Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 10 kwietnia 2025 18:01
  • Data zakończenia: 10 kwietnia 2025 18:13

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie instalacji płaskich kolektorów słonecznych w słoneczny dzień należy je osłonić, aby zabezpieczyć

A. monterów przed oparzeniami
B. kolektory przed zniszczeniem w wyniku upadku
C. pokrycie dachu przed odkształceniami termicznymi
D. przezroczyste pokrywy przed zanieczyszczeniem
Podstawowe zrozumienie zagrożeń związanych z montażem kolektorów słonecznych jest kluczowe, aby uniknąć niebezpieczeństw wynikających z niewłaściwych praktyk. Przykrycie kolektorów w celu ochrony pokrycia dachowego przed naprężeniami termicznymi jest mylnym podejściem, ponieważ kolektory są projektowane z myślą o pracy w różnych warunkach atmosferycznych, a ich doświadczalne rozprężanie i kurczenie się nie wpływa negatywnie na dach. Dodatkowo, chociaż ochrona kolektorów przed uszkodzeniem w wyniku upadku jest ważna, to nie jest to bezpośrednio związane z ich działaniem w trakcie montażu. Właściwe zabezpieczenie sprzętu powinno być realizowane poprzez stosowanie stabilnych konstrukcji oraz stosowanie platform roboczych. Ochrona pokryw przezroczystych przed zapyleniem, mimo że może być istotnym czynnikiem w kontekście efektywności kolektorów, nie odpowiada na kluczowe zagadnienie bezpieczeństwa monterów. Typowym błędem jest zatem koncentrowanie się na ochronie sprzętu, podczas gdy głównym celem powinno być zapewnienie bezpieczeństwa osobom pracującym. Właściwe praktyki montażowe, jak ochronne przykrycia w odpowiednich warunkach, są niezbędne, aby zminimalizować ryzyko związane z pracą w intensywnym słońcu.

Pytanie 2

Całkowita moc identycznych pomp ciepła połączonych w kaskadzie wynosi

A. większa dla jednej z pomp
B. jest równa mocy pojedynczej pompy
C. połowę mocy jednej z pomp
D. sumę mocy wszystkich poszczególnych pomp
Fajnie, że wybrałeś odpowiedź, która mówi, że moc kaskadowo połączonych pomp ciepła to suma mocy każdej z nich. To naprawdę tak działa! Każda pompa dodaje swoją moc, więc jak masz pięć pomp po 5 kW, to mamy 25 kW mocy całkowitej. Kaskadowe połączenia są super, bo pozwalają lepiej wykorzystać moc i dostosować system do potrzeb. Widziałem to w dużych instalacjach grzewczych, gdzie trzeba osiągnąć wyższą moc, a jednocześnie zmieścić się w małej przestrzeni. A jak mowa o efektywności energetycznej, to takie połączenia z odnawialnymi źródłami energii to bardzo dobry pomysł!

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. elektrowni wiatrowej
B. turbiny wodnej
C. biogazowni
D. pompy ciepła
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 6

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. chłodzenia pasywnego
B. grzewczego
C. monowalentnego
D. urlopowego
Wybór trybu monowalentnego jest nieodpowiedni, ponieważ jest on przeznaczony do sytuacji, gdy system solarny ma pracować jako jedyne źródło ciepła, co w przypadku dłuższej nieobecności użytkowników może prowadzić do niewłaściwego działania instalacji. Tryb grzewczy z kolei normalnie funkcjonuje w warunkach, gdy użytkownicy są obecni, a system wymaga stałego odbioru ciepła, co również jest nieadekwatne w sytuacji braku użytkowników. Ponadto, tryb chłodzenia pasywnego, choć użyteczny w kontekście chłodzenia budynku, nie ma zastosowania w kontekście zarządzania ciepłem w zasobnikach solarnych w czasie nieobecności. Typowym błędem myślowym jest założenie, że w każdej sytuacji, gdy system nie jest w pełni wykorzystywany, można po prostu przełączyć go na inny tryb bez rozważenia jego funkcji. Należy pamiętać, że różne tryby mają konkretne cele i funkcje, a ich niewłaściwe ustawienie podczas dłuższej nieobecności użytkowników może prowadzić do problemów z efektywnością energetyczną, a nawet do uszkodzenia systemu. Dlatego tak ważne jest odpowiednie skonfigurowanie systemu przed wyjazdem, co potwierdzają standardy branżowe dotyczące instalacji solarnych, które zalecają stosowanie trybu urlopowego w takich przypadkach.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Dokument, który definiuje przebieg działań w czasie oraz ich sekwencję, to

