Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 5 czerwca 2025 15:24
  • Data zakończenia: 5 czerwca 2025 15:55

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Administrator zamierza zorganizować adresację IP w przedsiębiorstwie. Dysponuje pulą adresów 172.16.0.0/16, którą powinien podzielić na 10 podsieci z równą liczbą hostów. Jaką maskę powinien zastosować?

A. 255.255.240.0
B. 255.255.192.0
C. 255.255.128.0
D. 255.255.224.0
Wybór innej maski, takiej jak 255.255.192.0, 255.255.224.0 lub 255.255.128.0, prowadzi do nieefektywnego podziału dostępnych adresów IP. Maska 255.255.192.0 (czyli /18) umożliwia stworzenie 4 podsieci z 16384 adresami w każdej. To jest zbyt wiele, gdyż potrzebujemy jedynie 10. Z kolei maska 255.255.224.0 (czyli /19) tworzy 8 podsieci, co również nie spełnia wymagań. Zmniejszenie liczby podsieci poprzez użycie maski 255.255.128.0 (czyli /17) dostarcza jedynie 2 podsieci, co jest całkowicie niewystarczające. Właściwe zrozumienie podziału adresów IP i stosowanie właściwych masek jest kluczowe w projektowaniu efektywnych sieci. W praktyce, błędy w wyborze maski mogą prowadzić do ich przyszłej rozbudowy, co wiąże się z dodatkowymi kosztami i czasem. Każda z tych masek prowadzi do nieodpowiedniego podziału, co skutkuje marnotrawieniem cennych adresów IP i ograniczeniem elastyczności sieci. Dlatego kluczowe jest, aby przed podjęciem decyzji o adresowaniu IP dokładnie przeanalizować wymagania oraz strategię rozwoju sieci.

Pytanie 2

W systemie Ubuntu Server, aby zainstalować serwer DHCP, należy zastosować komendę

A. sudo service isc-dhcp-server start
B. sudo service isc-dhcp-server install
C. sudo apt-get install isc-dhcp-server
D. sudo apt-get isc-dhcp-server start
Jak chcesz zainstalować serwer DHCP na Ubuntu Server, to użyj polecenia 'sudo apt-get install isc-dhcp-server'. To jest właśnie to, co trzeba, żeby skorzystać z menedżera pakietów APT, który jest standardem w systemach bazujących na Debianie, jak Ubuntu. Dzięki APT wszystko, co potrzebne do prawidłowego działania serwera, zostanie automatycznie ściągnięte i zainstalowane. W praktyce, taka instalacja jest super ważna dla administratorów, którzy chcą mieć kontrolę nad przydzielaniem adresów IP w sieci. Warto też przed tym sprawdzić, czy system jest na czasie, używając 'sudo apt-get update', bo wtedy masz pewność, że instalujesz najnowsze wersje. Po instalacji serwera DHCP, musisz jeszcze skonfigurować plik '/etc/dhcp/dhcpd.conf', w którym ustawiasz zakresy adresów IP i inne parametry związane z DHCP. To podejście do instalacji jest zgodne z najlepszymi standardami w branży, które zalecają korzystanie z menedżerów pakietów - po prostu to się sprawdza.

Pytanie 3

Który z poniższych adresów jest adresem IP typu prywatnego?

A. 80.80.10.10
B. 172.30.10.10
C. 220.192.164.10
D. 198.192.15.10
Adresy 220.192.164.10, 80.80.10.10 i 198.192.15.10 to adresy publiczne, a to znaczy, że są widoczne w Internecie. Na przykład, 220.192.164.10 jest adresem, który jest używany do routingu w Internecie. Publiczne IP mogą być wykorzystywane do komunikacji z innymi użytkownikami, co niestety niesie za sobą pewne ryzyko, bo mogą być łatwiejszym celem dla ataków. Adres 80.80.10.10 to też publiczny adres, przypisany do różnych usług online. Regularnie zdarzają się sytuacje, kiedy ludzie mylą adresy prywatne z publicznymi, co może powodować problemy w konfiguracji sieci. Główna różnica to taka, że prywatne adresy są dla sieci wewnętrznych, a publiczne dla Internetu. To ważne, żeby każdy, kto zarządza siecią, miał to na uwadze.

Pytanie 4

Instalator jest w stanie zamontować 5 gniazd w ciągu jednej godziny. Ile wyniesie całkowity koszt materiałów i instalacji 20 natynkowych gniazd sieciowych, jeśli cena jednego gniazda to 5,00 zł, a stawka za roboczogodzinę instalatora wynosi 30,00 zł?

A. 220,00 zł
B. 130,00 zł
C. 700,00 zł
D. 350,00 zł
Poprawna odpowiedź to 220,00 zł, co można obliczyć, biorąc pod uwagę koszty materiałów oraz robocizny. Koszt samego materiału na 20 gniazd wynosi 20 gniazd x 5,00 zł/gniazdo = 100,00 zł. Instalator montuje 5 gniazd w ciągu godziny, więc na zamontowanie 20 gniazd potrzebuje 20 gniazd ÷ 5 gniazd/godzinę = 4 godziny. Koszt robocizny wynosi 4 godziny x 30,00 zł/godzinę = 120,00 zł. Sumując te dwa koszty: 100,00 zł (materiały) + 120,00 zł (robocizna) = 220,00 zł. Takie podejście do obliczeń jest zgodne z najlepszymi praktykami w branży, które zalecają zawsze dokładne oszacowanie zarówno kosztów materiałów, jak i pracy. Dobrą praktyką jest również uwzględnianie ewentualnych kosztów dodatkowych, takich jak transport czy opłaty za materiały, co może mieć miejsce w rzeczywistych projektach.

Pytanie 5

Którego numeru portu używa usługa FTP do wysyłania komend?

A. 80
B. 20
C. 21
D. 69
Usługa FTP (File Transfer Protocol) do przesyłania poleceń korzysta z portu 21. Port ten jest zarezerwowany dla kontrolnej komunikacji w protokole FTP, co oznacza, że wszystkie komendy, które klient wysyła do serwera, oraz odpowiedzi serwera na te komendy, są przesyłane za pośrednictwem tego portu. Zrozumienie struktury portów w sieciach komputerowych jest kluczowe dla administratorów systemów i specjalistów od bezpieczeństwa, którzy muszą zarządzać komunikacją między urządzeniami. W praktycznych zastosowaniach, na przykład podczas konfigurowania serwera FTP, ważne jest, aby port 21 był dostępny, aby klienci mogli się z nim łączyć. Warto również zaznaczyć, że podczas przesyłania danych, FTP wykorzystuje osobny port, zazwyczaj port 20, co stanowi podstawową różnicę pomiędzy komunikacją kontrolną a transferem danych. Dobrą praktyką jest także zabezpieczanie połączeń FTP poprzez użycie FTPS lub SFTP, które dodają warstwę bezpieczeństwa do tradycyjnego protokołu FTP.

