Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 czerwca 2025 05:39
  • Data zakończenia: 3 czerwca 2025 05:47

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W tabeli przedstawiono fragment danych technicznych bezprzewodowego czujnika temperatury. Określ, który z czynników może wpływać na niewłaściwą pracę czujnika.

DANE TECHNICZNE
Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
Zasilaniebateria litowa CR123A 3 V
Czas pracy na bateriiokoło 3 lata
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Dokładność pomiaru temperatury±2%
Zakres temperatur pracy-10 °C...+55 °C
Maksymalna wilgotność93±3%
Wymiary obudowy24 x 110 x 27 mm
Waga56 g

A. Odbiornik słuchawek bezprzewodowych 433 MHz.
B. Napięcie zasilania czujnika 2,9 V.
C. Obce źródło fal radiowych 868 MHz.
D. Zakres zmian temperatury 15°C÷30°C.
Obce źródło fal radiowych 868 MHz jest kluczowym czynnikiem, który może wpływać na niewłaściwą pracę czujnika temperatury. Czujniki bezprzewodowe komunikują się za pomocą fal radiowych, a ich prawidłowe działanie zależy od braku zakłóceń w paśmie częstotliwości, na którym operują. W przypadku tego czujnika, który działa na częstotliwości 868 MHz, każde zewnętrzne źródło fal radiowych w tym samym zakresie może prowadzić do interferencji. Przykładem zastosowania tego czujnika może być monitorowanie temperatury w różnych środowiskach, np. w inteligentnych domach lub w przemyśle. W takich zastosowaniach istotne jest, aby czujniki były odporne na zakłócenia, co można osiągnąć poprzez zastosowanie technologii komunikacji, takich jak LoRa czy Zigbee. Standardy te przewidują odpowiednie protokoły, które minimalizują ryzyko zakłóceń ze strony innych urządzeń. W związku z tym, projektując systemy monitorowania, warto zwracać uwagę na dobór odpowiednich częstotliwości oraz na obecność potencjalnych źródeł zakłóceń, co pozwoli na zapewnienie stabilności i dokładności pomiarów.

Pytanie 2

Jakie złącze służy do podłączenia projektora multimedialnego do komputera PC?

A. PS-2
B. VGA
C. LPT
D. SATA
Złącze VGA (Video Graphics Array) jest standardowym interfejsem stosowanym do przesyłania sygnału wideo z komputera do projektora multimedialnego. To złącze, wprowadzone w 1987 roku, stało się powszechnie stosowanym rozwiązaniem w branży komputerowej i audiowizualnej. Jego główną zaletą jest możliwość przesyłania analogowego sygnału wideo w rozdzielczości do 640x480 pikseli, co w praktyce wystarcza do wyświetlania obrazu w wielu zastosowaniach, w tym prezentacjach czy wykładach. VGA korzysta z 15-pinowego złącza D-sub, które umożliwia łatwe podłączenie do różnych urządzeń. Warto również zwrócić uwagę, że wiele nowoczesnych projektorów i monitorów nadal obsługuje standard VGA, co czyni go kompatybilnym rozwiązaniem w wielu środowiskach. Chociaż technologia ta zaczyna ustępować miejsca nowocześniejszym standardom, takim jak HDMI czy DisplayPort, to VGA wciąż odgrywa istotną rolę w wielu sytuacjach, gdzie wymagana jest prostota i łatwość podłączenia.

Pytanie 3

Podstawowym zadaniem czaszy w antenie satelitarnej jest

A. umożliwienie zamontowania konwertera pod odpowiednim kątem
B. ukierunkowanie konwertera na wybrany satelita
C. odbicie fal i skierowanie ich ku konwerterowi
D. umożliwienie odbioru określonych częstotliwości sygnału
Głównym zadaniem czaszy anteny satelitarnej jest odbicie fal radiowych z satelity i skierowanie ich do konwertera, co jest kluczowe dla efektywnego odbioru sygnału. Czasza działa jak zwierciadło, które zbiera fale elektromagnetyczne i skupia je w jednym punkcie, gdzie znajduje się konwerter. Dzięki temu, sygnał jest poprawnie przetwarzany i przesyłany do odbiornika. Przykładem zastosowania tego rozwiązania może być antena paraboliczna, która jest powszechnie stosowana w telekomunikacji satelitarnej, umożliwiając odbiór wysokiej jakości sygnału telewizyjnego. Warto zauważyć, że odpowiednie ustawienie kąta nachylenia czaszy oraz jej średnicy mają znaczący wpływ na jakość sygnału. W standardach branżowych, takich jak ITU-R, podkreśla się znaczenie precyzyjnego montażu anteny oraz jej dopasowania do parametrów satelity, co zapewnia optymalną wydajność systemu. Wiedza o roli czaszy w antenie satelitarnej jest zatem fundamentalna dla każdej osoby zajmującej się instalacją i konserwacją systemów satelitarnych.

Pytanie 4

Na jakim zakresie woltomierza należy dokonać pomiaru napięcia AC o wartości skutecznej 90 V?

A. 750 V AC
B. 500 V DC
C. 100 V DC
D. 200 V AC
Odpowiedź 200 V AC jest prawidłowa, ponieważ przy pomiarach napięcia przemiennego, zaleca się wybór zakresu, który jest co najmniej o 20% wyższy od wartości mierzonych. Wartość skuteczna 90 V oznacza, że szczytowe napięcie tego sygnału wynosi około 127 V (obliczone z wzoru Vp = Vrms * √2). Użycie zakresu 200 V AC zapewnia odpowiednią rezerwę, minimalizując ryzyko uszkodzenia woltomierza oraz zapewnia lepszą dokładność pomiaru. Przykładem zastosowania może być monitorowanie systemów zasilania w budynkach, gdzie do pomiaru używane są woltomierze przenośne. W praktyce, standardy takie jak IEC 61010 wymagają odpowiednich zakresów pomiarowych, aby zapobiegać błędom wynikającym z przekroczenia maksymalnych wartości napięcia. Ponadto, stosowanie zakresu AC jest kluczowe, ponieważ napięcie przemienne nie powinno być mierzone na zakresach przeznaczonych dla napięcia stałego, co mogłoby prowadzić do fałszywych odczytów i potencjalnych zagrożeń dla sprzętu.