A. lista robót
B. harmonogram wydarzeń
C. harmonogram robót
D. kosztorys dla inwestora
Harmonogram robót to dokument, który precyzyjnie określa przebieg czynności oraz ich kolejność w ramach projektu budowlanego. Jest kluczowym narzędziem zarządzania projektami, ponieważ pozwala na efektywne planowanie, monitorowanie i kontrolowanie postępu prac. Harmonogram powinien zawierać wszystkie istotne informacje dotyczące poszczególnych etapów robót, w tym daty rozpoczęcia i zakończenia, a także czas trwania poszczególnych zadań. W praktyce, harmonogram robót jest często tworzony w formie wykresu Gantta, co ułatwia wizualizację i śledzenie postępu. Przygotowanie harmonogramu według standardów PMI (Project Management Institute) lub metodyki PRINCE2 (Projects in Controlled Environments) zapewnia, że wszystkie kluczowe aspekty zostaną uwzględnione. Poprawnie sporządzony harmonogram robót nie tylko ułatwia zarządzanie czasem, ale również pozwala na identyfikację potencjalnych opóźnień oraz problemów, co jest niezbędne do skutecznego podejmowania działań naprawczych oraz optymalizacji procesu budowlanego. Przykładem zastosowania harmonogramu robót może być budowa nowego obiektu, gdzie wszystkie etapy, od wykopów po wykończenia, są szczegółowo zaplanowane.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 10 kW
B. 40 kW
C. 30 kW
D. 20 kW
Montaż instalacji fotowoltaicznej nie wymaga pozwolenia na budowę, jeśli jej wysokość nie przekracza 3 m, a moc elektryczna jest mniejsza niż 40 kW. Odpowiedź 40 kW jest zatem prawidłowa, ponieważ zgodnie z przepisami prawa budowlanego w Polsce, instalacje o mocy do 40 kW mogą być zrealizowane na podstawie zgłoszenia zamiast pozwolenia. To z kolei ułatwia proces instalacji, co jest szczególnie korzystne dla małych systemów, które często są stosowane w gospodarstwach domowych lub małych przedsiębiorstwach. Na przykład, instalacja o mocy 30 kW może pokryć zapotrzebowanie na energię w przeciętnym domu jednorodzinnym, co skutkuje znacznymi oszczędnościami na rachunkach za energię elektryczną. Dodatkowo, stosowanie instalacji fotowoltaicznych o mocy poniżej 40 kW jest zgodne z zasadami zrównoważonego rozwoju i wspiera transformację energetyczną, redukując emisję dwutlenku węgla. Warto także zaznaczyć, że przed przystąpieniem do montażu warto zasięgnąć porady specjalistów oraz sprawdzić lokalne regulacje, aby upewnić się, że instalacja spełnia wszelkie wymagania techniczne i prawne.

Pytanie 11

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. pompę ciepła
B. kolektor płaski
C. ogniwo fotowoltaiczne
D. wymiennik ciepła
Prawidłowa odpowiedź to pompa ciepła, która jest urządzeniem służącym do przenoszenia ciepła z jednego miejsca do innego, wykorzystując energię termalną zawartą w otoczeniu. Pompy ciepła mogą pobierać ciepło z powietrza, wody lub gruntu, co czyni je wszechstronnym rozwiązaniem dla systemów ogrzewania i przygotowania ciepłej wody użytkowej. W praktyce pompy ciepła są szeroko stosowane w budownictwie ekologicznym i w domach z systemami OZE, co pozwala na znaczne ograniczenie kosztów energii oraz redukcję emisji CO2. Dzięki wysokiej efektywności energetycznej, pompy ciepła mogą osiągnąć współczynniki wydajności (COP) wynoszące 3-5, co oznacza, że na każdy 1 kWh zużytej energii elektrycznej są w stanie wytworzyć 3-5 kWh ciepła. Zastosowanie pomp ciepła w systemach przygotowania ciepłej wody użytkowej jest więc zarówno ekonomiczne, jak i ekologiczne, zgodne z zasadami zrównoważonego rozwoju i certyfikacjami takimi jak BREEAM czy LEED.