Pytanie 6

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach długości fali 1310 nm oraz 1550 nm, powinno się wykorzystać

A. miernik mocy optycznej
B. rejestrator cyfrowy
C. tester UTP
D. reflektometr TDR
Reflektometr TDR, rejestrator cyfrowy oraz tester UTP to urządzenia, które mają zastosowanie w różnych obszarach telekomunikacji, jednak nie spełniają one wymogów do pomiaru tłumienia w łączach światłowodowych. Reflektometr TDR (Time Domain Reflectometer) jest narzędziem używanym głównie do pomiaru długości linii oraz lokalizacji uszkodzeń w przewodach miedzianych, a nie w światłowodach, gdzie dominują inne mechanizmy tłumienia. Rejestrator cyfrowy służy do zbierania i archiwizowania danych, ale nie wykonuje bezpośrednich pomiarów mocy optycznej, co jest kluczowe przy ocenie tłumienia sygnału. Natomiast tester UTP, przeznaczony do testowania kabli miedzianych, nie ma zastosowania w przypadku światłowodów, ponieważ działa na zupełnie innej zasadzie, a światłowody wymagają innego podejścia do pomiaru i diagnostyki. Wybór niewłaściwego urządzenia do pomiaru tłumienia może prowadzić do błędnych wniosków na temat stanu sieci, co w konsekwencji może skutkować nieoptymalnym działaniem systemów danych, zwiększeniem kosztów napraw oraz obniżeniem jakości usług. Dlatego kluczowe jest zrozumienie specyfiki każdego z tych narzędzi oraz ich zastosowań w kontekście konkretnej infrastruktury telekomunikacyjnej.

Pytanie 7

Które z zestawień: urządzenie – realizowana funkcja jest niepoprawne?

A. Access Point – bezprzewodowe łączenie komputerów z siecią lokalną
B. Ruter – łączenie komputerów w tej samej sieci
C. Modem – łączenie sieci lokalnej z Internetem
D. Przełącznik – segmentacja sieci na VLAN-y
Wszystkie inne odpowiedzi sugerują niezgodne przyporządkowania dotyczące funkcji urządzeń sieciowych. Modem, który jest urządzeniem konwertującym sygnały z sieci lokalnej na sygnały, które mogą być przesyłane przez linię telefoniczną lub kablową, rzeczywiście odpowiada za nawiązywanie połączenia pomiędzy siecią lokalną a Internetem. Jest to kluczowy element w architekturze sieci, szczególnie w przypadku tradycyjnych połączeń DSL czy kablowych. Przełącznik, z kolei, jest urządzeniem operującym na warstwie drugiej modelu OSI, które umożliwia komunikację pomiędzy różnymi urządzeniami w obrębie tej samej sieci lokalnej, a także może implementować technologię VLAN (Virtual Local Area Network), divując ruch sieciowy w sposób logiczny i zwiększający bezpieczeństwo oraz wydajność. Access Point, będący punktem dostępowym, umożliwia bezprzewodowe podłączenie do sieci lokalnej i jest kluczowym elementem w sieciach bezprzewodowych, umożliwiającym komunikację między urządzeniami mobilnymi a lokalnym systemem sieciowym. Zrozumienie ról tych urządzeń w architekturze sieciowej jest fundamentalne, ponieważ błędne przyporządkowania mogą prowadzić do nieefektywnego projektowania i wdrażania sieci, co w praktyce skutkuje problemami z przepustowością, bezpieczeństwem oraz zarządzaniem siecią.

Pytanie 8

Jakie znaczenie ma zapis /26 w adresie IPv4 192.168.0.0/26?

A. Liczba bitów o wartości 1 w masce
B. Liczba bitów o wartości 0 w adresie
C. Liczba bitów o wartości 1 w adresie
D. Liczba bitów o wartości 0 w masce
Ta odpowiedź jest jak najbardziej trafna, bo zapis /26 oznacza, że w masce podsieci adresu IPv4 192.168.0.0 mamy 26 bitów o wartości 1. W skrócie, maska podsieci jest bardzo ważna, bo pozwala nam określić, która część adresu to sieć, a która to urządzenia. Kiedy mamy maskę /26, to pierwsze 26 bitów to właśnie bity maski, a zostałe 6 bitów (32 minus 26) możemy użyć do adresowania hostów. To w praktyce znaczy, że w takiej podsieci możemy mieć maks 64 adresy IP, z czego 62 będą dostępne dla urządzeń, bo musimy usunąć adres sieci i adres rozgłoszeniowy. Taka maska przydałaby się w małej sieci biurowej, gdzie nie ma więcej niż 62 urządzenia, więc zarządzanie adresami IP jest łatwiejsze. Dobrze jest pamiętać, że odpowiednie wykorzystanie maski podsieci może znacznie poprawić ruch w sieci oraz efektywność wykorzystania zasobów.

Pytanie 9

Która para: protokół – warstwa, w której dany protokół funkcjonuje, jest prawidłowo zestawiona według modelu TCP/IP?

A. DNS – warstwa aplikacyjna
B. RARP – warstwa transportowa
C. TCP – warstwa Internetu
D. DHCP – warstwa dostępu do sieci
Odpowiedź "DNS – warstwa aplikacji" jest poprawna, ponieważ DNS (Domain Name System) działa na najwyższej warstwie modelu TCP/IP, czyli warstwie aplikacji. Warstwa ta jest odpowiedzialna za interakcję pomiędzy aplikacjami a protokołami transportowymi. DNS służy do rozwiązywania nazw domenowych na adresy IP, co jest kluczowe dla funkcjonowania Internetu. Dzięki temu użytkownicy mogą korzystać z przyjaznych nazw (np. www.przyklad.com) zamiast trudnych do zapamiętania adresów IP. W praktyce, gdy przeglądarka internetowa wprowadza adres URL, najpierw wysyła zapytanie do serwera DNS, który zwraca odpowiedni adres IP. To sprawia, że DNS jest fundamentalnym protokołem, który wspiera działanie wielu usług internetowych, takich jak e-maile, strony WWW czy serwisy streamingowe. Zgodnie z najlepszymi praktykami branżowymi, wdrażanie odpowiednich serwerów DNS oraz ich konfiguracja z użyciem standardów, takich jak RFC 1035, są kluczowe dla zapewnienia wydajności i dostępności usług sieciowych.

Pytanie 10

Który element zabezpieczeń znajduje się w pakietach Internet Security (IS), ale nie występuje w programach antywirusowych (AV)?

A. Skaner wirusów
B. Zapora sieciowa
C. Monitor wirusów
D. Aktualizacje baz wirusów
Zapora sieciowa to taki istotny element ochrony, który znajdziesz w pakietach Internet Security, ale nie w zwykłych programach antywirusowych. Jej zadaniem jest pilnowanie, co się dzieje w sieci – to znaczy, że blokuje nieproszonych gości i chroni Twoje urządzenie przed różnymi atakami. Dobrym przykładem jest korzystanie z publicznego Wi-Fi, gdzie zapora działa jak tarcza, zabezpieczając Twoje dane przed przechwyceniem. W zawodowym świecie zabezpieczeń zapory sieciowe są na porządku dziennym, bo są częścią większej strategii, która obejmuje szyfrowanie danych i regularne aktualizacje. Jak mówią w branży, np. NIST, włączenie zapory do ochrony informacji to absolutna podstawa – bez niej trudno mówić o skutecznym zabezpieczeniu.

Pytanie 11

Jakiego protokołu dotyczy port 443 TCP, który został otwarty w zaporze sieciowej?