Pytanie 5

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. B.
B. A.
C. D.
D. C.
W przypadku rozważania innych opcji, kluczowe jest zrozumienie, dlaczego ich wybór może być błędny. Opcje A, B i D prawdopodobnie nie spełniają wymagań dotyczących pojemności lub są nieoptymalne pod względem kosztów. Na przykład, wybór akumulatorów o zbyt małej pojemności nie zapewni wymaganych 50 Ah. Jeśli akumulatory oferowane w tych opcjach mają mniejszą pojemność, użytkownik naraża się na ryzyko niedoboru energii, co może prowadzić do przerwy w zasilaniu kamer. Kolejnym typowym błędem jest skupienie się wyłącznie na kosztach, a nie na całkowitym koszcie użytkowania. Wybór najtańszych akumulatorów może prowadzić do zwiększonej częstotliwości wymiany, co w końcu podnosi koszty eksploatacji. W praktyce lepiej jest inwestować w akumulatory o wyższej pojemności, które zapewnią stabilność systemu, a także zmniejszą ryzyko awarii. Zgodnie z tymi zasadami, analiza kosztów i korzyści powinna być kluczowym elementem decyzji o wyborze akumulatorów w systemach monitoringu.

Pytanie 6

Przełącznik satelitarny pozwala na podłączenie

A. dwóch konwerterów do jednego tunera
B. jednego konwertera do dwóch tunerów
C. dwóch transponderów do jednej anteny satelitarnej
D. jednego transpondera do dwóch anten satelitarnych
Odpowiedź "dwóch konwerterów do jednego tunera" jest poprawna, ponieważ przekaźniki satelitarne, znane również jako przełączniki, są projektowane do zarządzania sygnałami z różnych konwerterów, umożliwiając jednoczesne korzystanie z dwóch lub więcej źródeł sygnału satelitarnego. W praktyce, przełącznik taki pozwala na podłączenie dwóch konwerterów, co jest szczególnie przydatne w systemach, gdzie użytkownik chce odbierać sygnał z różnych satelitów. Taki układ jest zgodny z zasadami instalacji satelitarnych, gdzie elastyczność i możliwość dostosowania systemu do różnych potrzeb są kluczowe. Ponadto, stosowanie przełączników zwiększa efektywność instalacji, umożliwiając lepsze wykorzystanie zasobów. Ważne jest, aby dobierać odpowiednie komponenty, które spełniają standardy jakości i wydajności, co zapewnia stabilne połączenie i minimalizuje straty sygnału. Przykładowo, w instalacjach wielosatelitarnych, gdzie użytkownik może chcieć odbierać programy z różnych źródeł, zastosowanie przełączników staje się niezbędne.

Pytanie 7

Podczas kontroli czujki czadu stwierdzono, że emituje ona co 30 sekund dwa krótkie sygnały dźwiękowe i czerwona dioda LED miga dwukrotnie. Oznacza to, że

FunkcjaCo to oznaczaJakie działanie należy podjąć
Zielona dioda LED miga co 30 sekundNormalne działanieBrak
Czujnik emituje krótki sygnał dźwiękowy co 60 sekund i miga czerwona dioda LEDNiski poziom bateriiNiezwłocznie wymienić baterie
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga dwukrotnieKoniec okresu eksploatacyjnego czujnikaWymienić czujnik
Czujnik emituje dwa krótkie sygnały co 30 sekund i czerwona dioda LED miga co 30 sekundNieprawidłowe działanieWymienić czujnik
Czerwona dioda LED świeci się i ciągły dźwięk alarmowyAwariaWymienić czujnik
Głośny, ciągły alarm i świecąca się czerwona dioda LEDWykryto niebezpieczne stężenie COPostępować zgodnie z procedurą awaryjną

A. czujka działa poprawnie i jest w stanie czuwania.
B. czujka działa poprawnie i wykryła niebezpieczne stężenie tlenku węgla.
C. okres użytkowania czujki przewidziany przez producenta dobiegł końca i należy ją wymienić.
D. baterie są rozładowane i należy je wymienić.
Odpowiedź jest prawidłowa, ponieważ sygnały emitowane przez czujkę czadu wskazują na koniec jej okresu funkcjonowania. W przypadku czujników tlenku węgla, producenci zazwyczaj przewidują określony czas eksploatacji, zazwyczaj od 5 do 10 lat, po którym czujnik powinien zostać wymieniony, nawet jeśli nie wykrywa on zagrożeń. Emitowanie co 30 sekund dwóch krótkich sygnałów dźwiękowych oraz migająca dioda LED to standardowy sygnał ostrzegawczy używany przez większość producentów, co potwierdzają normy branżowe, takie jak EN 50291. Dlatego w przypadku takiego sygnału należy jak najszybciej wymienić czujkę na nową, aby zapewnić bezpieczeństwo domowników. Przykładowo, po wymianie czujnika warto przeprowadzić regularne kontrole, aby upewnić się, że nowy czujnik działa prawidłowo i jest w stanie skutecznie identyfikować niebezpieczne stężenia czadu.

Pytanie 8

Zasilacz impulsowy osiąga maksymalną moc wyjściową równą 60 W oraz napięcie 12 V. Jaki minimalny zakres prądu powinien być ustawiony, aby uniknąć uszkodzenia miernika?

A. 1 A
B. 5 A
C. 0,5 A
D. 2 A
Poprawna odpowiedź to 5 A, ponieważ aby określić minimalny zakres prądowy, który należy ustawić na mierniku, musimy obliczyć maksymalny prąd, jaki zasilacz impulsowy może dostarczyć przy maksymalnej mocy 60 W i napięciu 12 V. Zastosowanie wzoru P = U × I, gdzie P to moc, U to napięcie, a I to prąd, pozwala nam na obliczenie prądu: I = P / U = 60 W / 12 V = 5 A. Oznacza to, że przy prądzie o wartości 5 A zasilacz osiągnie swoją maksymalną moc wyjściową. Ustawienie niższego zakresu prądowego (np. 2 A, 1 A czy 0,5 A) spowoduje, że miernik nie będzie w stanie zmierzyć maksymalnego prądu, co może skutkować jego uszkodzeniem. Dlatego ważne jest, aby przy pomiarach prądowych stosować się do zasad bezpieczeństwa, zapewniając odpowiednią wartość zakresu pomiarowego, co jest podstawową praktyką w pracy z urządzeniami elektrycznymi i elektronicznymi.