Pytanie 12

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
B. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
C. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
D. na przyłączach pionów do przewodów rozprowadzających
Zawór bezpieczeństwa jest kluczowym elementem w instalacji centralnego ogrzewania, szczególnie w systemach zamkniętych. Montaż zaworu bezpieczeństwa bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej jest zgodny z zasadami inżynierii cieplnej oraz normami bezpieczeństwa. Głównym celem zaworu bezpieczeństwa jest ochrona instalacji przed nadmiernym ciśnieniem, które może prowadzić do uszkodzeń kotła, wymiennika ciepła oraz innych komponentów systemu. Przy odpowiednim umiejscowieniu zaworu, możliwe jest natychmiastowe uwolnienie nadmiaru ciśnienia, co minimalizuje ryzyko awarii. Przykładowo, w instalacjach, w których występują duże różnice temperatur, zawór ten jest niezbędny, aby zapobiec zjawisku przegrzewania i ewentualnemu wybuchowi. Dobrą praktyką jest regularne sprawdzanie stanu technicznego zaworu oraz jego funkcjonalności, aby zapewnić nieprzerwaną i bezpieczną pracę instalacji.

Pytanie 13

Kiedy odbywa się odbiór instalacji solarnej?

A. po pierwszym uruchomieniu systemu.
B. przed pierwszym uruchomieniem systemu.
C. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
D. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
Odpowiedzi sugerujące, że odbiór instalacji solarnej następuje przed jej pierwszym uruchomieniem lub po wykonaniu próby ciśnieniowej, są nieprawidłowe, ponieważ kluczowym etapem odbioru jest obserwacja działania systemu w rzeczywistych warunkach operacyjnych. Przeprowadzenie próby ciśnieniowej przed uruchomieniem jest istotne, ale to tylko jeden z kroków w procesie weryfikacji instalacji. Nie dostarcza ono jednak informacji na temat rzeczywistej wydajności instalacji, jak również jej zdolności do pracy w zmieniających się warunkach atmosferycznych. Odbiór po napełnieniu zasobnika i przed ustawieniem mocy pompy nie jest wystarczający, ponieważ w czasie pierwszego uruchomienia można zaobserwować, jak system reaguje na rzeczywistą interakcję wszystkich komponentów, co może ujawnić potencjalne problemy, które nie były widoczne w fazie montażu. Odbiór powinien uwzględniać nie tylko aspekty techniczne, ale również funkcjonalność instalacji, co wymaga jej uruchomienia. Zrozumienie tych zależności jest kluczowe dla zapewnienia efektywności oraz bezpieczeństwa systemów solarnych.

Pytanie 14

W którym miesiącu w Polsce średni zysk z instalacji solarnych osiąga najwyższe wartości?

A. We wrześniu
B. W marcu
C. W maju
D. W czerwcu
Wybór czerwca jako miesiąca z największym zyskiem solarnym w Polsce opiera się na analizie danych meteorologicznych i nasłonecznienia. W czerwcu dni są najdłuższe, a ilość promieniowania słonecznego osiąga najwyższy poziom. Z tego powodu, instalacje solarne, które funkcjonują na zasadzie konwersji energii słonecznej na energię elektryczną, generują największe ilości energii w tym miesiącu. W praktyce oznacza to, że właściciele systemów solarnych mogą liczyć na największe oszczędności na rachunkach za energię oraz na szybszy zwrot z inwestycji. Długoterminowe prognozy i analizy danych pokazują, że efektywność systemów fotowoltaicznych w czerwcu może przekraczać 120% średniej rocznej produkcji energii. Warto również zwrócić uwagę na odpowiednie projektowanie i orientację paneli słonecznych, co może dodatkowo zwiększyć ich wydajność w miesiącach letnich. Zgodnie z najlepszymi praktykami, warto przeprowadzać regularne przeglądy instalacji, aby zapewnić ich optymalne działanie przez cały rok, zwłaszcza w miesiącach o największym nasłonecznieniu.

Pytanie 15

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. w skrzynce przyłączeniowej panelu fotowoltaicznego
B. pomiędzy dwoma panelami w stringu
C. między łańcuchem paneli a akumulatorem
D. na końcu rzędu paneli
Diody bypass w instalacji fotowoltaicznej są kluczowymi elementami, które zapewniają optymalną wydajność paneli słonecznych. Montuje się je w puszce przyłączeniowej panelu fotowoltaicznego, co pozwala na ich skuteczne działanie w sytuacjach, gdy jeden z ogniw panelu ulegnie zaciemnieniu lub uszkodzeniu. Dzięki diodom bypass, prąd może płynąć z pominięciem niedziałającego ogniwa, co minimalizuje straty mocy i pozwala na dalsze generowanie energii przez pozostałe sprawne ogniwa. Zastosowanie tych diod zgodnie z normami branżowymi, takimi jak IEC 61215 dla paneli słonecznych, jest powszechną praktyką, która zapewnia długoterminową niezawodność instalacji. Przykładowo, w przypadku instalacji solarnych na dachach z drzewami w pobliżu, gdzie cień może padać na część paneli, diody bypass pomagają utrzymać wydajność systemu, co jest krytyczne dla jego zwrotu z inwestycji. Warto również zauważyć, że odpowiednie umiejscowienie tych diod może wpływać na gwarancję paneli, dlatego ich instalacja powinna być przeprowadzona zgodnie z zaleceniami producenta.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby zabezpieczyć się przed niepełnym spalaniem w kotłach opalanych biomasą, powinno się zainstalować tzw. sondę lambda