A. DNS
B. SMTP
C. NNTP
D. HTTPS
Odpowiedź 'HTTPS' jest poprawna, ponieważ port 443 jest standardowym portem używanym przez protokół HTTPS (Hypertext Transfer Protocol Secure). HTTPS jest rozszerzeniem protokołu HTTP, które wykorzystuje SSL/TLS do szyfrowania danych przesyłanych pomiędzy serwerem a klientem. Dzięki temu, komunikacja jest zabezpieczona przed podsłuchiwaniem i manipulacją. W praktyce, gdy przeglądasz strony internetowe, które zaczynają się od 'https://', twoje połączenie wykorzystuje port 443. Ponadto, w kontekście dobrych praktyk branżowych, stosowanie HTTPS stało się standardem, zwłaszcza w przypadku stron wymagających przesyłania poufnych informacji, takich jak dane logowania czy dane osobowe. Warto także zauważyć, że wyszukiwarki internetowe, takie jak Google, preferują strony zabezpieczone HTTPS, co wpływa na pozycjonowanie w wynikach wyszukiwania.

Pytanie 12

Firma Dyn, której serwery DNS zostały zaatakowane, potwierdziła, że część ataku … miała miejsce dzięki różnym urządzeniom podłączonym do sieci. Ekosystem kamer, czujników oraz kontrolerów, określany ogólnie jako "Internet rzeczy", został wykorzystany przez przestępców jako botnet − sieć zainfekowanych maszyn. Do tej pory tę funkcję pełniły głównie komputery. Jakiego rodzaju atak jest opisany w tym cytacie?

A. flooding
B. DDOS
C. mail bombing
D. DOS
Odpowiedź 'DDOS' jest prawidłowa, ponieważ atak, jak opisano w pytaniu, polegał na wykorzystaniu sieci urządzeń podłączonych do Internetu, takich jak kamery i czujniki, do przeprowadzenia skoordynowanego ataku na serwery DNS firmy Dyn. Termin DDOS, czyli Distributed Denial of Service, odnosi się do ataku, w którym wiele zainfekowanych urządzeń (zwanych botami) prowadzi wspólne działanie mające na celu zablokowanie dostępu do określonego serwisu. W przeciwieństwie do klasycznego ataku DOS, który wykorzystuje pojedyncze źródło, DDOS polega na współpracy wielu urządzeń, co powoduje znacząco wyższy wolumen ruchu, który może przeciążyć serwery. Przykładem zastosowania tej wiedzy w praktyce jest monitorowanie i zabezpieczanie sieci przed atakami DDOS, co często obejmuje wdrażanie systemów ochrony, takich jak zapory sieciowe, systemy detekcji i zapobiegania włamaniom oraz usługi CDN, które mogą rozpraszać ruch, co minimalizuje ryzyko przeciążenia. Standardy branżowe, takie jak NIST SP 800-61, dostarczają wytycznych dotyczących odpowiedzi na incydenty związane z bezpieczeństwem, wskazując na znaczenie przygotowania na ataki DDOS poprzez implementację strategii zarządzania ryzykiem oraz regularne aktualizowanie procedur obronnych.

Pytanie 13

Jak można zidentyfikować przeciążenie w sieci lokalnej LAN?

A. miernika uniwersalnego
B. analizatora protokołów sieciowych
C. diodowego testera okablowania
D. reflektometru optycznego OTDR
Analizator protokołów sieciowych to kluczowe narzędzie w monitorowaniu i diagnostyce sieci lokalnych (LAN). Dzięki możliwości rejestrowania i analizy ruchu sieciowego, może on wykryć przeciążenie poprzez identyfikację spadków wydajności oraz zatorów w przesyłaniu danych. Na przykład, jeśli analizator wskazuje, że określony port jest mocno obciążony, administrator sieci może podjąć działania, takie jak optymalizacja trasowania pakietów czy zarządzanie przepustowością. W kontekście dobrych praktyk, wykorzystanie takich narzędzi pozwala na proaktywne zarządzanie siecią, zgodnie z zasadami ITIL (Information Technology Infrastructure Library), co zwiększa niezawodność i stabilność usług sieciowych. Warto również podkreślić, że analizatory protokołów, takie jak Wireshark, są standardem w branży, umożliwiając dogłębną analizę zarówno warstwy aplikacji, jak i transportowej, co jest niezbędne do zrozumienia i rozwiązania problemów z przeciążeniem.

Pytanie 14

Podaj domyślny port, który służy do przesyłania poleceń w serwisie FTP.

A. 20
B. 21
C. 110
D. 25
Porty 20, 25 i 110 nie są odpowiednie do przekazywania poleceń serwera FTP, co może prowadzić do nieporozumień w kontekście korzystania z protokołów internetowych. Port 20 jest używany w trybie aktywnym FTP do przesyłania danych, a nie do przesyłania poleceń. W trybie aktywnym, po nawiązaniu połączenia na porcie 21, serwer FTP nawiązuje osobne połączenie na porcie 20, aby przesłać dane. To podejście może wprowadzać w błąd, ponieważ nie odnosi się do przekazywania poleceń. Port 25 jest standardowo używany do przesyłania wiadomości e-mail w protokole SMTP (Simple Mail Transfer Protocol), co nie ma związku z FTP. Z kolei port 110 jest używany w protokole POP3 (Post Office Protocol) do pobierania wiadomości e-mail. Nieprawidłowe przypisanie portów do protokołów może skutkować błędami w konfiguracji usług sieciowych oraz problemami z komunikacją. W kontekście administracji sieciowej kluczowe jest zrozumienie, jakie porty są przypisane do poszczególnych protokołów i jakie protokoły są odpowiedzialne za różne funkcje. Ignorowanie tych podstawowych zasad może prowadzić do poważnych problemów z bezpieczeństwem oraz wydajnością sieci.

Pytanie 15

Administrator sieci planuje zapisać konfigurację urządzenia Cisco na serwerze TFTP. Jakie polecenie powinien wydać w trybie EXEC?

A. copy running-config tftp:
B. save config tftp:
C. restore configuration tftp:
D. backup running-config tftp:
Polecenie copy running-config tftp: jest standardowym sposobem zapisywania bieżącej konfiguracji urządzenia Cisco na zewnętrznym serwerze TFTP. Takie rozwiązanie pozwala na wykonanie kopii zapasowej konfiguracji – to jest absolutna podstawa dobrych praktyk administracyjnych. W praktyce wygląda to tak, że po wpisaniu tego polecenia urządzenie pyta o adres serwera TFTP oraz o nazwę pliku, pod którą ma zapisać konfigurację. Co ciekawe, to polecenie można wydać zarówno na routerach, jak i przełącznikach Cisco – jest to uniwersalny mechanizm. Z mojego doświadczenia, regularne archiwizowanie konfiguracji pozwala szybko odtworzyć ustawienia urządzenia po awarii lub błędzie w konfiguracji. Warto pamiętać, że TFTP jest protokołem prostym, niewymagającym logowania – często wykorzystywanym w środowiskach laboratoryjnych i mniejszych sieciach. Polecenie copy running-config tftp: jest zgodne z oficjalną dokumentacją Cisco i spotkasz je niemal w każdym podręczniku do sieci komputerowych. To taki klasyk, który każdy administrator sieci powinien znać na pamięć. Pozwala nie tylko zabezpieczyć się przed utratą konfiguracji, ale także ułatwia migracje ustawień między urządzeniami lub szybkie przywracanie systemu po problemach.

