiedzialna za ochronę muru przed wilgocią. Cokół z kolei oddziela budynek od ziemi i dba o to, żeby dolna część ścian była chroniona przed wodą gruntową. Wybór nieodpowiedniego elementu w kontekście ochrony budynku przed wilgocią może prowadzić do błędów w projektowaniu i kosztownych napraw w przyszłości. Takie zrozumienie różnic między tymi elementami to klucz do udanych projektów budowlanych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Krążyna stanowi element wspierający, który umożliwia realizację

A. stropów gęstożebrowych
B. stropów Kleina
C. sklepień i łuków
D. gzymsów oraz cokołów
Krążyna, jako pomocnicza konstrukcja podporowa, jest kluczowym elementem w procesie budowy sklepień i łuków. Działa jako zewnętrzny element wspierający, który pozwala na właściwe przenoszenie obciążeń konstrukcyjnych oraz stabilizację formy architektonicznej. W przypadku łuków, krążyna umożliwia równomierne rozłożenie sił działających na łuk, co jest istotne dla zachowania jego integralności strukturalnej. Przykładowo, w architekturze romańskiej i gotyckiej, sklepy krzyżowo-żebrowe wykorzystują krążyny jako istotne wsparcie dla skomplikowanych form. Użycie krążyn w projektach budowlanych zgodnych z normami Eurokodów zapewnia optymalizację rozkładu obciążeń, co przekłada się na długowieczność i bezpieczeństwo budowli. Należy także pamiętać o estetyce, ponieważ krążyny mogą być również elementem dekoracyjnym, co widoczne jest w wielu zabytkowych obiektach architektonicznych, gdzie harmonijnie łączą funkcję strukturalną z walorami wizualnymi.

Pytanie 15

Jakie składniki mieszanki betonowej można podgrzać w trakcie jej przygotowywania w temperaturze poniżej +5 °C?

A. Wapno oraz piasek
B. Cement i wapno
C. Cement oraz wodę
D. Piasek i wodę
Wybór składników, takich jak cement i wodę, wapno i piasek, czy cement i wapno, nie jest właściwy w kontekście podgrzewania mieszanki betonowej w niskich temperaturach. Cement, będący kluczowym składnikiem mieszanki, nie powinien być podgrzewany, ponieważ wysoka temperatura może zmienić jego właściwości fizykochemiczne, co może prowadzić do osłabienia struktury betonu oraz zmniejszenia jego wytrzymałości. W przypadku zastosowania wapna, podobnie jak w przypadku cementu, jego podgrzewanie może prowadzić do niepożądanych reakcji, które wpływają na długoterminową stabilność materiału. Wiele osób myśli, że podgrzewanie cementu lub wapna pomoże w uzyskaniu lepszej jakości betonu, jednak w rzeczywistości nie jest to praktyka zalecana w branży budowlanej. Zamiast tego, kluczowe jest podgrzewanie piasku i wody, co pomaga utrzymać odpowiednią temperaturę mieszanki i umożliwia prawidłowy proces hydratacji. Niezrozumienie tych zasad prowadzi do typowych błędów, takich jak niewłaściwe przygotowanie mieszanki betonowej w trudnych warunkach atmosferycznych, co może skutkować słabszą jakością finalnych konstrukcji. Dlatego tak ważne jest, aby stosować się do zaleceń dotyczących temperatury i rodzaju podgrzewanych składników, aby uniknąć problemów z jakością i trwałością betonu.

Pytanie 16

Jak powinno się zregenerować stare, odpryskujące tynki?

A. Nałożyć na nie warstwę gładzi
B. Skuć je i uzupełnić nowym tynkiem
C. Pomalować je farbą silikatową
D. Pokryć je warstwą zaczynu wapiennego
Skuwanie starych tynków i ich uzupełnianie nowym tynkiem jest kluczowym krokiem w przywracaniu estetyki oraz funkcjonalności ścian. Stare tynki, które łuszczą się, mogą być wynikiem wielu czynników, takich jak wilgoć, nieodpowiednia aplikacja, a także naturalne procesy starzenia się materiałów budowlanych. Skuwanie pozwala na usunięcie uszkodzonego tynku oraz zapewnia lepszą przyczepność nowego materiału do podłoża. Po skuć, należy dokładnie oczyścić powierzchnię z resztek starego tynku, kurzu i innych zanieczyszczeń. Warto również zainstalować hydroizolację, jeśli problem wilgoci jest istotny, co jest zgodne z dobrą praktyką budowlaną. Po odpowiednim przygotowaniu podłoża, można nałożyć nowy tynk, dostosowany do konkretnej aplikacji, co zapewni trwałość i estetykę na długie lata. Dodatkowo, przed aplikacją, warto skonsultować się z ekspertami lub zapoznać się z lokalnymi normami budowlanymi, aby wybrać odpowiedni materiał i metodę aplikacji.