A. w komorze paleniskowej
B. na wentylatorze podmuchu
C. w przewodzie kominowym
D. w podajniku paliwa
Sonda lambda jest kluczowym elementem systemu kontroli spalania w kotłach na biomasę, ponieważ jej zadaniem jest monitorowanie stężenia tlenu w spalinach. Montaż sondy w przewodzie kominowym pozwala na precyzyjne pomiary, które są niezbędne do optymalizacji procesu spalania. Dzięki tym pomiarom system może dostosować ilość powietrza dostarczanego do kotła, co z kolei wpływa na efektywność spalania oraz redukcję emisji szkodliwych substancji. Przykładowo, w przypadku, gdy sonda wykrywa zbyt niskie stężenie tlenu, system automatycznie zwiększa podmuch powietrza, co pozwala na uzyskanie pełniejszego spalania paliwa. W praktyce, zastosowanie sondy lambda w odpowiednim miejscu, jakim jest przewód kominowy, przyczynia się do poprawy efektywności energetycznej całego systemu grzewczego oraz spełnienia norm środowiskowych, co jest zgodne z najlepszymi praktykami branżowymi. Rekomendacje dotyczące instalacji sondy lambda w przewodach kominowych są również zgodne z wytycznymi wielu organizacji zajmujących się ochroną środowiska.

Pytanie 18

Aby osiągnąć optymalną efektywność w słonecznej instalacji grzewczej do podgrzewania wody w basenie podczas lata, kolektory powinny być ustawione w stosunku do poziomu pod kątem

A. 45°
B. 60°
C. 90°
D. 30°
Kąt nachylenia kolektorów słonecznych jest kluczowym parametrem wpływającym na ich wydajność. Ustawienie kolektorów pod kątem 30° w sezonie letnim pozwala na optymalne wykorzystanie promieni słonecznych, które w tym okresie są najbardziej intensywne i wysoko na niebie. W Polsce, która znajduje się na szerokości geograficznej około 52°N, ten kąt jest zgodny z zaleceniami ekspertów w dziedzinie energii odnawialnej. Przy takim nachyleniu kolektory są w stanie maksymalnie zbierać energię słoneczną, co przekłada się na efektywniejszy proces podgrzewania wody w basenie. Zastosowanie tego standardowego kąta nachylenia pozwala nie tylko na zwiększenie wydajności instalacji, ale także na obniżenie kosztów eksploatacyjnych, co jest istotne dla użytkowników. W praktyce, dostosowanie kąta nachylenia do warunków lokalnych i pory roku jest elementem dobrych praktyk w projektowaniu systemów solarnych.

Pytanie 19

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
B. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
C. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
D. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła
Wszystkie błędne odpowiedzi wskazują na niewłaściwe umiejscowienie czujnika pływakowego, co może prowadzić do poważnych konsekwencji w eksploatacji kotłów na biomasę. Montaż czujnika na powrocie z instalacji c.o. 10 cm powyżej lub poniżej najwyższej części kotła nie jest skuteczny, ponieważ czujnik umieszczony w tym miejscu może nie reagować na rzeczywisty poziom wody w kotle. Tego rodzaju instalacja może prowadzić do sytuacji, w których kotłownia będzie działać z niewystarczającą ilością wody, co stwarza ryzyko przegrzania i uszkodzenia urządzeń. Z kolei zamontowanie czujnika na zasilaniu c.o. 10 cm poniżej najwyższej części kotła także jest niewłaściwe, ponieważ czujnik nie będzie w stanie zareagować na spadek poziomu wody na czas, co z kolei może skutkować przegrzaniem kotła oraz niebezpieczeństwem związanym z jego działaniem. Tego rodzaju błędy są często wynikiem braku zrozumienia zasady działania systemów grzewczych oraz ich interakcji. Kluczowym aspektem bezpieczeństwa w instalacjach grzewczych jest zapewnienie odpowiedniego poziomu wody w kotle, co powinno być realizowane poprzez umiejętne umiejscowienie czujników oraz korzystanie z automatyzacji, która może monitorować i regulować poziom wody w czasie rzeczywistym.