Pytanie 16

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 255 komputerów
B. 256 komputerów
C. 252 komputery
D. 254 komputery
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 17

W sieci o adresie 192.168.0.64/26 drukarka sieciowa powinna uzyskać ostatni adres z dostępnej puli. Który to adres?

A. 192.168.0.190
B. 192.168.0.126
C. 192.168.0.94
D. 192.168.0.254
Wybór adresów takich jak 192.168.0.94, 192.168.0.190 czy 192.168.0.254 wskazuje na brak zrozumienia zasad subnettingu oraz adresacji IP. Adres 192.168.0.94 znajduje się w innym zakresie adresów, a jego przypisanie do podsieci 192.168.0.64/26 jest niemożliwe, ponieważ nie jest on częścią tej samej podsieci, co oznacza, że nie spełnia wymogów związanych z masą /26. Ponadto, adres 192.168.0.190 leży poza zakresem przydzielonym przez maskę /26, co czyni go nieodpowiednim wyborem. Z kolei adres 192.168.0.254 jest zarezerwowany dla innego segmentu sieci i nie jest dostępny w podsieci 192.168.0.64/26. Często popełnianym błędem jest nieprawidłowe obliczanie dostępnych adresów hostów i nieznajomość zasad, jakie rządzą przydzielaniem adresów IP. Aby zrozumieć, dlaczego odpowiedzi te są błędne, warto zaznaczyć, że adresacja IP opiera się na regułach, które określają zakresy dla różnych masek podsieci. Użytkownicy często mogą pomylić, jakie adresy IP są dostępne w danej podsieci, co prowadzi do nieporozumień w praktyce. Zrozumienie, które adresy są dostępne do przydziału, jest kluczowe w zarządzaniu siecią i unikanie konfliktów adresowych, dlatego umiejętność subnettingu i czytania maski podsieci jest niezwykle istotna w pracy administratora sieci.

Pytanie 18

Użytkownik, którego profil jest tworzony przez administratora systemu i przechowywany na serwerze, ma możliwość logowania na każdym komputerze w sieci oraz modyfikacji ustawień. Jak nazywa się ten profil?

A. profil obowiązkowy
B. profil tymczasowy
C. profil lokalny
D. profil mobilny
Profil mobilny to rodzaj profilu użytkownika, który jest przechowywany na serwerze i pozwala na logowanie się na różnych urządzeniach w sieci. Taki profil jest szczególnie przydatny w środowiskach, gdzie użytkownicy potrzebują dostępu do tych samych ustawień i danych niezależnie od miejsca, w którym się znajdują. Dzięki temu rozwiązaniu, konfiguracja osobista użytkownika, takie jak preferencje systemowe, tapety, czy zainstalowane aplikacje, są synchronizowane i dostępne na każdym komputerze w sieci. W praktyce, profil mobilny wspiera użytkowników w pracy zdalnej i w biurze, co jest zgodne z obecnymi trendami umożliwiającymi elastyczność pracy. Dobrą praktyką w organizacjach IT jest wdrażanie profili mobilnych, co zwiększa bezpieczeństwo i umożliwia lepsze zarządzanie danymi. Na przykład, w przypadku awarii lokalnego sprzętu, użytkownicy mogą szybko przełączyć się na inny komputer bez utraty swoich ustawień. Tego typu rozwiązania są często stosowane w środowiskach z systemami operacyjnymi Windows, gdzie korzysta się z Active Directory do zarządzania profilami mobilnymi.

Pytanie 19

Która z grup w systemie Windows Serwer ma najniższe uprawnienia?

A. Wszyscy
B. Użytkownicy.
C. Administratorzy.
D. Operatorzy kont.
Odpowiedź "Wszyscy" jest jak najbardziej na miejscu. Ta grupa użytkowników w Windows Serwer ma najniższe uprawnienia. W praktyce oznacza to, że ci użytkownicy nie mogą robić rzeczy administracyjnych, jak chociażby zmieniać ustawień systemowych, instalować programy czy zarządzać innymi kontami. Ograniczenie ich uprawnień do grupy "Wszyscy" to kluczowy ruch w kontekście bezpieczeństwa, bo zmniejsza ryzyko nieautoryzowanego dostępu. W firmach, które działają według zasady minimalnych uprawnień, użytkownicy mają dostęp tylko do tego, co jest im potrzebne do pracy. Dzięki temu, w przypadku ataku czy błędu, możliwe szkody są ograniczone. To podejście jest zgodne z tym, co mówią normy jak NIST czy ISO 27001, które akcentują znaczenie dobrego zarządzania uprawnieniami dla ochrony danych.

Pytanie 20

Które z poniższych poleceń systemu Linux wyświetla aktualną konfigurację interfejsów sieciowych?

A. netstat -r
B. traceroute
C. ifconfig
D. ping
ifconfig to jedno z podstawowych narzędzi wykorzystywanych w systemach Linux do wyświetlania i konfigurowania interfejsów sieciowych. To polecenie pozwala w prosty sposób sprawdzić aktualny stan interfejsów, ich adresy IP, maski podsieci, adresy MAC oraz informacje o przesłanych pakietach i ewentualnych błędach. Moim zdaniem, korzystanie z ifconfig przydaje się zwłaszcza podczas diagnozowania problemów z siecią lokalną lub przy pierwszej konfiguracji serwera. Praktycznie każdy administrator systemów Linux przynajmniej raz w życiu korzystał z tego narzędzia, nawet jeśli obecnie coraz częściej poleca się nowsze polecenie ip a. Jednak w wielu dystrybucjach ifconfig nadal jest dostępny, zwłaszcza w starszych systemach lub w przypadku pracy na maszynach wirtualnych. Warto wiedzieć, że ifconfig jest zgodny z tradycją UNIX-a i pozwala na szybkie uzyskanie przejrzystego zestawienia aktywnych interfejsów. Użycie tego polecenia wpisuje się w dobre praktyki monitorowania i utrzymywania infrastruktury sieciowej, szczególnie w środowiskach edukacyjnych oraz podczas egzaminów zawodowych, takich jak INF.07.

Pytanie 21

Administrator Active Directory w domenie firma.local zamierza ustanowić mobilny profil dla wszystkich użytkowników. Powinien on być przechowywany na serwerze serwer1, w katalogu pliki, który jest udostępniony w sieci jako dane$. Który z parametrów w ustawieniach profilu użytkownika spełnia te wymagania?

A. \serwer1\pliki\%username%
B. \firma.local\pliki\%username%
C. \firma.local\dane\%username%
D. \serwer1\dane$\%username%
Właściwa odpowiedź to \serwer1\dane$\%username%, ponieważ spełnia wszystkie wymagania dotyczące lokalizacji profilu mobilnego. Użytkownicy Active Directory mogą korzystać z profili mobilnych, które definiują, gdzie ich ustawienia i dane są przechowywane. W tym przypadku, profil jest przechowywany na zdalnym serwerze, co jest zgodne z praktykami zarządzania danymi w organizacjach, które korzystają z rozwiązań zdalnych i chmurowych. Użycie symbolu dolara w nazwie folderu (dane$) wskazuje, że jest to folder ukryty, co jest powszechną praktyką w celu zwiększenia bezpieczeństwa danych. Dodatkowo, wykorzystanie zmiennej %username% pozwala na dynamiczne generowanie ścieżki folderu specyficznej dla każdego użytkownika, co ułatwia zarządzanie i organizację plików. Takie podejście jest zalecane w dokumentacji Microsoftu dotyczącej wdrażania profili użytkowników w Active Directory, co czyni tę odpowiedź najlepszym wyborem.