Pytanie 17

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. po każdej stronie przegrody
B. na tej stronie przegrody, gdzie przeważa wyższa temperatura
C. na tej stronie przegrody, gdzie przeważa niższa temperatura
D. na obydwu stronach przegrody
Umieszczanie izolacji cieplnej przegrody budowlanej po stronie, gdzie panuje wyższa temperatura, jest podejściem, które nie tylko łamie zasady fizyki, ale także prowadzi do poważnych konsekwencji w kontekście efektywności energetycznej budynku. Izolacja ma na celu ograniczenie transferu ciepła, a umieszczanie jej w miejscu, gdzie temperatura jest wyższa, po prostu nie spełnia tego zadania. Tego rodzaju podejście wynika z nieporozumienia dotyczącego dynamiki cieplnej. Mylne jest przekonanie, że izolacja powinna być umieszczona tam, gdzie wydaje się, że ciepło jest „przechwytywane”; w rzeczywistości ciepło zawsze przepływa z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Umieszczając izolację w niewłaściwym miejscu, ryzykujemy nie tylko straty ciepła, ale także wzrost ryzyka kondensacji pary wodnej wewnątrz przegrody, co może prowadzić do powstawania pleśni oraz uszkodzeń konstrukcyjnych. Ponadto, zgodnie z normami budowlanymi, takim jak PN-EN 13370, istotne jest, aby izolacja była stosowana w sposób, który zapewnia optymalny komfort cieplny i minimalizuje zużycie energii. W rezultacie, umieszczanie izolacji w nieodpowiednich lokalizacjach, takich jak strona z wyższą temperaturą, jest nie tylko technicznie błędne, ale również ekonomicznie niekorzystne w dłuższej perspektywie.

Pytanie 18

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100

A. ok. 1200 kg
B. ok. 4800 kg
C. ok. 1920 kg
D. ok. 400 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Czym są zaczyny cementowe?

A. cementem i piaskiem
B. cementem i wodą
C. cementem, wapnem oraz wodą
D. cementem, piaskiem oraz wodą
Cement to kluczowy składnik w procesie produkcji zaczynów cementowych. Właściwa proporcja cementu i wody jest niezbędna do uzyskania optymalnej konsystencji oraz wytrzymałości. Zaczyny cementowe, będące mieszaniną cementu i wody, tworzą tzw. pastę cementową, która po hydratacji staje się twardym i trwałym materiałem. W praktyce, gdy cement reaguje z wodą, zachodzi reakcja chemiczna, w wyniku której powstają nowe związki chemiczne, odpowiedzialne za utwardzanie mieszanki. Standardy budowlane, takie jak normy PN-EN, zalecają użycie cementu w odpowiednich proporcjach, aby zapewnić nie tylko trwałość, ale także odporność na czynniki atmosferyczne, co jest szczególnie istotne w budownictwie infrastrukturalnym. Przykłady zastosowania zaczynów cementowych obejmują zarówno budowę fundamentów, jak i produkcję prefabrykatów betonowych, gdzie właściwe proporcje cementu i wody mają kluczowe znaczenie dla uzyskania wymaganego standardu wytrzymałości. Przykładowo, w konstrukcji mostów i budynków wysokościowych, nieodpowiednia mieszanka mogłaby prowadzić do poważnych problemów strukturalnych.

Pytanie 21

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67

A. 0,588 m3
B. 0,276 m3
C. 0,828 m3
D. 0,444 m3
W przypadku udzielenia innej odpowiedzi, może to wynikać z kilku typowych błędów obliczeniowych lub nieporozumień dotyczących metodyki obliczeń. Na przykład, jeżeli wzięto pod uwagę objętość jednego filaru bez uwzględnienia zaprawy, z pewnością uzyskano zaniżoną wartość. Istnieje również ryzyko nieuwzględnienia współczynnika, który wskazuje na objętość zaprawy w stosunku do muru, co w efekcie prowadzi do błędnych oszacowań. W praktyce budowlanej ważne jest, aby nie tylko zmierzyć wymiary, ale także zrozumieć, jak różne materiały współdziałają w konstrukcji. Kolejnym błędem jest błędne przeliczenie jednostek miar, co często zdarza się przy przejściu z centymetrów na metry. W szczególności, w przypadku budowy, należy upewnić się, że wszystkie wymiary są spójne i poprawnie przeliczone na jednostki metryczne. Zrozumienie, jak poszczególne elementy konstrukcyjne wpływają na całość, jest kluczowe. Aby uniknąć pomyłek, należy korzystać z aktualnych norm budowlanych oraz dobrych praktyk, takich jak standardy PN-EN dotyczące materiałów budowlanych, które dostarczają wytycznych w zakresie obliczania ilości materiałów. To ważne, aby nie tylko dążyć do uzyskania poprawnych wyników, ale także rozumieć, jak te obliczenia wpływają na kosztorys, jakość wykonania i trwałość obiektu budowlanego.