Pytanie 9

W telewizji używa się kabli o impedancji falowej wynoszącej

A. 75 Ω
B. 120 Ω
C. 100 Ω
D. 50 Ω
Kabel 75 Ω to taki standard w telewizji, zwłaszcza do przesyłania wideo. Dzięki wysokiej impedancji te kable mają mniejsze straty sygnału i lepiej się dopasowują, co jest istotne, gdy obraz leci na dużą odległość. Używa się ich w praktycznie każdym systemie telewizyjnym – od anten po różne urządzenia, nawet w instalacjach satelitarnych. Generalnie, jeśli chodzi o wysoka jakość sygnału, to kabli 75 Ω powinniśmy używać do przesyłania sygnałów wideo, aby zmniejszyć zakłócenia. Warto też pamiętać, że odpowiedni kabel ma ogromne znaczenie w telewizji, a normy międzynarodowe, jak IEC 61169, potwierdzają, że trzeba ich przestrzegać.

Pytanie 10

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. wielkiej i pośredniej częstotliwości
B. odchylania poziomego i pionowego
C. separatora sygnałów
D. wzmacniacza obrazu
Wybór odpowiedzi dotyczących wzmacniacza wizji jest nieprawidłowy, ponieważ wzmacniacz wizji odpowiada za wzmocnienie sygnału wizyjnego po demodulacji, co nie ma bezpośredniego wpływu na odbiór sygnału z anteny. W przypadku braku sygnału z anteny, wzmacniacz wizji nie jest przyczyną problemu, lecz skutkiem złego odbioru. Separator impulsów jest układem używanym w niektórych telewizorach do oddzielania sygnałów synchronizacji od sygnałów wideo, jednak w omawianym przypadku brak obrazu z anteny wskazuje na problem na poziomie sygnałów RF i IF, a nie na poziomie przetwarzania wizyjnego. Uszkodzenie odchylania poziomego i pionowego również nie tłumaczy braku odbioru z anteny, ponieważ te moduły odpowiadają za poprawne wyświetlanie obrazu na ekranie, a nie za jego odbiór. Typowe błędy myślowe prowadzące do takich wniosków to skupienie się na symptomach, a nie na źródłach problemu. Przy diagnozowaniu usterek w odbiornikach telewizyjnych istotne jest przeprowadzenie analizy sygnału na różnych etapach przetwarzania, co pozwala na szybkie zidentyfikowanie rzeczywistych przyczyn problemów z odbiorem sygnału.

Pytanie 11

Wykonanie polecenia NOP przez mikrokontroler z rodziny '51

A. wykona logiczny iloczyn na odpowiednich bitach argumentów
B. spowoduje przesunięcie zawartości akumulatora w prawo
C. wywoła skok warunkowy do adresu zarejestrowanego w akumulatorze
D. nie spowoduje żadnych działań, zajmie jedynie 1 cykl maszynowy
Rozkaz NOP (No Operation) w architekturze mikrokontrolerów rodziny '51 jest instrukcją, która nie wykonuje żadnych operacji na danych, a jedynie wprowadza jednostkę czasu w cyklu maszynowym. Użycie tej instrukcji może być przydatne w różnych scenariuszach, takich jak synchronizacja procesów, wprowadzanie opóźnień czy też jako miejsce rezerwowe w kodzie, które może być później uzupełnione innymi instrukcjami. Z perspektywy praktycznej, NOP jest często stosowany w rutynach czasowych, gdzie wymagana jest pewna ilość cykli maszynowych do synchronizacji z innymi zdarzeniami w systemie. Zgodnie z dobrymi praktykami programowania w asemblerze, korzystanie z NOP może pomóc w unikaniu błędów związanych z niezamierzonymi operacjami, co zwiększa stabilność i przewidywalność działania systemu. Ponadto, w kontekście debugowania, stosowanie NOP może ułatwić analizę wykonywanego kodu, umożliwiając wprowadzenie punktów przerwania bez wpływania na logikę programu.

Pytanie 12

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. światłowodu
B. skrętki ekranowanej
C. linii radiowej
D. skrętki nieekranowanej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 13

Jakie oznaczenie skrócone odnosi się do zakresu fal radiowych o częstotliwości mieszczącej się pomiędzy 30 MHz a 300 MHz, w którym swoje audycje nadają stacje radiowe wykorzystujące modulację FM?

A. LF
B. VHF
C. MF
D. UHF
W odpowiedziach, które nie wyszły, widać, że nieco pomyliłeś się z klasyfikacją fal radiowych. LF to skrót od Low Frequency, czyli niskie częstotliwości, i obejmuje zakres od 30 kHz do 300 kHz, co jakby nie pasuje do podanego pytania. Z kolei MF, czyli Medium Frequency, ma zakres od 300 kHz do 3 MHz, co również nie jest tym, czego szukaliśmy. A UHF, oznaczający Ultra High Frequency, to już od 300 MHz do 3 GHz, co głównie używa się w telekomunikacji i telewizji. Często ludzie myślą, że te terminy się pokrywają, ale w praktyce jest inaczej. Każde pasmo ma swoje specyficzne zastosowania, co jest istotne dla inżynierów dźwięku czy ludzi zajmujących się radiem. Dlatego warto zrozumieć te różnice, bo to naprawdę przydaje się w pracy z systemami komunikacji.