Pytanie 22

Standard Transport Layer Security (TLS) stanowi rozwinięcie protokołu

A. Session Initiation Protocol (SIP)
B. Network Terminal Protocol (telnet)
C. Secure Socket Layer (SSL)
D. Security Shell (SSH)
Standard Transport Layer Security (TLS) jest protokołem kryptograficznym, który zapewnia bezpieczeństwo komunikacji w sieci. TLS jest rozwinięciem protokołu Secure Socket Layer (SSL) i został zaprojektowany, aby zwiększyć wydajność oraz bezpieczeństwo transmisji danych. Podstawowym celem TLS jest zapewnienie poufności, integralności oraz autoryzacji danych przesyłanych pomiędzy klientem a serwerem. Praktyczne zastosowanie TLS znajduje się w wielu aspektach codziennego korzystania z internetu, w tym w zabezpieczaniu połączeń HTTPS, co chroni wrażliwe dane, takie jak hasła, numery kart kredytowych czy inne informacje osobiste. Standardy branżowe, takie jak RFC 5246, określają zasady i protokoły stosowane w TLS, co czyni go kluczowym elementem nowoczesnej architektury internetowej. Warto również zauważyć, że TLS stale ewoluuje, a jego najnowsze wersje, takie jak TLS 1.3, oferują jeszcze lepsze zabezpieczenia oraz wydajność w porównaniu do poprzednich wersji. Z tego powodu, znajomość i stosowanie protokołu TLS jest niezbędne dla każdego, kto zajmuje się bezpieczeństwem danych w sieci.

Pytanie 23

Które z poniższych urządzeń pozwala na bezprzewodowe łączenie się z siecią lokalną opartą na kablu?

A. Przełącznik
B. Modem
C. Media konwerter
D. Punkt dostępowy
Przełącznik, modem i media konwerter to urządzenia, które pełnią różne funkcje w infrastrukturze sieciowej, ale żadna z tych ról nie obejmuje bezprzewodowego dostępu do sieci lokalnej. Przełącznik, zwany również switchem, jest urządzeniem służącym do łączenia różnych urządzeń w sieci lokalnej (LAN) poprzez porty Ethernet. Jego zadaniem jest kierowanie pakietów danych między urządzeniami w oparciu o adresy MAC, ale nie ma zdolności do transmitowania sygnału bezprzewodowego. Modem, natomiast, jest urządzeniem, które łączy sieć lokalną z internetem poprzez dostawcę usług internetowych. Konwertuje sygnał cyfrowy na analogowy i vice versa, ale również nie zapewnia funkcji bezprzewodowego dostępu. Media konwerter działa na zasadzie konwersji sygnału z jednej technologii na inną, na przykład z światłowodowego na Ethernet, i nie ma zdolności do rozsyłania sygnału bezprzewodowego. Często występującym błędem jest mylenie funkcji różnych urządzeń w sieci, co może prowadzić do nieporozumień w zakresie projektowania i wdrażania sieci. Właściwe zrozumienie ról tych urządzeń jest kluczowe dla efektywnego zarządzania infrastrukturą sieciową oraz optymalizacji działania systemów informatycznych.

Pytanie 24

Protokół ARP (Address Resolution Protocol) pozwala na konwersję logicznych adresów z poziomu sieci na rzeczywiste adresy z poziomu

A. łącza danych
B. transportowej
C. fizycznej
D. aplikacji
Wybór niewłaściwych odpowiedzi opiera się na kilku kluczowych nieporozumieniach dotyczących warstw modelu OSI oraz funkcji poszczególnych protokołów. Protokół ARP jest ściśle związany z warstwą łącza danych, a nie z warstwą transportową. Warstwa transportowa (TCP/UDP) odpowiada za dostarczanie danych pomiędzy aplikacjami, a nie za mapowanie adresów. Wybór związany z warstwą aplikacji również wprowadza w błąd, ponieważ ARP nie działa na poziomie aplikacji, lecz na poziomie sieciowym i łącza danych, co oznacza, że nie ma bezpośredniego związku z funkcjami aplikacyjnymi czy interfejsami użytkownika. Wreszcie, twierdzenie, że ARP jest związany z warstwą fizyczną, jest również mylące. Warstwa fizyczna dotyczy aspektów takich jak sygnały, media transmisyjne, a nie zarządzania adresami logicznymi i fizycznymi. Takie błędne zrozumienie prowadzi do problemów w projektowaniu i zarządzaniu sieciami, ponieważ kluczowe funkcje protokołów mogą być mylone lub niewłaściwie stosowane. Aby lepiej zrozumieć rolę ARP, warto zwrócić uwagę na standardy i dobre praktyki związane z zarządzaniem adresacją w sieciach komputerowych, takie jak DHCP dla dynamicznego przypisywania adresów IP, które są często używane w połączeniu z ARP w celu efektywnego zarządzania zasobami sieciowymi.

Pytanie 25

Aby sprawdzić funkcjonowanie serwera DNS w systemach Windows Server, można wykorzystać narzędzie nslookup. Gdy w poleceniu podamy nazwę komputera, np. nslookup host.domena.com, nastąpi weryfikacja

A. strefy przeszukiwania do przodu
B. aliasu przypisanego do rekordu adresu domeny
C. strefy przeszukiwania wstecz
D. obu stref przeszukiwania, najpierw wstecz, a następnie do przodu
Analizując pozostałe odpowiedzi, można zauważyć pewne nieporozumienia dotyczące działania systemów DNS. Strefa przeszukiwania wstecz, jak sugeruje jedna z odpowiedzi, jest odpowiedzialna za tłumaczenie adresów IP na odpowiadające im nazwy domenowe. Użycie nslookup z adresem IP prowadziłoby do tego rodzaju zapytania, jednak w przypadku podania pełnej nazwy domeny, jak w podanym przykładzie, to strefa przeszukiwania do przodu jest tym, co jest wykorzystywane. Wspomniany alias dla rekordu adresu domeny również może wprowadzać w błąd, ponieważ nslookup nie sprawdza aliasów, gdy głównym celem jest uzyskanie adresu IP z nazwy domeny, ale zazwyczaj można to zrobić za pomocą opcji typu CNAME. Kluczowym błędem jest błędne zrozumienie funkcji narzędzia nslookup oraz roli poszczególnych stref w procesie rozwiązywania nazw. W praktyce, aby skutecznie diagnozować problemy z DNS, należy znać rolę stref przeszukiwania do przodu oraz wstecz, a także umieć korzystać z nslookup, aby odpowiednio testować i weryfikować rekordy DNS, co jest istotne w zarządzaniu infrastrukturą sieciową.

Pytanie 26

Jakie polecenie służy do analizy statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych rodziny Windows?

