Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 9 kwietnia 2025 16:44
  • Data zakończenia: 9 kwietnia 2025 16:56

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
B. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
C. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
D. wprowadzić kondensator o tych samych wymiarach
Wstawienie kondensatora o pojemności 30% większej od znamionowej jest błędne, ponieważ kondensatory mają ściśle określone parametry, które muszą być spełnione, aby układ działał prawidłowo. Zwiększenie pojemności może prowadzić do nieprzewidywalnych skutków, takich jak zmiana częstotliwości rezonansowej obwodu, co w konsekwencji może wpływać na jego działanie. W praktyce, jeśli kondensator jest zbyt duży, może to prowadzić do przegrzewania się, co z kolei może doprowadzić do jego uszkodzenia. Kolejną nieprawidłową koncepcją jest wstawienie kondensatora o pojemności równej pomiarowi wykonanym na uszkodzonym kondensatorze. Uszkodzony komponent może wykazywać fałszywe wartości, dlatego pomiar na uszkodzonym kondensatorze nie jest miarodajny. Również gabaryty kondensatora są istotne – zastosowanie kondensatora gabarytowo identycznego nie gwarantuje, że jego parametry elektryczne będą takie same, ponieważ różne typy kondensatorów mogą mieć różne charakterystyki, które wpływają na ich funkcjonalność w danym obwodzie. Dlatego kluczowe jest, aby przy wymianie kondensatorów stosować się do specyfikacji producenta i standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo całego urządzenia.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Zakład elektroniczny otrzymał zamówienie na rozbudowę istniejącego domowego systemu alarmowego. Usługa obejmuje zamontowanie 3 czujników ruchu i włączenie ich do systemu. Na podstawie danych zamieszczonych w tabeli określ, jaki będzie koszt planowanych prac, jeżeli materiały objęte są 23%, a usługa 8% podatkiem VAT. W obliczeniach należy uwzględnić zryczałtowany koszt dojazdu do domu klienta w wysokości 45,00 zł.

Element/usługaCena jednostkowa netto
Czujnik50,00 zł
Montaż 1 czujnika30,00 zł
Przeprogramowanie i sprawdzenie systemu60,00 zł

A. 345,00 zł
B. 312,00 zł
C. 391,50 zł
D. 395,10 zł
Obliczenia błędne, a ich przyczyną mogą być różne nieprawidłowe założenia. W przypadku podanych odpowiedzi, istotnym błędem jest nieprawidłowe uwzględnienie stawek VAT, co prowadzi do zaniżenia lub zawyżenia całkowitego kosztu. Na przykład, jeśli ktoś obliczył VAT dla materiałów lub usług w sposób, który nie uwzględnia zaktualizowanych przepisów, to może otrzymać znacznie niższą lub wyższą kwotę. Inny typowy błąd to pominięcie zryczałtowanego kosztu dojazdu, który powinien być dodany jako koszt stały, niezależnie od obliczeń. W przypadku wyboru odpowiedzi, która jest znacznie niższa od prawidłowej, należy również uwzględnić, że czasami może dojść do pomylenia netto z brutto, co wprowadza zamieszanie w obliczeniach. Dobrym podejściem jest zawsze dążenie do transparentności w kalkulacjach i sprawdzanie wszystkich danych z tabeli źródłowej, aby uniknąć błędów. Obliczając koszty, warto także stosować zasady rachunkowości, które nakładają obowiązek netto i brutto w kontekście podatków. Ostatecznie, w branży usług elektronicznych ważne jest, by być na bieżąco z przepisami oraz standardami, co wpływa na jakość świadczonych usług oraz zadowolenie klientów.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Serwisant otrzymał zgłoszenie od użytkownika tunera satelitarnego, który nie odbiera sygnału tylko na programach z polaryzacją V. Sygnał z anteny jest dostarczany do gniazda poprzez multiswitch. Jaką usterkę można podejrzewać?