Pytanie 20

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 3650 kWh
B. 4380 kWh
C. 1095 kWh
D. 1460 kWh
Wybrana odpowiedź 4380 kWh jest poprawna, ponieważ obliczamy roczne zużycie energii przez sprężarkę, uwzględniając zarówno moc urządzenia, jak i czas jego pracy. Sprężarka o mocy elektrycznej 3 kW działa przez 4 godziny dziennie, co daje dzienne zużycie energii wynoszące 3 kW * 4 h = 12 kWh. Następnie, mnożąc to przez liczbę dni w roku (365), otrzymujemy 12 kWh * 365 = 4380 kWh. Tego rodzaju kalkulacje są kluczowe w branży HVAC, gdzie efektywność energetyczna jest priorytetem. Znajomość zużycia energii pozwala na optymalizację kosztów eksploatacyjnych oraz wprowadzenie środków oszczędnościowych, co jest szczególnie ważne w kontekście rosnących cen energii. W praktyce, dobrą praktyką jest monitorowanie zużycia energii urządzeń takich jak pompy ciepła, co można osiągnąć za pomocą systemów zarządzania energią, które umożliwiają wykrywanie nieefektywności i wprowadzanie ulepszeń.

Pytanie 21

Aby zamontować poziomy wymiennik gruntowy, na początku należy

A. usunąć wierzchnią warstwę gleby
B. przygotować wykop
C. określić lokalizację montażu pompy ciepła
D. wytyczyć miejsce ułożenia wymiennika
Wytyczenie miejsca ułożenia wymiennika gruntowego poziomego jest kluczowym pierwszym krokiem w procesie instalacji. Ten etap pozwala na precyzyjne określenie lokalizacji, w której wymiennik będzie zainstalowany, biorąc pod uwagę czynniki takie jak dostępność terenu, warunki glebowe oraz odległość od budynku. Właściwe wytyczenie miejsca ma wpływ na efektywność działania pompy ciepła oraz na późniejsze prace budowlane. Przykładowo, jeśli wymiennik nie zostanie odpowiednio wytyczony, może to prowadzić do trudności w montażu oraz do ewentualnych problemów z wymianą ciepła, co obniża efektywność systemu. Zgodnie z dobrymi praktykami w branży, przed rozpoczęciem jakichkolwiek prac ziemnych, warto wykonać dokładne pomiary oraz, jeśli to możliwe, skonsultować się z geodetą, aby uniknąć problemów związanych z ułożeniem rur w niewłaściwych warunkach glebowych lub w pobliżu innych instalacji podziemnych.

Pytanie 22

W rozwinięciu systemu grzewczego na energię słoneczną w skali 1:50, długość odcinka pionowego z miedzi wynosi 100 mm. Jaką długość przewodu miedzianego trzeba nabyć do zainstalowania tego pionu?

A. 500,0 m
B. 0,5 m
C. 50,0 m
D. 5,0 m
Wybór błędnej odpowiedzi na to pytanie może wynikać z kilku powszechnych nieporozumień związanych z interpretacją skali i jednostek miary. Odpowiedzi sugerujące długości takie jak 0,5 m, 50,0 m czy 500,0 m pokazują, że osoby udzielające tych odpowiedzi mogły nie wziąć pod uwagę faktu, że długości przedstawione w skali muszą być przeliczone w odpowiedni sposób. Na przykład, wybór 0,5 m może sugerować, że użytkownik sądził, że łatwo jest pomnożyć długość na planie bez uwzględnienia skali. Z kolei odpowiedź 50,0 m odzwierciedla błędne założenie, że długość na planie odpowiada rzeczywistej długości bez mnożenia przez skale, co prowadzi do znacznego przeszacowania rzeczywistych potrzeb materiałowych. W przypadku odpowiedzi 500,0 m, możliwe, że wynikło to z nieprawidłowego przeliczenia jednostek, gdzie użytkownik mógł błędnie zrozumieć, że 100 mm na planie powinno być traktowane jako 500 mm w rzeczywistości bez uwzględnienia proporcji wynikającej ze skali. Te błędy myślowe mogą prowadzić do poważnych konsekwencji w praktyce inżynieryjnej, takich jak nadmierne zamówienia materiałów, które nie tylko zwiększają koszty projektu, ale także mogą prowadzić do marnotrawstwa zasobów. Kluczowe jest zatem zrozumienie zasadności przeliczania długości w kontekście projektowania oraz umiejętność oceny wymagań materiałowych na podstawie odpowiednich standardów inżynieryjnych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 24 m3
B. 15 m3
C. 48 m3
D. 36 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Koszt materiałów do instalacji paneli słonecznych w domu jednorodzinnym wynosi 9 000 zł. Aby zamontować system na płaskim dachu, potrzeba 16 godzin pracy dwóch wykwalifikowanych pracowników, których stawka za godzinę wynosi 25,00 zł. Firma instalacyjna dolicza narzut na materiały w wysokości 20%. Jaki jest łączny koszt zamontowania systemu solarnego?