A. netstat
B. tracert
C. ping
D. route
Użycie poleceń takich jak 'tracert', 'route' czy 'ping' w kontekście sprawdzania statystyk protokołów TCP/IP oraz aktualnych połączeń sieciowych może prowadzić do mylnych wniosków. 'Tracert' służy do śledzenia trasy pakietów do określonego hosta, co pozwala zidentyfikować punkty w sieci, przez które przechodzi ruch. Choć przydatne w diagnostyce trasowania, nie dostarcza informacji o stanie bieżących połączeń lub ich statystykach. Z kolei polecenie 'route' jest używane do zarządzania tablicą routingu w systemie, co także nie odnosi się do bezpośredniego monitorowania aktywnych połączeń. Pomocne w określaniu, jak pakiety są kierowane w sieci, ale nie dostarcza informacji o ich bieżącym stanie ani o tym, które aplikacje korzystają z tych połączeń. 'Ping' to narzędzie diagnostyczne, które sprawdza dostępność hosta w sieci, mierząc czas odpowiedzi, ale nie dostarcza informacji o aktywnych połączeniach ani o szczegółach protokołów. Błędne wybory mogą wynikać z niepełnego zrozumienia funkcjonalności każdego z tych poleceń, co skutkuje mylnym przekonaniem, że oferują one podobne możliwości do 'netstat'. Zrozumienie różnic pomiędzy tymi narzędziami jest kluczowe dla skutecznego zarządzania i monitorowania sieci.

Pytanie 27

Jaka jest maksymalna liczba adresów sieciowych dostępnych w adresacji IP klasy A?

A. 64 adresy
B. 32 adresy
C. 128 adresów
D. 254 adresy
Wybór odpowiedzi sugerującej, że dostępnych jest 32, 64 lub 254 adresy sieciowe w klasie A opiera się na mylnym zrozumieniu zasad podziału i przydziału adresów IP. Odpowiedzi te mogą wynikać z nieprawidłowej interpretacji struktury adresów IP, gdzie użytkownicy mylą liczbę adresów sieciowych z liczbą dostępnych adresów hostów. Odpowiedź 32 adresy mogłaby odnosić się do małych podsieci, ale w kontekście klasy A, jest to nieprawidłowe. Liczba 64 adresów mogłaby sugerować błąd w obliczeniach, uwzględniając niepełne zrozumienie maski podsieci. Podobnie, 254 adresy jest wartością typową dla podsieci klasy C, gdzie dostępne adresy hostów są ograniczone do 256 minus dwa (adres sieci i adres rozgłoszeniowy). Te błędy pokazują, jak ważne jest zrozumienie, że klasa A oferuje 128 sieci, co jest wynikiem obliczenia 2^7, a każda z tych sieci może pomieścić ogromną liczbę hostów. W praktyce, niewłaściwe przydzielenie adresów może prowadzić do problemów z routingiem i zarządzaniem siecią, co wpływa na jakość i efektywność komunikacji w sieci. Zrozumienie klasyfikacji adresów IP oraz ich zastosowań jest kluczowe dla każdego, kto pracuje w dziedzinie IT i telekomunikacji.

Pytanie 28

Aby uzyskać spis wszystkich dostępnych urządzeń w sieci lokalnej, należy użyć aplikacji typu

A. sniffer
B. spoofer
C. port scanner
D. IP scanner
Programy typu IP scanner są narzędziami, które skanują lokalną sieć w celu identyfikacji wszelkich dostępnych urządzeń. Używają protokołów takich jak ICMP (Internet Control Message Protocol) do wysyłania zapytań do adresów IP w określonym zakresie, a następnie odbierają odpowiedzi, które umożliwiają zidentyfikowanie aktywnych hostów. Przykłady takich programów to Advanced IP Scanner czy Angry IP Scanner, które nie tylko pokazują adresy IP, ale także dodatkowe informacje, takie jak nazwy hostów i adresy MAC. W praktyce, korzystanie z IP skanera jest kluczowe w procesach zarządzania siecią i diagnozowania problemów, ponieważ pozwala administratorom szybko zorientować się, jakie urządzenia są podłączone do sieci, co jest niezbędne w kontekście bezpieczeństwa i optymalizacji zasobów. Dobre praktyki w używaniu IP skanera obejmują regularne skanowanie sieci oraz monitorowanie nieautoryzowanych urządzeń, co może zapobiec potencjalnym zagrożeniom dla bezpieczeństwa sieci.

Pytanie 29

Podstawowy protokół wykorzystywany do określenia ścieżki i przesyłania pakietów danych w sieci komputerowej to

A. RIP
B. PPP
C. POP3
D. SSL
RIP (Routing Information Protocol) to protokół trasowania, który jest używany w sieciach komputerowych do wymiany informacji o trasach między routerami. Działa na zasadzie protokołu wektora odległości, co oznacza, że każdy router informuje inne routery o znanych mu trasach oraz ich kosztach. Koszt trasy jest zazwyczaj mierzony w liczbie hopów, co oznacza liczbę routerów, przez które musi przejść pakiet, aby dotrzeć do celu. RIP jest szczególnie przydatny w małych i średnich sieciach, gdzie prostota konfiguracji i niskie wymagania dotyczące zasobów są kluczowe. Przykładem zastosowania RIP może być mała sieć biurowa, w której kilka routerów musi współdzielić informacje o trasach, aby zapewnić poprawne kierowanie ruchu. Zgodnie z najlepszymi praktykami, protokół RIP jest często wykorzystywany w połączeniu z innymi protokołami trasowania, takimi jak OSPF (Open Shortest Path First), w celu zwiększenia elastyczności i wydajności zarządzania ruchem w większych sieciach. Zrozumienie działania RIP oraz jego odpowiednich zastosowań jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 30

Urządzenie sieciowe typu most (ang. Bridge) działa w:

A. pierwszej warstwie modelu OSI
B. jest urządzeniem klasy store and forward
C. nie ocenia ramki pod względem adresu MAC
D. osiemnej warstwie modelu OSI
Praca w zerowej warstwie modelu OSI odnosi się do warstwy fizycznej, która zajmuje się przesyłaniem bitów przez medium transmisyjne. Mosty, jako urządzenia warstwy łącza danych, operują na ramkach, które zawierają adresy MAC, co oznacza, że nie mogą funkcjonować na poziomie zerowym. Przypisywanie mostów do ósmej warstwy modelu OSI jest błędne, ponieważ model OSI definiuje jedynie siedem warstw, a wszelkie odniesienia do ósmej warstwy byłyby niepoprawne z punktu widzenia standardów sieciowych. Warto również zauważyć, że mosty w rzeczywistości analizują ramki pod kątem adresów MAC, co jest kluczowym elementem ich funkcjonalności. To umożliwia im podejmowanie decyzji o przesyłaniu danych do odpowiednich segmentów sieci, w zależności od ich adresacji. Ignorowanie analizy adresów MAC w kontekście pracy mostów prowadzi do nieporozumień co do ich roli w architekturze sieci. Typowym błędem jest mylenie mostów z urządzeniami, które nie analizują danych na poziomie warstwy łącza, co może prowadzić do nieefektywnego zarządzania ruchem i spadku wydajności sieci. Zrozumienie prawidłowych funkcji mostów jest kluczowe dla skutecznego projektowania i zarządzania nowoczesnymi sieciami.