A. Brak zasilania multiswitcha
B. Usterka w głowicy tunera
C. Zniszczone gniazdo antenowe
D. Uszkodzony multiswitch
Rozważając inne odpowiedzi, ważne jest zrozumienie, że brak zasilania multiswitcha najczęściej skutkowałby całkowitym brakiem sygnału na wszystkich programach, a nie tylko na tych z polaryzacją V. Taki błąd myślowy może prowadzić do niewłaściwej diagnozy, ponieważ zasilanie energia jest kluczowe dla działania multiswitcha, ale nie wpływa na polaryzację sygnału w sposób selektywny. Podobnie, uszkodzone gniazdo antenowe może prowadzić do problemów z sygnałem, jednak objawy byłyby bardziej różnorodne i mogłyby obejmować brak sygnału na wszystkich kanałach, a nie tylko na programach z polaryzacją V. Usterka głowicy tunera mogłaby również powodować problemy, ale typowe objawy obejmują brak sygnału na obu polaryzacjach lub problemy z dekodowaniem sygnału. Kluczowe jest zrozumienie, że każda z tych opcji wymagałaby odmiennych działań diagnostycznych oraz rozwiązań technicznych. Dlatego, aby skutecznie zidentyfikować problem, należy dokładnie analizować objawy oraz zrozumieć funkcjonalność każdego komponentu w systemie odbioru satelitarnego.

Pytanie 7

Jaką moc generuje rezystor o rezystancji 10 Ω, przez który przepływa prąd o natężeniu 100 mA?

A. 10 W
B. 1 W
C. 0,01 W
D. 0,1 W
Moc wydzielana w rezystorze można obliczyć korzystając z prawa Ohma oraz wzoru na moc elektryczną. Prawo Ohma mówi, że napięcie (U) na rezystorze jest równe iloczynowi rezystancji (R) i natężenia prądu (I), czyli U = R * I. W naszym przypadku mamy R = 10 Ω i I = 0,1 A (100 mA). Z tego wynika, że U = 10 Ω * 0,1 A = 1 V. Z kolei moc (P) wydzielająca się w rezystorze obliczamy ze wzoru P = U * I. Podstawiając wartości, otrzymujemy P = 1 V * 0,1 A = 0,1 W. Tego typu obliczenia są niezwykle istotne w inżynierii elektrycznej, szczególnie w projektowaniu i analizie obwodów elektrycznych, gdzie poprawne określenie mocy jest kluczowe dla doboru komponentów, ich chłodzenia oraz efektywności energetycznej. W praktyce, wiedza o mocy wydzielanej w rezystorze pomaga w zapobieganiu przegrzewaniu się elementów obwodu i zapewnienia ich długotrwałej pracy zgodnie z normami bezpieczeństwa i niezawodności.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W wielostopniowych wzmacniaczach prądu stałego pomiędzy poszczególnymi stopniami stosowane są różne rodzaje sprzężeń

A. galwaniczne
B. transformatorowe
C. mieszane
D. pojemnościowe
Wielostopniowe wzmacniacze prądu stałego mogą być czasami mylone z innymi rodzajami sprzężeń, co prowadzi do nieporozumień. Sprzężenia transformatorowe, mimo że są powszechnie stosowane w różnych aplikacjach, nie są odpowiednie dla wzmacniaczy prądu stałego, ponieważ ich działanie bazuje na przemianie sygnału, co wprowadza dodatkowe ograniczenia w przypadku stałego prądu. Mieszane sprzężenia z kolei mogą sugerować kombinację różnych typów sprzężeń, jednak w kontekście wzmacniaczy prądu stałego nie zapewniają one odpowiedniej izolacji, co może prowadzić do problemów z liniowością sygnału. Pojemnościowe sprzężenia również nie są idealnym rozwiązaniem, ponieważ ich działanie jest ograniczone do sygnałów zmiennych, a nie stałych. Korzystanie z takich sprzężeń może prowadzić do wprowadzenia niepożądanych przesunięć fazowych i zniekształceń sygnału, co jest szczególnie istotne w aplikacjach wymagających precyzyjnych pomiarów. W rzeczywistości, wykorzystanie niewłaściwego typu sprzężenia w układach elektronicznych może prowadzić do poważnych błędów w działaniu całego systemu. Dlatego kluczowe jest zrozumienie różnic pomiędzy tymi metodami oraz ich zastosowaniem w kontekście wzmacniaczy prądu stałego.