A. 11 600 zł
B. 12 600 zł
C. 9 800 zł
D. 10 800 zł
Aby obliczyć całkowity koszt montażu instalacji solarnej, należy uwzględnić zarówno koszt materiałów, jak i koszt pracy. Koszt materiałów wynosi 9 000 zł. Dodatkowo, firma instalacyjna nalicza 20% narzut na materiały, co oznacza, że dodajemy 1 800 zł (20% z 9 000 zł), co daje nam łączny koszt materiałów równy 10 800 zł. Następnie obliczamy koszt pracy: dwóch wykwalifikowanych pracowników pracuje po 16 godzin, co daje łącznie 32 godziny. Przy stawce 25 zł za godzinę, całkowity koszt pracy wynosi 800 zł (32 godziny x 25 zł). Dodając koszt materiałów i pracy, otrzymujemy 10 800 zł + 800 zł = 11 600 zł. Ta odpowiedź jest zgodna z dobrymi praktykami w zakresie wyceny projektów instalacji solarnych, które zawsze powinny obejmować wszystkie koszty związane z realizacją projektu, aby nie narazić się na nieprzewidziane wydatki podczas jego realizacji.

Pytanie 28

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. obniżenie poziomu wody w turbinie
B. zabezpieczenie turbiny przed zanieczyszczeniami
C. kontrola strumienia wody wpływającego do turbiny
D. zatrzymanie przepływu wody do turbiny
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 29

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60

A. 1,0
B. 3,0
C. 4,0
D. 4,5
Wybierając inne wartości współczynnika COP, można nieprawidłowo ocenić efektywność pompy ciepła. Odpowiedzi takie jak 4,0, 1,0 czy 4,5 mogą wynikać z typowych błędów myślowych związanych z interpretacją danych. Warto zauważyć, że współczynnik COP o wartości 1,0 oznaczałby, że moc grzewcza jest równa mocy elektrycznej, co jest nieefektywne i niepraktyczne w kontekście nowoczesnych rozwiązań grzewczych. Pompy ciepła są projektowane tak, aby przewyższały zużycie energii, dlatego COP powinien wynosić przynajmniej 3,0. Z kolei wartości takie jak 4,0 czy 4,5 sugerują, że pompa ciepła dostarczałaby jeszcze więcej energii cieplnej, co może być mylące, ponieważ takie wskaźniki wymagają specyficznych warunków pracy, często przy znacznie niższych temperaturach otoczenia. W realnych warunkach operacyjnych, na które wpływają zmienne takie jak temperatura zewnętrzna czy rodzaj medium grzewczego, osiągnięcie tak wysokiego COP może być niezwykle trudne. Praktyki branżowe podkreślają, że wartości COP należy analizować w kontekście specyficznych danych technicznych oraz warunków użytkowania, co czyni odpowiedź 3,0 najbardziej zbliżoną do rzeczywistości.

Pytanie 30

Całkowity koszt materiałów do zainstalowania systemu pompy ciepła wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Wiedząc, że koszt robocizny wynosi 20 % wartości materiałów, oblicz całkowitą wartość inwestycji?

A. 70 900 zł
B. 74 400 zł
C. 86 800 zł
D. 83 300 zł
Aby obliczyć całkowitą wartość inwestycji w instalację pompy ciepła, należy zsumować koszty materiałów, sprzętu oraz robocizny. Koszt materiałów wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Robocizna została ustalona na 20% wartości materiałów, co daje 12 400 zł (20% z 62 000 zł). Zatem całkowity koszt inwestycji obliczamy jako: 62 000 zł (materiały) + 8 900 zł (sprzęt) + 12 400 zł (robocizna) = 83 300 zł. Wyliczenia te są zgodne z praktykami stosowanymi w branży budowlanej, gdzie szczegółowe rozliczenia kosztów są kluczowe dla zarządzania projektami. Praktyczne zastosowanie tej wiedzy polega na umiejętnym planowaniu budżetu inwestycyjnego oraz przewidywaniu kosztów całkowitych przed rozpoczęciem prac, co jest niezbędne dla uniknięcia nieprzewidzianych wydatków i utrzymania rentowności projektu.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. mieszaninę glikolu propylenowego i wody
B. wodę z instalacji kotła centralnego ogrzewania
C. roztwór soli kuchennej
D. wodę destylowaną
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."