Pytanie 22

Jaką minimalną grubość powinny mieć przegródki międzykanałowe w kominach murowanych z cegły?

A. 3/4 cegły
B. 1/3 cegły
C. 1/4 cegły
D. 1/2 cegły
No więc, jeśli chodzi o grubość przegród w kominach murowanych z cegły, to ta wynosząca 1/2 cegły jest zgodna z normami budowlanymi, które mówią o tym, jak powinno być. Przegrody te mają naprawdę dużą rolę w wentylacji i w oddzielaniu kanałów dymowych. Ta grubość 1/2 cegły gwarantuje, że komin jest mocny i dobrze izolowany, co jest bardzo ważne, żeby gazy spalinowe nie dostawały się tam, gdzie nie powinny. Z doświadczenia wiem, że odpowiednie przestrzeganie norm podczas budowy kominów pomaga uniknąć problemów z korozją czy nieszczelnościami, które mogą być niebezpieczne dla zdrowia. Trzeba też pamiętać, że lokalne przepisy budowlane mają znaczenie, w końcu są różne standardy, jak PN-EN 13084, które muszą zostać uwzględnione. Przykładowo, w kominach z cegły ceramicznej o standardowych wymiarach, grubość 1/2 cegły pozwala na bezpieczne odprowadzanie spalin przy zachowaniu dobrych parametrów eksploatacyjnych.

Pytanie 23

Do mineralnych spoiw hydraulicznych zalicza się

A. cement hutniczy i pucolanowy
B. wapno dolomitowe i pokarbidowe
C. gips szpachlowy i autoklawizowany
D. wapno hydratyzowane i palone
Wybór wapna hydratyzowanego i palonego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ te materiały nie mają zdolności do wiązania w obecności wody w takim samym stopniu jak cement hutniczy czy pucolany. Wapno hydratyzowane, po rozpuszczeniu w wodzie, prowadzi do hydratacji, jednak nie tworzy trwałych połączeń w warunkach wilgotnych, co ogranicza jego zastosowanie w konstrukcjach narażonych na działanie wody. Wapno palone, z kolei, wykazuje dużą reaktywność chemiczną, ale podobnie jak wapno hydratyzowane, nie zachowuje właściwości hydraulicznych. Gips szpachlowy i autoklawizowany również nie są klasyfikowane jako spoiwa mineralne hydrauliczne, ponieważ gips wiąże się na drodze procesów gipsowych i nie ma zdolności do wiązania w warunkach mokrych. Wapno dolomitowe i pokarbidowe również nie spełniają kryteriów hydraulicznych, co prowadzi do błędnych wniosków odnośnie ich funkcji w budownictwie. Te materiały są często mylone z cementami hydraulicznymi z powodu ich zastosowania w różnych aspektach budowy, jednak nie wykazują one wymaganych właściwości do efektywnego wiązania w obecności wody, co jest kluczowe dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Należy pamiętać, że zgodność z normami budowlanymi oraz dobrymi praktykami jest istotna dla osiągnięcia optymalnych efektów w użyciu spoiw w budownictwie.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 2420 zł
B. 1020 zł
C. 1200 zł
D. 2000 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
B. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
C. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
D. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
Poprawna odpowiedź dotyczy proporcji składników betonu, które zostały opisane w formacie 1 : 2 : 4. Oznacza to, że dla każdej jednostki cementu używamy dwóch jednostek piasku i czterech jednostek żwiru. W praktyce, jeśli murarz użył jednego wiadra cementu, powinien zastosować dwa wiadra piasku i cztery wiadra żwiru, co jest zgodne z zasadami dozowania objętościowego. Użycie tych proporcji zapewnia odpowiednią wytrzymałość, trwałość i jednolitość betonu, co jest szczególnie istotne na małych budowach. Dobre praktyki w budownictwie zalecają stosowanie sprawdzonych proporcji, aby uzyskać beton o pożądanych właściwościach mechanicznych. Na przykład, beton w proporcjach 1 : 2 : 4 jest często stosowany w konstrukcjach takich jak chodniki, mury oporowe czy małe fundamenty, gdzie nie jest wymagana wyjątkowa wytrzymałość, ale stabilność i odporność na warunki atmosferyczne są kluczowe. Znajomość i zastosowanie odpowiednich proporcji w mieszankach betonowych jest kluczowe dla realizacji projektów budowlanych zgodnie z obowiązującymi normami oraz praktykami inżynieryjnymi.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. demontażu stolarki okiennej i drzwiowej
B. rozbiórki konstrukcji więźby dachowej
C. demontażu urządzeń i instalacji sanitarnych
D. rozbiórki ścianek działowych
Zaczynanie rozbiórki budynku od demontażu więźby dachowej i stolarki okiennej to nie do końca dobre podejście. Każdy krok w tym procesie powinien być robiony w odpowiedniej kolejności, żeby uniknąć różnych kłopotów. Na przykład, demontując dach przed usunięciem instalacji sanitarnych, możemy narobić sobie biedy z wyciekami, co może prowadzić do poważnych problemów ze strukturą budynku. Podobnie, jeśli zaczniemy ściągać okna i drzwi bez odłączenia wentylacji czy elektryki, to mogą się zdarzyć jakieś awarie. Rozbierając ścianki działowe przed usunięciem urządzeń sanitarnych, ryzykujemy, że nie zabezpieczymy ich odpowiednio. Ważne, żeby trzymać się znanych norm, jak PN-EN 16272, które mówią, że demontaż instalacji sanitarnych to pierwszy krok w całym procesie. W przeciwnym razie możemy narazić się na dodatkowe koszty napraw i zagrożenie dla zdrowia osób pracujących na budowie. Dlatego ważne, żeby robić wszystko w odpowiedniej kolejności, co pozwoli na lepsze zarządzanie projektem i zmniejszenie ryzyka.