Pytanie 31

Funkcja roli Serwera Windows 2012, która umożliwia obsługę ruterów NAT oraz ruterów BGP w sieciach lokalnych, to

A. serwer proxy aplikacji sieci Web
B. Direct Access oraz VPN (RAS)
C. routing
D. przekierowanie HTTP
Rozważając dostępne odpowiedzi, warto zauważyć, że Direct Access i VPN (RAS) dotyczą zdalnego dostępu do sieci, a nie zarządzania ruchem między różnymi sieciami. Usługi te są używane do zapewnienia zdalnym użytkownikom bezpiecznego połączenia z siecią lokalną, ale nie obejmują zarządzania trasami czy translacją adresów, które są kluczowe dla routingu. Przekierowanie HTTP to technika stosowana w kontekście sieci web, która dotyczy przesyłania ruchu webowego na inny adres URL, co nie ma związku z routingiem ani z funkcjami NAT. Z kolei serwer proxy aplikacji sieci Web działa jako pośrednik w komunikacji między klientem a serwisem internetowym, jednak nie jest to równoznaczne z routowaniem czy obsługą sieci lokalnych. W przypadku błędnych odpowiedzi często pojawia się nieporozumienie dotyczące podstawowych funkcji i zastosowań różnych technologii sieciowych, co może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że routing to nie tylko dążenie do połączenia sieci, ale także zarządzanie tym połączeniem w sposób, który zapewnia efektywność i bezpieczeństwo, co jest fundamentalne w projektowaniu sieci.

Pytanie 32

Jakie jest adres rozgłoszeniowy (broadcast) dla hosta z adresem IP 192.168.35.202 oraz 26-bitową maską?

A. 192.168.35.192
B. 192.168.35.255
C. 192.168.35.0
D. 192.168.35.63
Adres rozgłoszeniowy (broadcast) dla danej sieci to adres, który umożliwia wysyłanie pakietów do wszystkich urządzeń w tej sieci. Aby obliczyć adres rozgłoszeniowy, należy znać adres IP hosta oraz maskę podsieci. W przypadku adresu IP 192.168.35.202 z 26-bitową maską (255.255.255.192), maska ta dzieli adres na część sieciową i część hosta. W tym przypadku, maska 26-bitowa oznacza, że ostatnie 6 bitów jest przeznaczone dla hostów. Mamy zakres adresów od 192.168.35.192 do 192.168.35.255. Adres rozgłoszeniowy to ostatni adres w danym zakresie, co w tym przypadku wynosi 192.168.35.255. Przydatność tego adresu jest szczególnie istotna w sieciach lokalnych, gdzie urządzenia mogą komunikować się ze sobą w sposób grupowy, co jest zrealizowane właśnie poprzez użycie adresu rozgłoszeniowego. Przykładem zastosowania adresu rozgłoszeniowego może być wysyłanie aktualizacji oprogramowania do wszystkich komputerów w sieci jednocześnie, co znacznie ułatwia zarządzanie i oszczędza czas.

Pytanie 33

Użytkownik korzysta z polecenia ipconfig /all w systemie Windows. Jaką informację uzyska po jego wykonaniu?

A. Dane o aktualnym wykorzystaniu miejsca na wszystkich partycjach dysku twardego.
B. Informacje dotyczące wersji i stanu sterownika karty graficznej zainstalowanej w systemie.
C. Listę aktywnych połączeń TCP wraz z numerami portów i adresami zdalnymi.
D. Szczegółową konfigurację wszystkich interfejsów sieciowych, w tym adresy IP, maski podsieci, bramy domyślne, adresy serwerów DNS oraz fizyczne adresy MAC.
Polecenie ipconfig /all w systemie Windows służy do wyświetlania szczegółowych informacji o wszystkich interfejsach sieciowych zainstalowanych w komputerze. Wynik tego polecenia to nie tylko podstawowy adres IP czy maska podsieci, ale także takie dane jak: adresy fizyczne MAC poszczególnych kart, adresy bram domyślnych, serwerów DNS i WINS, status DHCP, a nawet identyfikatory poszczególnych interfejsów. Dzięki temu narzędziu administrator może w prosty sposób zweryfikować, jak skonfigurowane są poszczególne karty sieciowe, czy komputer korzysta z DHCP, czy adresy przydzielone są statycznie, a także czy nie występują konflikty adresów. Praktycznie – przy rozwiązywaniu problemów z siecią lokalną, właśnie ipconfig /all jest jednym z pierwszych poleceń, po jakie sięga technik czy administrator. Moim zdaniem, każdy, kto chce efektywnie zarządzać sieciami komputerowymi i rozumieć ich działanie, powinien znać szczegóły wyjścia tego polecenia na pamięć. W branży IT to jedna z absolutnych podstaw, a jednocześnie narzędzie, które nie raz potrafi zaoszczędzić godziny żmudnego szukania błędów konfiguracyjnych. Standardy branżowe wręcz zalecają korzystanie z tego polecenia przy każdej diagnozie sieciowej.

Pytanie 34

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. który zapobiega tworzeniu się pętli w sieci
B. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
C. pozwalający na używanie wielu portów jako jednego łącza logicznego
D. przydzielania wyższego priorytetu wybranym typom danych
Odpowiedź dotycząca nadawania priorytetu określonym rodzajom danych jest prawidłowa, ponieważ mechanizmy QoS (Quality of Service) odgrywają kluczową rolę w zarządzaniu jakością usług w sieciach komputerowych. W kontekście przełączników warstwy dostępu, nadawanie priorytetów polega na klasyfikacji i zarządzaniu ruchem sieciowym, co pozwala na przydzielanie większych zasobów dla bardziej wymagających aplikacji, takich jak VoIP czy transmisje wideo. Przykładem może być wykorzystanie protokołu IEEE 802.1p, który umożliwia oznaczanie ramek Ethernet z odpowiednim poziomem priorytetu. Dzięki temu, w sytuacjach dużego obciążenia sieci, ważniejsze dane mogą być przesyłane szybciej, co ma kluczowe znaczenie dla zapewnienia ciągłości i jakości usług. Dobre praktyki w implementacji QoS obejmują także regularne monitorowanie ruchu oraz dostosowywanie polityk QoS w zależności od zmieniających się wymagań aplikacji oraz użytkowników. W ten sposób, można nie tylko poprawić doświadczenia użytkowników, ale również zoptymalizować wykorzystanie zasobów sieciowych.

Pytanie 35

Jaką rolę pełni serwer Windows Server, która pozwala na centralne zarządzanie i ustawianie tymczasowych adresów IP oraz związanych z nimi danych dla komputerów klienckich?