Pytanie 33

Wskaż, w oparciu o przedstawiony fragment instrukcji, na jakiej minimum głębokości poniżej lokalnej granicy przemarzania gruntu, należy montować kolektory gruntowe.

W przypadku gruntów o niskim stopniu wilgotności (grunt suchy, piaszczysty) układy spiralne mogą powodować znaczne wychłodzenie gruntu i zamarzanie parownika w pompie ciepła, wobec czego zdecydowanie bardziej bezpieczne jest stosowanie układów płaskich lub kolektorów pionowych. Kolektory poziome, w postaci pętli rur o jednakowej długości, układa się w odległości minimum 0,5÷1,0 m od siebie, na głębokości 30÷40 cm poniżej granicy przemarzania gruntu, co w Polsce stanowi w zależności od rejonu 0,8÷1,4 m.

A. 10 cm
B. 20 cm
C. 50 cm
D. 30 cm
Poprawna odpowiedź to 30 cm, co wynika z zaleceń zawartych w instrukcji dotyczącej montażu kolektorów gruntowych. Kolektory te powinny być umieszczone na głębokości od 30 do 40 cm poniżej lokalnej granicy przemarzania gruntu, aby zapewnić ich prawidłowe funkcjonowanie. W Polsce granica ta wynosi od 0,8 do 1,4 m, co oznacza, że minimalna głębokość montażu kolektorów powinna wynosić 30 cm poniżej tej granicy, co zapewnia odpowiednią ochronę przed wpływem mrozu. W praktyce oznacza to, że montując kolektory, należy zwrócić uwagę na lokalne warunki geologiczne i klimatyczne, aby dostosować głębokość ich ułożenia do specyfikacji technicznych. Przykład zastosowania to instalacje systemów ogrzewania geotermalnego, gdzie odpowiednia głębokość montażu kolektorów jest kluczowa dla efektywności energetycznej budynku. Zgodnie z najlepszymi praktykami, warto również zwrócić uwagę na rozmieszczenie kolektorów, które powinno wynosić od 0,5 do 1,0 m między poszczególnymi pętlami, aby zapewnić optymalne warunki pracy systemu.

Pytanie 34

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
B. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
C. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
D. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 35

Dobierając rozmiar kolektora oraz zbiornika do systemu podgrzewania wody użytkowej w budynku jednorodzinnym, przy założeniu pokrycia rocznego na poziomie 65% oraz dziennego zużycia w granicach 80-100 l/osobę, monter powinien brać pod uwagę wskaźnik

A. 1:2,5 m2 powierzchni absorbera / osobę
B. 1:3,0 m2 powierzchni absorbera / osobę
C. 1:2,0 m2 powierzchni absorbera / osobę
D. 1:1,5 m2 powierzchni absorbera / osobę
Wybór powierzchni absorbera w odpowiedzi 1:2,0 m2, 1:3,0 m2 oraz 1:2,5 m2 na osobę oparty jest na błędnym założeniu, że większa powierzchnia kolektora zawsze zapewni lepsze wyniki pod względem pokrycia potrzeb cieplnych. Tego rodzaju rozumowanie prowadzi do marnotrawstwa zasobów oraz nieefektywnego wykorzystania dostępnych technologii. W przypadku zastosowania wskaźnika 1:2,0 m2, oznacza to, że na jedną osobę przypada zbyt duża powierzchnia kolektora, co może prowadzić do nadprodukcji energii w miesiącach letnich, a w zimie do niewystarczającej ilości ciepła. Dodatkowo, wskaźnik 1:3,0 m2 lub 1:2,5 m2 nie uwzględnia optymalizacji powierzchni kolektora w kontekście regionalnych warunków klimatycznych i rzeczywistego zużycia wody. W praktyce, każdy metr kwadratowy kolektora wiąże się z kosztami instalacji oraz eksploatacji, dlatego kluczowe jest dostosowanie jego powierzchni do rzeczywistych potrzeb użytkowników. Typowym błędem jest zakładanie, że wzrost powierzchni kolektora automatycznie zwiększy efektywność systemu, podczas gdy rzeczywistość jest znacznie bardziej złożona. Należy także pamiętać o lawinowym wzroście kosztów zakupu, montażu oraz późniejszej konserwacji. Właściwe dobranie parametrów instalacji, w tym powierzchni kolektora, bazujące na analizie zużycia wody oraz lokalnych warunków, jest kluczowe dla zapewnienia zrównoważonego i efektywnego systemu grzewczego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Zanim instalacja kotłowni spalającej biomasę zostanie oddana do użytku, jaki dokument jest niezbędny?