Pytanie 14

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. woltomierza
B. omomierza
C. amperomierza
D. watomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 15

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. multimetr.
B. dalmiar.
C. spektrometr.
D. reflektometr.
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 16

Konwerter satelitarny typu Twin to urządzenie, które pozwala na przesyłanie

A. sygnału z jednej anteny satelitarnej do dwóch odbiorników przy wykorzystaniu światłowodu
B. sygnału z jednaj anteny satelitarnej do dwóch odbiorników za pośrednictwem kabli koncentrycznych
C. sygnału z dwóch anten satelitarnych do jednego odbiornika przy zastosowaniu kabli koncentrycznych
D. sygnału z dwóch anten satelitarnych do jednego odbiornika za pomocą światłowodu
Wiele osób może błędnie sądzić, że konwerter satelitarny typu Twin umożliwia podłączenie dwóch anten do jednego odbiornika, co jest mylące. Tego rodzaju konfiguracja, która wymagałaby przesyłania sygnału z dwóch anten do jednego odbiornika, w rzeczywistości jest bardziej skomplikowana i nie jest obsługiwana przez konwerter Twin. Również stwierdzenie, że konwerter ten przesyła sygnał za pomocą światłowodu, jest nieprawidłowe, ponieważ konwertery satelitarne zwykle używają kabli koncentrycznych, które są standardem dla instalacji satelitarnych. Ponadto, sugerowanie, że konwerter Twin może wysyłać sygnał z jednej anteny do dwóch odbiorników za pomocą światłowodu, nie uwzględnia faktu, że standardowe urządzenia w tym zakresie nie są skonstruowane do takiej operacji, co prowadziłoby do nieprawidłowości w odbiorze sygnału. Kluczowym aspektem technologii satelitarnej jest zrozumienie, że konwertery Twin działają w systemie jednego sygnału, który jest rozdzielany na zestaw dwóch złącz, co pozwala na niezależną obsługę dwóch odbiorników. Błędne wnioski mogą wynikać z nieznajomości zasad działania konwerterów oraz ich funkcji w systemie satelitarnym, co może prowadzić do nieefektywnych instalacji i problemów z jakością sygnału.

Pytanie 17

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Programowanie
B. Pomiary sprawdzające
C. Czyszczenie
D. Regulacja parametrów
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 18

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć podręczna cache procesora jest uszkodzona.
B. wystąpił problem z sumą kontrolną BIOS-u.
C. pamięć CMOS nie została ustawiona.
D. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 19

Podczas instalacji wzmacniacza antenowego najpierw należy

A. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
B. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
C. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
D. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 20

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. dojdzie do zmniejszenia impedancji kabla
B. może to prowadzić do obniżenia odporności na zakłócenia
C. zwiększy się impedancja kabla
D. kabel będzie generował silniejsze pole elektromagnetyczne
Rozkręcenie par przewodów na odcinku większym niż 13 mm może prowadzić do znaczącego obniżenia odporności na zakłócenia elektromagnetyczne. W instalacjach sieciowych, takich jak Ethernet, kluczowe jest zachowanie odpowiedniej struktury kabla, co zapobiega zjawiskom takim jak crosstalk, czyli wzajemne zakłócanie się sygnałów w sąsiadujących parach. Standardy, takie jak TIA/EIA-568, podkreślają znaczenie zachowania odpowiedniego skręcenia i ograniczenia rozkręcenia par, aby zapewnić optymalną wydajność sieci. Praktyczne przykłady zastosowania tej zasady można znaleźć w lokalnych sieciach komputerowych, gdzie nieprawidłowe skręcenie może prowadzić do spadku szybkości transferu danych oraz zwiększenia błędów transmisji. Dlatego istotne jest, aby technicy przestrzegali tych zasad podczas montażu kabli, co przyczyni się do długoterminowej stabilności i wydajności sieci.

Pytanie 21

Jakie czynności należy podjąć w pierwszej kolejności, udzielając pomocy osobie porażonej prądem elektrycznym?

A. zadzwonić po pomoc medyczną
B. wykonać masaż serca
C. odciąć porażonego od źródła prądu
D. przeprowadzić sztuczne oddychanie
Odpowiedź "uwolnić porażonego spod napięcia" jest prawidłowa, ponieważ w przypadku porażenia prądem elektrycznym najważniejszym krokiem jest zapewnienie bezpieczeństwa zarówno osobie poszkodowanej, jak i osobie udzielającej pomocy. Bezpośredni kontakt z prądem może prowadzić do poważnych obrażeń, a nawet śmierci, dlatego należy najpierw usunąć źródło zagrożenia. Można to zrobić poprzez odłączenie zasilania, użycie narzędzi izolowanych lub, w przypadku braku takiej możliwości, przesunięcie porażonego na bezpieczną odległość za pomocą przedmiotu nieprzewodzącego. Po uwolnieniu osoby z niebezpiecznej sytuacji, można przejść do oceny jego stanu zdrowia i, w razie potrzeby, wezwać pomoc medyczną. Zgodnie z wytycznymi Stowarzyszenia Czerwonego Krzyża, kluczowe jest działanie w taki sposób, aby nie narażać siebie ani innych na dodatkowe niebezpieczeństwo. W praktyce, znajomość procedur udzielania pierwszej pomocy w przypadku porażenia prądem elektrycznym może uratować życie, dlatego ważne jest, aby regularnie brać udział w szkoleniach z zakresu pierwszej pomocy.

Pytanie 22

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 500 zł
B. 2 500 zł
C. 150 zł
D. 750 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 23

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. wat.
C. woltoamper.
D. war.
Wat (W) jest jednostką mocy czynnej, a nie pozornej. Moc czynna to ta energia, która wykonuje pracę w obwodzie elektrycznym. Istnieje wiele sytuacji, w których pomiar tylko mocy czynnej jest niewystarczający. W obwodach prądu przemiennego, gdzie występują elementy indukcyjne i pojemnościowe, mierzona moc czynna nie odzwierciedla całkowitego obciążenia systemu. Z kolei moc bierna, wyrażana w warach (VAR), jest związana z energią, która oscyluje między źródłem a obciążeniem, a moc pozorna łączy obie te wartości. Watogodzina (Wh) to jednostka energii, a nie mocy, co może prowadzić do zamieszania. Użycie watogodziny do opisu mocy pozornej jest błędne, ponieważ moc jest miarą energii w jednostce czasu, a nie zbiornikiem energii. Kolejnym typowym błędem jest mylenie jednostek bezpośrednio związanych z mocą czynną z jednostkami odnoszącymi się do energii. Warto zrozumieć, że mocy biernej oraz pozornej nie można pominąć w obliczeniach, gdyż mają one kluczowe znaczenie dla wydajności systemów elektroenergetycznych. Dlatego ważne jest, aby przy projektowaniu i analizie obwodów elektrycznych uwzględniać wszystkie trzy rodzaje mocy, aby uniknąć problemów z wydajnością oraz nieprzewidzianymi awariami urządzeń.