A. Usługi pulpitu zdalnego
B. Serwer DHCP
C. Serwer telnet
D. Usługi udostępniania plików
Wybór odpowiedzi związanej z serwerem telnet, usługami udostępniania plików czy usługami pulpitu zdalnego świadczy o nieporozumieniu dotyczącym roli i funkcji poszczególnych komponentów systemu Windows Server. Serwer telnet to narzędzie wykorzystywane do zdalnego logowania do systemów, co pozwala na zdalne wykonywanie poleceń, ale nie ma związku z przydzielaniem adresów IP czy konfiguracją sieci. Usługi udostępniania plików koncentrują się na przechowywaniu i udostępnianiu plików w sieci, co również nie obejmuje zarządzania adresami IP. Z kolei usługi pulpitu zdalnego umożliwiają zdalny dostęp do interfejsu użytkownika systemu, co również nie jest związane z zarządzaniem konfiguracją sieci. Często błędem jest mylenie funkcji związanych z dostępem do systemów i ich konfigurowaniem z rolą zarządzania adresami IP. Takie nieporozumienie może prowadzić do niewłaściwego podejścia do zarządzania siecią, co w praktyce skutkuje mniejszą efektywnością i większymi trudnościami w administracji. Wiedza na temat specyficznych ról serwerów pozwoli unikać takich pomyłek i przyczyni się do lepszego zarządzania infrastrukturą IT oraz optymalizacji procesów w organizacji.

Pytanie 36

Jakie polecenie w systemach operacyjnych Linux służy do prezentacji konfiguracji sieciowych interfejsów?

A. ping
B. tracert
C. ipconfig
D. ifconfig
Polecenie 'ifconfig' jest klasycznym narzędziem używanym w systemach operacyjnych Linux do wyświetlania oraz konfigurowania interfejsów sieciowych. Umożliwia ono administratorom systemów monitorowanie oraz zarządzanie parametrami sieciowymi, takimi jak adres IP, maska podsieci, status interfejsu, a także inne istotne informacje. Przykładowo, używając polecenia 'ifconfig', można sprawdzić, które interfejsy sieciowe są aktywne oraz jakie mają przypisane adresy IP. Dodatkowo, 'ifconfig' pozwala na dokonywanie zmian w konfiguracji interfejsów, co jest niezwykle przydatne w sytuacjach, gdy konieczne jest przypisanie nowego adresu IP lub aktywacja/dezaktywacja interfejsu. Warto również wspomnieć, że 'ifconfig' jest częścią standardowych narzędzi sieciowych w wielu dystrybucjach Linuxa, a jego znajomość jest wręcz niezbędna dla każdego administratora systemów. Choć 'ifconfig' pozostaje w użyciu, warto zauważyć, że nowoczesne systemy operacyjne promują bardziej zaawansowane narzędzie o nazwie 'ip', które oferuje rozszerzone funkcjonalności i lepsze wsparcie dla nowoczesnych protokołów sieciowych."

Pytanie 37

Ile równych podsieci można utworzyć z sieci o adresie 192.168.100.0/24 z wykorzystaniem maski 255.255.255.192?

A. 4 podsieci
B. 2 podsieci
C. 8 podsieci
D. 16 podsieci
Odpowiedź 4 podsieci jest poprawna, ponieważ zastosowanie maski 255.255.255.192 (czyli /26) do adresu 192.168.100.0/24 znacząco wpływa na podział tej sieci. W masce /24 mamy 256 adresów IP (od 192.168.100.0 do 192.168.100.255). Zastosowanie maski /26 dzieli tę przestrzeń adresową na 4 podsieci, z każdą z nich zawierającą 64 adresy (2^(32-26) = 2^6 = 64). Te podsieci będą miały adresy: 192.168.100.0/26, 192.168.100.64/26, 192.168.100.128/26 oraz 192.168.100.192/26. Taki podział jest przydatny w praktyce, na przykład w sytuacjach, gdzie potrzebujemy odseparować różne działy w firmie lub w przypadku przydzielania adresów dla różnych lokalizacji geograficznych. Dobrą praktyką w zarządzaniu adresami IP jest używanie podsieci, co ułatwia organizację ruchu w sieci oraz zwiększa bezpieczeństwo poprzez segmentację. Właściwe planowanie podsieci pozwala również zminimalizować marnotrawstwo adresów IP.

Pytanie 38

W jakiej topologii fizycznej sieci każde urządzenie ma dokładnie dwa połączenia, z których jedno prowadzi do najbliższego sąsiada, a dane są przesyłane z jednego komputera do następnego w formie pętli?

A. Siatka.
B. Drzewo.
C. Gwiazda.
D. Pierścień.
Topologia pierścienia charakteryzuje się tym, że każde urządzenie sieciowe, zwane węzłem, jest połączone z dokładnie dwoma innymi węzłami. Taki układ tworzy zamkniętą pętlę, przez którą dane są przesyłane w jednym kierunku, co znacząco upraszcza proces transmisji. Główną zaletą topologii pierścienia jest to, że pozwala na ciągłe przekazywanie informacji bez potrzeby skomplikowanego routingu. Przykładem zastosowania tej topologii mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. W takich sieciach stosowano tokeny, czyli specjalne ramki, które kontrolowały dostęp do medium transmisyjnego, co pozwalało uniknąć kolizji danych. Warto wspomnieć, że w przypadku uszkodzenia jednego z węzłów, sieć może przestać działać, co jest istotnym ograniczeniem tej topologii. Aby zwiększyć niezawodność, często stosuje się różne mechanizmy redundancji, takie jak dodatkowe połączenia zapewniające alternatywne ścieżki dla danych. W nowoczesnych aplikacjach sieciowych znajomość i umiejętność konfiguracji różnych topologii jest kluczowa, zwłaszcza w kontekście zapewnienia odpowiedniej wydajności i bezpieczeństwa sieci.

Pytanie 39

Który z dostępnych standardów szyfrowania najlepiej ochroni sieć bezprzewodową?

A. WEP 128
B. WPA2-PSK(AES)
C. WPA-PSK(TKIP)
D. WEP 64
Zastosowanie standardów WEP, zarówno w wersji 64-bitowej, jak i 128-bitowej, oraz WPA-PSK z TKIP, okazuje się niewystarczające w kontekście współczesnych zagrożeń bezpieczeństwa. WEP, mimo iż był jednym z pierwszych standardów ochrony sieci bezprzewodowych, jest obecnie uważany za przestarzały i niemożliwy do skutecznej implementacji w dzisiejszych czasach. Problemy z WEP wynikają przede wszystkim z jego słabej konstrukcji, która umożliwia przeprowadzenie ataków takich jak atak IV (Initialization Vector) oraz atak na klucz szyfrowania, co pozwala na łatwe odszyfrowanie danych. WEP 64 i WEP 128 różnią się jedynie długością klucza, a ich bezpieczeństwo stoi na tym samym, niskim poziomie. Z kolei WPA-PSK używający TKIP, choć stanowi poprawę w stosunku do WEP, wciąż ma swoje ograniczenia; TKIP jest podatny na różne formy ataków, w tym ataki związane z przechwytywaniem pakietów. Dlatego ważne jest, aby nie opierać się na przestarzałych standardach, ale korzystać z najnowszych technologii, które gwarantują lepszą ochronę, takich jak WPA2-PSK(AES) lub WPA3. Ignorowanie aktualnych standardów i korzystanie z przestarzałych protokołów może prowadzić do poważnych luk w zabezpieczeniach, narażając użytkowników na utratę danych oraz nieautoryzowany dostęp do sieci.

Pytanie 40

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. filtrację adresów MAC
B. firewall
C. bardziej zaawansowane szyfrowanie
D. strefę o ograniczonym dostępie
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.