Pytanie 33

Keramzyt to lekkie materiały budowlane, wykorzystywane do wytwarzania zapraw

A. kwasoodpornych
B. ciepłochronnych
C. szamotowych
D. krzemionkowych
Keramzyt to innowacyjne lekkie kruszywo budowlane, które ze względu na swoje właściwości doskonale sprawdza się w produkcji zapraw ciepłochronnych. Jego niska gęstość oraz porowata struktura pozwalają na skuteczną izolację termiczną, co jest kluczowe w tworzeniu energooszczędnych budynków. Przykładem zastosowania keramzytu może być jego użycie w warstwie izolacyjnej w budynkach jednorodzinnych, gdzie przyczynia się do minimalizacji strat ciepła. W standardach budowlanych, takich jak PN-EN 13055, podkreśla się znaczenie stosowania materiałów, które nie tylko spełniają normy wytrzymałościowe, ale również przyczyniają się do efektywności energetycznej budynków. Keramzyt, dzięki swoim właściwościom, jest także materiałem ekologicznym, co wpisuje się w trendy zrównoważonego budownictwa, dążącego do ograniczenia wpływu na środowisko. Stosując keramzyt w zaprawach ciepłochronnych, inwestorzy mogą znacząco obniżyć koszty ogrzewania, co jest szczególnie istotne w kontekście rosnących cen energii.

Pytanie 34

Na podstawie danych zawartych w tabeli podaj, ile wody należy dodać do 20 kg suchej mieszanki, aby sporządzić zaprawę lekką Termor?

Specyfikacja zapraw lekkich Termor
WłaściwościWymagania
Uziarnienie wypełniaczydo 4 mm
Gęstość nasypowa w stanie suchymnie większa niż 565 kg/m3
Przydatność suchej mieszanki do stosowanianie mniej niż 3 miesiące
Konsystencja7÷8,5 cm
Proporcje mieszania suchej mieszanki z wodą2:1
Czas zachowania właściwości roboczychnie mniej niż 3 godziny

A. 301
B. 401
C. 101
D. 201
Odpowiedź, którą zaznaczyłeś, to 101 litrów. Wiesz, to liczba, która wynika z proporcji 2:1, czyli na każde 2 kg suchej mieszanki przypada 1 kg wody. Gdy robisz zaprawę lekką Termor, kluczowe jest, aby trzymać się tych proporcji. Dzięki temu zaprawa ma lepsze właściwości mechaniczne i jest trwalsza. Dla 20 kg suchej mieszanki potrzebujesz 10 kg wody, co daje 10 litrów. Warto też robić próby, żeby dostosować ilość wody do różnych warunków budowy. Pamiętaj, że jak za dużo wody, to zaprawa może być słabsza, a jak za mało, to mogą być kłopoty z aplikacją i konsystencją. Dobrze jest też wiedzieć, że są normy budowlane, które mówią, jak dokładnie to wszystko mieszać, więc warto się ich trzymać.