Pytanie 24

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. YTDY
B. RG59
C. RG58
D. YTKSy
Kabel RG59 jest powszechnie używany do przesyłania sygnału video z kamer analogowych, głównie ze względu na jego niską tłumienność oraz dobrą jakość sygnału na długich odległościach. RG59 charakteryzuje się impedancją 75 ohmów, co jest standardem dla większości systemów wideo, w tym telewizji kablowej i systemów CCTV. Dzięki zastosowaniu odpowiednich materiałów dielektrycznych, kabel ten skutecznie minimalizuje straty sygnału, co jest kluczowe w przypadku przesyłania obrazu w wysokiej rozdzielczości. Przykładem praktycznego zastosowania RG59 może być instalacja systemu monitoringu w obiektach komercyjnych, gdzie kamery są rozmieszczone w znacznych odległościach od rejestratorów. W takich sytuacjach, zapewnienie jakości obrazu i stabilności sygnału jest niezbędne do efektywnej pracy systemu. Decydując się na RG59, instalatorzy mogą również stosować złącza BNC, które zapewniają łatwe i bezpieczne połączenie, eliminując ryzyko zakłóceń czy utraty jakości sygnału.

Pytanie 25

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 10
B. 4
C. 5
D. 8
Poprawna odpowiedź to 5 żył, ponieważ w systemie domofonowym 4+N unifon wymaga czterech przewodów do przesyłania sygnału audio oraz zasilania, a dodatkowy przewód, zwany N (neutralnym), jest niezbędny dla prawidłowego funkcjonowania systemu. Zastosowanie takiego układu przewodów umożliwia nie tylko komunikację z bramofonem, ale także zapewnia zasilanie i możliwość sterowania zamkiem elektromechanicznym. W systemach domofonowych zgodnych z tą specyfikacją, ważne jest, aby przewody były odpowiednio dobrane do długości instalacji oraz obciążenia, co zapewnia stabilność i niezawodność działania. Dobrą praktyką jest również stosowanie przewodów o odpowiednim przekroju, co zabezpiecza przed spadkami napięcia. W przypadku większych instalacji, rekomenduje się również użycie zasilacza o odpowiedniej mocy, aby zapewnić właściwą funkcjonalność wszystkich urządzeń w systemie. Takie podejście do instalacji pozwala na długotrwałe i bezawaryjne użytkowanie systemu domofonowego.

Pytanie 26

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. okulary ochronne
B. rękawice ochronne
C. buty na izolowanej podeszwie
D. fartuch bawełniany
Fartuch bawełniany jest kluczowym elementem odzieży ochronnej podczas prac serwisowych w elektronice, w tym wylutowywaniu podzespołów elektronicznych. Jego główną funkcją jest ochrona użytkownika przed zanieczyszczeniem, odpadami chemicznymi oraz drobnymi elementami, które mogą być uwolnione podczas prac serwisowych. Fartuch bawełniany jest wykonany z materiału, który jest odporny na wysoką temperaturę, co jest istotne, gdy używamy lutownicy lub innych narzędzi wymagających wysokiej temperatury. Dodatkowo, bawełna jest materiałem przewiewnym, co zapewnia komfort podczas długotrwałej pracy. Ponadto, zgodnie z normami BHP, fartuch powinien być odpowiednio zapinany oraz wystarczająco długi, aby chronić ciało przed potencjalnymi uszkodzeniami. W praktyce stosowanie fartucha bawełnianego jest zgodne z zaleceniami dotyczącymi zasad bezpieczeństwa w miejscu pracy, co znacząco zmniejsza ryzyko wystąpienia urazów.

Pytanie 27

Którego rodzaju kabel dotyczy termin STP?

A. Skrętki nieekranowanej
B. Skrętki ekranowanej
C. Światłowodowego
D. Koncentrycznego
Oznaczenie STP odnosi się do skrętki ekranowanej (Shielded Twisted Pair), która jest rodzajem kabla wykorzystywanego w sieciach komputerowych do przesyłania danych. Skrętki ekranowane są wyposażone w dodatkową warstwę ekranu, która chroni sygnały przed zakłóceniami elektromagnetycznymi pochodzącymi z otoczenia, co czyni je bardziej odpornymi na różnego rodzaju interferencje. STP znajduje zastosowanie w sytuacjach, gdzie istnieje duże ryzyko zakłóceń, na przykład w środowiskach przemysłowych lub blisko urządzeń elektrycznych. Przykładowe zastosowania obejmują sieci lokalne (LAN) w biurach czy zakładach produkcyjnych, gdzie stabilność sygnału jest kluczowa. Standardy takie jak TIA/EIA-568 określają wymagania dotyczące jakości kabli STP, co pozwala na osiągnięcie najwyższej wydajności transmisji danych. Wiedza na temat różnych typów kabli oraz ich zastosowania jest istotna, aby móc odpowiednio dobrać rozwiązania do konkretnych potrzeb sieciowych.

Pytanie 28

W jakiej kolejności należy wykonać czynności związane z wymianą kamery w systemie telewizji dozorowej?

A.B.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
odłączenie rejestratora od zasilania,
archiwizacja nagrań,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie przewodów do kamery,
podłączenie rejestratora do zasilania,
rozpoczęcie rejestracji.
C.D.
archiwizacja nagrań,
odłączenie przewodów od kamery,
odłączenie rejestratora od zasilania,
wymiana kamery,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji,
podłączenie rejestratora do zasilania.
archiwizacja nagrań,
odłączenie rejestratora od zasilania,
odłączenie przewodów od kamery,
wymiana kamery,
podłączenie rejestratora do zasilania,
podłączenie przewodów do kamery,
rozpoczęcie rejestracji.