A. pozytywna opinia straży miejskiej
B. ocena wpływu inwestycji na środowisko
C. decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego
D. protokół odbioru końcowego
Pozytywna opinia straży miejskiej, decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego oraz ocena wpływu inwestycji na środowisko to dokumenty, które, choć bardzo ważne w kontekście ochrony środowiska i regulacji dotyczących emisji, nie są bezpośrednio wymagane przed oddaniem do eksploatacji kotłowni spalającej biomasę. Wiele osób może mylnie sądzić, że opinia straży miejskiej jest niezbędna, ponieważ stanowi ona element lokalnych regulacji. Jednakże, jej rola w procesie eksploatacji kotłowni jest ograniczona i nie zastępuje formalnych wymogów odbioru technicznego. Decyzja o wprowadzaniu zanieczyszczeń do powietrza, zwana często pozwoleniem na emisję, dotyczy aspektów operacyjnych instalacji, ale jest to kwestia, którą należy rozwiązać po otrzymaniu protokołu odbioru. Ocena wpływu inwestycji na środowisko, z kolei, jest istotna na etapie planowania budowy, a nie na etapie oddawania do użytku. Często mylone jest również pojęcie przeprowadzania kontroli, ponieważ wielu użytkowników sądzi, że wystarczą opinie lokalnych organów, co nie zawsze jest zgodne z wymogami prawnymi. W praktyce, zrozumienie hierarchii dokumentów i ich roli w procesie inwestycyjnym jest kluczowe dla uniknięcia problemów prawnych i operacyjnych w przyszłości.

Pytanie 38

Zbudowanie fundamentów oraz wieży dla małej elektrowni wiatrowej o wysokości 10 metrów

A. wymaga zgłoszenia budowlanego
B. może być realizowane po poinformowaniu sąsiadów
C. wymaga pozwolenia na budowę
D. może być realizowane bez uzgodnień
Budowa fundamentu i wieży małej elektrowni wiatrowej o wysokości 10 metrów rzeczywiście wymaga pozwolenia na budowę. Zgodnie z polskim prawem budowlanym, każda inwestycja budowlana, która wpływa na środowisko zmieniając jego charakter, musi być odpowiednio zgłoszona i zatwierdzona. Elektrownie wiatrowe, choć niewielkie, są uznawane za obiekty mogące wpływać na otoczenie, a ich budowa wymaga wnikliwej analizy pod kątem wpływu na lokalne ekosystemy, krajobraz oraz sąsiedztwo. W praktyce, uzyskanie pozwolenia na budowę wiąże się z przygotowaniem odpowiedniej dokumentacji, która powinna zawierać projekt budowlany, analizy oddziaływania na środowisko oraz ewentualne konsultacje z sąsiadami. Dobre praktyki wskazują, że przed rozpoczęciem inwestycji warto przeprowadzić również konsultacje społeczne, aby uzyskać akceptację lokalnej społeczności. Zrozumienie wymogów prawnych jest kluczowe dla efektywnego zarządzania projektem budowlanym.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Parametr, który nie jest uwzględniany w analizie glikolu, to

A. barwa
B. przewodność elektryczna
C. odczyn
D. temperatura zamarzania
Przewodność elektryczna rzeczywiście nie jest kluczowym parametrem branym pod uwagę przy badaniu właściwości glikolu. W kontekście analizy glikolu, istotne są takie parametry jak odczyn, temperatura zamarzania oraz barwa, które mają znaczenie dla jego użyteczności w różnych zastosowaniach przemysłowych i technicznych. Odczyn (pH) glikolu wpływa na jego stabilność chemiczną oraz interakcje z innymi substancjami, co jest kluczowe w systemach chłodniczych. Temperatura zamarzania jest istotna, ponieważ determinuje, w jakich warunkach glikol może być efektywnie stosowany, zwłaszcza w klimatach o niskich temperaturach. Barwa może wskazywać na obecność zanieczyszczeń lub degradacji substancji. W praktyce, normy branżowe, takie jak ASTM D1384, określają metody testowania tych parametrów, co zapewnia ich wiarygodność i użyteczność w zastosowaniach inżynieryjnych. Dlatego znajomość tych właściwości jest kluczowa dla inżynierów i techników zajmujących się systemami chłodzenia i innymi zastosowaniami glikolu.