Pytanie 35

Korzystając z instrukcji producenta, określ liczbę worków gipsu, która będzie potrzebna do uzyskania 180 litrów zaprawy.

Instrukcja producenta
Gips tynkarski ręczny
OPAKOWANIE: worki papierowe 25 kg
DANE TECHNICZNE: proporcje składników 15 l wody na 25 kg gipsu tynkarskiego ręcznego
WYDAJNOŚĆ: na 120 l zaprawy – 100 kg gipsu
ZUŻYCIE: 0,85 kg na 1m2 na każdy 1 mm grubości tynku

A. 5 worków.
B. 4 worki.
C. 8 worków.
D. 6 worków.
Żeby mieć 180 litrów zaprawy, musisz ogarnąć, jak przelicza się objętość na wagę. Producent podaje, że jeden worek gipsu waży 25 kg, a z jednego worka wyjdzie Ci jakieś 30 litrów zaprawy. To znaczy, że jak chcesz 180 litrów, to dzielisz 180 przez 30, co daje 6 worków. W branży budowlanej to ważne, bo dokładne obliczenia materiałów mogą wpłynąć na jakość pracy. Jak dobrze dobierzesz materiały, to nie tylko zaoszczędzisz, ale też zyskasz na bezpieczeństwie i stabilności konstrukcji. Dobrym pomysłem jest zawsze spoglądać na instrukcje producenta, żeby uniknąć problemów z za małą lub za dużą ilością materiałów.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Przed dodaniem płynnych dodatków chemicznych, takich jak przeciwmrozowe, do zaprawy, należy je wcześniej wymieszać

A. z wodą
B. z kruszywem
C. ze spoiwem
D. ze spoiwem i wodą
Mieszanie płynnych dodatków chemicznych z kruszywem, spoiwem lub ich kombinacją, bezpośrednio przed dodaniem do zaprawy, może wydawać się logiczne, jednak jest to podejście, które nie uwzględnia fundamentalnych zasad technologicznych. Kruszywo i spoiwo są komponentami, które mają różne właściwości fizyczne i chemiczne, i ich interakcja z dodatkami chemicznymi nie jest optymalna, gdy te ostatnie nie są wcześniej rozpuszczone w wodzie. Dodatki, takie jak środki przeciwmrozowe, muszą być wymieszane z wodą, aby mogły w pełni zrealizować swoje właściwości ochronne i wspomagające. Bez tego etapu, istnieje ryzyko, że dodatek nie osiągnie odpowiedniego stężenia w zaprawie, co skutkuje nieefektywną ochroną przed mrozem. W kontekście budowlanym, ignorowanie tych zasad może prowadzić do poważnych problemów, takich jak pękanie materiałów w wyniku niewłaściwej reakcji chemicznej z dodatkami. Dobrą praktyką w budownictwie jest zawsze przestrzeganie instrukcji producentów dodatków oraz standardów branżowych, które zalecają taką metodę użycia. Dlatego kluczowe jest zrozumienie, że odpowiednie przygotowanie komponentów zaprawy budowlanej jest fundamentem trwałości i bezpieczeństwa konstrukcji.

Pytanie 39

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 1 800 zł
B. 1 680 zł
C. 2 520 zł
D. 3 600 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 40

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. szlachetnych
B. izolujących cieplnie
C. renowacyjnych
D. jednowarstwowych zewnętrznych
Odpowiedź dotycząca tynków renowacyjnych jest prawidłowa, ponieważ zaprawa tynkarska oznaczona symbolem R została zaprojektowana z myślą o zastosowaniu w pracach renowacyjnych. Tynki renowacyjne są stosowane w celu przywrócenia oryginalnych właściwości estetycznych oraz ochronnych istniejących budynków, które mogą być narażone na degradację ze względu na warunki atmosferyczne lub inne czynniki. Przykłady zastosowania obejmują renowację historycznych elewacji, gdzie ważne jest zachowanie charakterystyki materiałów oryginalnych, ale również w przypadku budynków, które doznały uszkodzeń, takich jak pęknięcia czy zawilgocenie. Tynki te często zawierają specjalne dodatki, które poprawiają ich przyczepność, elastyczność oraz parametry izolacyjne, co czyni je idealnym wyborem do renowacji. Dobrze przemyślany dobór tynku renowacyjnego zgodnego z charakterystyką budynku oraz jego otoczenia jest kluczowy, a normy PN-EN 998-1 oraz PN-EN 1015-12 mogą służyć jako wytyczne w tym zakresie.