A. C.
B. A.
C. B.
D. D.
Wybór odpowiedzi A jest prawidłowy, ponieważ przedstawia właściwą kolejność działań przy wymianie kamery w systemie telewizji dozorowej. Przede wszystkim, archiwizacja nagrań jest kluczowa, aby nie utracić ważnych danych. W przypadku wymiany komponentów systemu, szczególnie takich jak kamery, należy unikać sytuacji, w której bieżące nagrania mogą zostać usunięte lub uszkodzone. Następnie odłączenie rejestratora od zasilania jest istotne dla zapewnienia bezpieczeństwa. Pracując z elektroniką, zawsze należy wyłączać zasilanie, aby zminimalizować ryzyko zwarcia lub uszkodzenia sprzętu. Kolejny krok to odłączenie przewodów od starej kamery, co należy wykonać przy zachowaniu ostrożności, aby nie uszkodzić gniazd ani kabli. W dalszej kolejności następuje wymiana kamery, co wymaga precyzyjnego podłączenia nowego urządzenia. Po podłączeniu przewodów do nowej kamery oraz ponownym podłączeniu rejestratora do zasilania, można rozpocząć rejestrację. Taka sekwencja działań jest zgodna z najlepszymi praktykami branżowymi, które rekomendują zachowanie porządku i bezpieczeństwa w systemach monitoringu wideo.

Pytanie 29

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. I2C
B. RS-232
C. RS-485
D. GPIB
RS-485 to standard komunikacji szeregowej, który umożliwia różnicową transmisję sygnałów, co oznacza, że dane są przesyłane za pomocą dwóch przewodów, co pozwala na eliminację zakłóceń elektrycznych. W przeciwieństwie do RS-232, który przesyła sygnały jako pojedynczy sygnał względem masy, RS-485 wykorzystuje różnicę napięć pomiędzy dwoma przewodami, co zapewnia lepszą odporność na zakłócenia i możliwość dłuższych połączeń. Przykłady zastosowań RS-485 obejmują systemy automatyki przemysłowej, sieci czujników oraz kontrolę dostępu, gdzie wymagana jest komunikacja na dużych odległościach, nawet do 1200 metrów, oraz obsługa wielu urządzeń w jednej sieci. Standard RS-485 jest szczególnie ceniony w aplikacjach, gdzie istotne jest zachowanie integralności danych w trudnych warunkach elektromagnetycznych. Dobrą praktyką w projektowaniu systemów opartych na RS-485 jest stosowanie odpowiednich terminacji na końcach linii transmisyjnej, co minimalizuje odbicia sygnału i poprawia jakość komunikacji.

Pytanie 30

Antena paraboliczna jest używana do odbioru sygnałów

A. telewizji satelitarnej
B. radiowych w paśmie UKF
C. radiowych w zakresie fal długich i średnich
D. telewizji naziemnej
Antena paraboliczna jest specjalistycznym urządzeniem zaprojektowanym do odbioru sygnałów satelitarnych, co czyni ją kluczowym elementem systemów telewizji satelitarnej. Jej konstrukcja pozwala na skupienie sygnału elektromagnetycznego na jednym punkcie, co znacząco zwiększa efektywność odbioru. Antena ta działa na zasadzie refleksji fal, gromadząc sygnały z szerokiego obszaru i kierując je do konwertera, który następnie przekształca je na sygnały elektryczne. Dzięki temu użytkownicy mogą cieszyć się wysoką jakością obrazu i dźwięku, nawet w trudnych warunkach atmosferycznych. W praktyce anteny paraboliczne wykorzystywane są w domowych instalacjach telewizyjnych, w profesjonalnych studiach telewizyjnych oraz w zastosowaniach mobilnych, takich jak transmisje na żywo z wydarzeń sportowych. Standardy DVB-S2 oraz DVB-S, stosowane w telewizji satelitarnej, wykorzystują takie anteny do odbioru sygnałów z satelitów geostacjonarnych, co zapewnia stabilność i niezawodność transmisji.

Pytanie 31

Który z podanych rezultatów pomiarów jest poprawny dla sygnałów telewizyjnych z nadajników naziemnych?

A. Poziom 25 dBµV, MER 29 dB
B. Poziom 55 dBµV, MER 24 dB
C. Poziom 65 dBµV, MER 12 dB
D. Poziom 29 dBµV, MER 14 dB
Poziom 55 dBµV oraz MER 24 dB to wartości mieszczące się w standardowych wymaganiach dla sygnałów telewizyjnych nadawanych drogą naziemną. Poziom sygnału 55 dBµV jest uznawany za minimalnie akceptowalny do odbioru sygnału DVB-T w warunkach domowych, co zapewnia stabilność odbioru. MER, czyli Modulation Error Ratio, wynoszący 24 dB oznacza, że jakość sygnału jest na poziomie wystarczającym do zapewnienia wysokiej jakości obrazu bez zakłóceń. W praktyce, odbiorniki telewizyjne powinny operować z MER na poziomie co najmniej 20 dB, aby uniknąć problemów z odbiorem. Wartości te są zgodne z normami ITU oraz ETSI, które określają minimalne wymagania dla odbioru sygnałów DVB-T. Odpowiedni poziom sygnału i MER są kluczowe w kontekście zakłóceń, które mogą wpływać na jakość obrazu oraz stabilność połączenia. W przypadku słabszych parametrów, mogą wystąpić problemy, takie jak zacinanie się obrazu czy całkowity brak sygnału. Przykładem zastosowania tych wartości może być analiza warunków otoczenia przy instalacji anteny, gdzie kluczowe jest zapewnienie odpowiedniego poziomu sygnału dla stabilnego odbioru.

Pytanie 32

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
B. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
C. sterowanie wskaźnikiem 7-segmentowym
D. liczenie oraz przechowywanie impulsów
Multiplekser to taki ważny element w układach cyfrowych. Jego głównym zadaniem jest przekazywanie jednego sygnału spośród wielu wejść na wyjście. Dzięki sygnałom sterującym możemy wybrać, który sygnał chcemy wysłać. Przykładowo, w systemach komunikacyjnych, gdy mamy różne źródła danych, multipleksery pomagają zarządzać tymi sygnałami. To pozwala na lepsze wykorzystanie pasma i zwiększenie przepustowości. W telekomunikacji czy przetwarzaniu sygnałów, multipleksery są kluczowe do multiplexingu, czyli łączenia kilku sygnałów w jeden. Warto też wiedzieć, że są różne typy multiplekserów, jak MUX 2:1, MUX 4:1 czy MUX 8:1, które różnią się liczbą wejść i zastosowaniem.

Pytanie 33

Który z poniższych czynników może powodować zakłócenia w odbiorze sygnału radiowego w pasmie fal UKF?

A. Źródło promieniowania podczerwonego
B. Działający silnik elektryczny
C. Wysokie ciśnienie powietrza
D. Niska temperatura otoczenia
Pracujący silnik elektryczny może być źródłem zakłóceń w odbiorze sygnału radiowego w zakresie fal UKF (Ultra Krótkich Fal). Dzieje się tak z powodu emisji elektromagnetycznych, które pojawiają się podczas pracy silnika. Silniki elektryczne, zwłaszcza te z komutatorem, generują zakłócenia w postaci szumów, które mogą interferować z sygnałami radiowymi. Przykładem zastosowania tego zjawiska jest konieczność stosowania filtrów przeciwzakłóceniowych w instalacjach radiowych, aby zminimalizować wpływ takich źródeł na odbiór sygnału. Zgodnie z normami ETSI (Europejski Instytut Norm Telekomunikacyjnych), urządzenia radiowe powinny spełniać określone wymagania dotyczące odporności na zakłócenia elektromagnetyczne, a także emisji własnej, co pozwala na zapewnienie wysokiej jakości sygnału. Dodatkowo, w praktyce inżynierskiej często zaleca się przeprowadzanie pomiarów zakłóceń w środowiskach, gdzie znajdują się silniki elektryczne, aby określić ich wpływ na systemy komunikacyjne oraz wprowadzić odpowiednie środki ochronne.

Pytanie 34

Jakie urządzenie jest wykorzystywane do łączenia włókien w komunikacyjnym kablu światłowodowym?

A. spawarka
B. zaciśniacz
C. który służy do lutowania
D. zgrzewarka
Spawarka światłowodowa jest kluczowym narzędziem w procesie łączenia włókien optycznych, które są niezbędne w nowoczesnych systemach komunikacyjnych. Dzięki zastosowaniu technologii spawania, można precyzyjnie łączyć włókna, minimalizując straty sygnału i zapewniając wysoką jakość połączenia. Proces spawania polega na sklejaniu końcówek włókien w wysokotemperaturowym łuku elektrycznym, co umożliwia uzyskanie niemal idealnego połączenia, które jest odporne na wpływy zewnętrzne. W praktyce, spawarki umożliwiają szybkie i efektywne łączenie włókien, co jest szczególnie istotne w kontekście budowy sieci telekomunikacyjnych czy instalacji światłowodowych w budynkach. Warto również zwrócić uwagę na normy, jak np. IEC 61300-3-34, które definiują wymagania dotyczące metod łączenia włókien, potwierdzając znaczenie spawania jako najczęściej rekomendowanej metody w branży. Dodatkowo, umiejętność obsługi spawarki światłowodowej jest niezbędna w zawodach związanych z instalacją i konserwacją sieci optycznych.

Pytanie 35

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa C
B. Klasa B
C. Klasa AB
D. Klasa A
Wzmacniacze klasy C są projektowane głównie do pracy w aplikacjach radiowych, gdzie sygnały są modulowane i nie wypadają w zakresie akustycznym. Ich struktura bazuje na pracy w trybie nasycenia, co oznacza, że przełączają się w stan aktywny na krótki czas, co prowadzi do znacznych zniekształceń nieliniowych. Dlatego nie nadają się do wzmacniania sygnałów akustycznych, które wymagają wysokiej jakości i minimalnych zniekształceń. W praktyce, wzmacniacze klasy C są używane w nadajnikach FM oraz w aplikacjach RF, gdzie istotne jest uzyskanie wysokiej efektywności i mocy wyjściowej, jednak zniekształcenia sygnału mogą być tolerowane. W kontekście audio, najlepszym wyborem są wzmacniacze klasy A lub AB, które oferują znacznie lepszą linearność i niższe zniekształcenia, co jest zgodne z dobrymi praktykami w produkcji sprzętu audio.

Pytanie 36

Aby przesłać sygnał telewizyjny z anteny zbiorczej w budynku wielorodzinnym, należy zastosować kabel

A. koncentryczny o impedancji falowej 75 Ω
B. koncentryczny o impedancji falowej 300 Ω
C. symetryczny o impedancji falowej 300 Ω
D. symetryczny o impedancji falowej 75 Ω
Odpowiedź koncentryczny o impedancji falowej 75 Ω jest prawidłowa, ponieważ kable koncentryczne o tej impedancji są standardem w transmisji sygnałów telewizyjnych, zarówno analogowych, jak i cyfrowych. Impedancja 75 Ω została wybrana ze względu na jej optymalne właściwości w zakresie tłumienia sygnału oraz minimalizacji odbić, co jest kluczowe przy przesyłaniu sygnałów wysokiej częstotliwości. W praktyce, stosowanie kabli koncentrycznych o impedancji 75 Ω jest zgodne z normami branżowymi, takimi jak IEC 61196, które definiują wymagania dotyczące kabli koncentrycznych stosowanych w systemach telekomunikacyjnych. Przykładem zastosowania są instalacje telewizji kablowej, gdzie sygnał z anteny zbiorczej jest przesyłany do mieszkań w budynku wielorodzinnym, a użycie kabli koncentrycznych 75 Ω zapewnia wysoką jakość odbioru oraz stabilność sygnału. Dodatkowo, kable te są powszechnie wykorzystywane w systemach CCTV oraz w instalacjach satelitarnych, co podkreśla ich uniwersalność i znaczenie na rynku telekomunikacyjnym.

Pytanie 37

Które z działań nie jest konieczne podczas konserwacji bramy przesuwnej?

A. Smarowanie elementów ruchomych napędu
B. Sprawdzenie ustawień krańcowych bramy
C. Ponowne programowanie pilotów zdalnego sterowania
D. Weryfikacja działania zabezpieczeń mechanicznych
Odpowiedź "Ponowne programowanie pilotów zdalnego sterowania" jest poprawna, ponieważ nie jest to czynność niezbędna do codziennej konserwacji bramy przesuwnej. Regularna konserwacja powinna skupiać się na zapewnieniu prawidłowego działania mechanizmów bramy oraz jej bezpieczeństwa. Sprawdzanie działania zabezpieczeń mechanicznych jest kluczowe, aby uniknąć wypadków i uszkodzeń. Przesmarowanie części ruchomych napędu zapewnia płynność ruchu oraz minimalizuje zużycie elementów, co może wydłużyć ich żywotność. Sprawdzenie położeń krańcowych bramy jest również istotne, ponieważ niewłaściwe ustawienie tych położeń może prowadzić do uszkodzenia bramy oraz systemu napędowego. Warto zaznaczyć, że programowanie pilotów zdalnego sterowania powinno być przeprowadzane tylko w przypadku, gdy zmienia się ich ustawienie lub dodawane są nowe urządzenia. Dlatego nie jest to czynność rutynowa związana z konserwacją bramy.

Pytanie 38

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. faktury zakupu
B. ustawienia czujek ruchu
C. linii sabotażowych
D. stanu akumulatora
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 39

W tabeli przedstawiono fragment danych technicznych kamery IP. W jakim maksymalnym zakresie temperatur może ona pracować?

Dane techniczne
Przetwornik1/3" 2 MP PS CMOS
Rozdzielczość2 Mpx, 1920 x 1080 pikseli
Czułość0,01 lux/F 1,2, 0 lux (IR LED ON)
Obiektyw3,6 mm
Oświetlacz35 diod ⌀5 IR LED (zasięg 20 m)
Stosunek sygnału do szumu>50 dB (AGC OFF)
Kompresja wideoH.264/MJPEG/MPEG4
Prędkość i rozdzielczość przetwarzania25 kl/s @ 1920×1080 (2 Mpx)
Strumienietransmisja strumienia głównego: 2 Mpx / 720 p (25 kl/s)
transmisja strumienia pomocniczego: D1/CIF (25 kl/s)
Bitrate32 K ~ 8192 Kbps (H.264), 32 K ~ 12288 Kbps (MJPEG)
UstawieniaAWB, ATW, AGC, BLC, DWDR, 3DNR, HLC, MIR
Dzień / NocICR
Ethernet10/100 Base-T PoE 802.3af
Wsparcie dla protokołówOnvif, PSIA, CGI
Obsługiwane protokołyIPv4/IPv6, HTTP, HTTPS, SSL, TCP/IP, UDP, UPnP, ICMP, IGMP, SNMP, RTSP, RTP, SMTP, NTP, DHCP, DNS, PPPOE, DDNS, FTP, IP Filter, QoS, Bonjour
Klasa szczelnościIP66
Zacisk przewodu ochronnegoTAK
ZasilanieDC 12 V (gniazdo 5,5/2,1) lub PoE 48 V (802.3af)
Wilgotność0 ~ 95%
Temperatura pracy-20°C ~ 60°C
Waga650 g
Wymiary70x66x160 mm

A. Od -20°C do +60°C
B. Od -10°C do +40°C
C. Od 0°C do +40°C
D. Od -30°C do +80°C
Odpowiedź "Od -20°C do +60°C" jest poprawna, ponieważ w tabeli danych technicznych kamery IP zawarto dokładny zakres temperatury, w jakim urządzenie może niezawodnie funkcjonować. Wartości te są kluczowe dla użytkowników, którzy planują zastosowanie kamery w różnorodnych warunkach środowiskowych. Na przykład, kamery pracujące w temperaturach poniżej zera, takie jak -20°C, są szczególnie przydatne w systemach monitoringu w rejonach o ostrym klimacie. Z kolei górny limit +60°C może być istotny w miejscach narażonych na intensywne nasłonecznienie. Przestrzeganie tych parametrów zapewnia nie tylko prawidłowe działanie, ale również wydłuża żywotność sprzętu, co jest zgodne z najlepszymi praktykami branżowymi, które sugerują, aby zawsze operować w zalecanych przez producenta zakresach temperatur. W przypadku przekroczenia tych wartości, ryzykujemy uszkodzenie podzespołów, co może prowadzić do awarii systemu monitoringu. Zrozumienie zakresu temperatury pracy jest więc kluczowe dla efektywności i niezawodności monitoringu w różnych warunkach zewnętrznych.

Pytanie 40

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. generatora
B. bramki
C. multimetru
D. manometru
Multimetr jest kluczowym narzędziem w diagnostyce elektrycznej i elektronice, pozwalającym na pomiar napięcia, prądu oraz oporu w obwodach. W przypadku lokalizacji przerwy w obwodzie instalacji alarmowej, multimetr umożliwia szybkie zidentyfikowanie, czy obwód jest zamknięty, czy otwarty. Przykładowo, można ustawić multimetr na pomiar oporu (Ω) i sprawdzić, czy zasilany obwód wykazuje wartość bliską zeru (co wskazywałoby na zamknięcie obwodu) czy nieskończoności (co sugerowałoby przerwę). Dobrą praktyką jest również użycie funkcji pomiaru napięcia, aby upewnić się, że zasilanie dociera do wszystkich istotnych punktów obwodu. Warto również zwrócić uwagę na standardy bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, takie jak odpowiednie uziemienie multimetru oraz przestrzeganie instrukcji producenta, co znacząco zmniejsza ryzyko uszkodzenia sprzętu oraz zapewnia bezpieczeństwo użytkownika w trakcie diagnostyki.