Pytanie 10

Multiplekser dysponujący 16 wejściami informacyjnymi ma

A. 5 wejść adresowych
B. 3 wejścia adresowe
C. 4 wejścia adresowe
D. 2 wejścia adresowe
W przypadku multipleksera o 16 wejściach informacyjnych, liczba wymaganych wejść adresowych wynika z zasady logarytmicznej, gdzie liczba adresów jest równa logarytmowi o podstawie 2 z liczby wejść. Wzór ten można zapisać jako: n = log2(N), gdzie N to liczba wejść, a n to liczba wejść adresowych. W naszym przypadku mamy 16 wejść, co przelicza się na: log2(16) = 4. Oznacza to, że potrzebujemy 4 wejść adresowych, aby zaadresować każde z 16 wejść informacyjnych. Przykładem praktycznego zastosowania tego typu multipleksera może być system wyboru sygnałów w telekomunikacji, gdzie różne sygnały są przesyłane z różnych źródeł i muszą być wybierane w sposób zorganizowany. W branży elektronicznej, zrozumienie tej kalkulacji jest kluczowe dla projektowania układów cyfrowych, zwłaszcza w kontekście minimalizacji liczby komponentów oraz optymalizacji wydajności w systemach przetwarzania danych. Warto także wspomnieć, że stosowanie odpowiednich standardów w projektowaniu multiplekserów, takich jak standardy IEC, zapewnia ich niezawodność i interoperacyjność w różnych aplikacjach.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Urządzeniem realizującym zadania jest

A. silnik elektryczny prądu stałego
B. przycisk monostabilny
C. czujnik
D. fotorezystor
Fotorezystor to taki element, co ma różne funkcje w automatyce, ale nie jest urządzeniem wykonawczym. Działa na zasadzie zmiany rezystancji w zależności od światła, więc najczęściej spotkać go można w systemach pomiarowych, czy do automatycznego sterowania światłem, ale sam nic nie rusza. A ten przycisk monostabilny, to on zmienia stan układu, jak go naciśniesz, ale nie generuje ruchu ani nie przekształca energii – po prostu sygnalizuje co chcesz. Z kolei czujnik wykrywa zmiany w otoczeniu, na przykład temperaturę, ciśnienie czy ruch i zmienia to na sygnał elektryczny. I mimo że czujniki i przyciski są mega ważne w automatyce, to raczej pełnią rolę sensoryczną lub kontrolną, nie wykonawczą. Często ludzie mylą to i myślą, że czujniki mogą coś wykonać, a to nie tak. W praktyce, rozumienie różnicy tych komponentów jest kluczowe w projektowaniu i wdrażaniu systemów automatyki, co jest ważne w zarządzaniu procesami przemysłowymi.

Pytanie 13

Rozpoczynając wymianę przekaźnika w obwodzie sterującym, pierwszym krokiem powinno być

A. odłączyć przewody podłączone do cewki przekaźnika
B. zdjąć przekaźnik z szyny TH-35
C. wyłączyć napięcie w obwodzie sterowania
D. odłączyć przewody podłączone do styków przekaźnika
Praca z obwodami elektrycznymi wymaga przestrzegania rygorystycznych zasad bezpieczeństwa, a w szczególności wyłączenia napięcia przed przystąpieniem do jakiejkolwiek interwencji. Przykłady błędnych podejść do wymiany przekaźnika, takie jak odłączenie przewodów cewki lub styków, pomijają kluczowy krok, jakim jest zapewnienie bezpieczeństwa. Odłączenie przewodów przymocowanych do cewki przekaźnika nie tylko nie rozwiązuje problemu bezpieczeństwa, ale może prowadzić do niezamierzonych zwarć, które są niebezpieczne dla operatora. Podobnie, demontaż przekaźnika z szyny TH-35 bez wyłączenia napięcia naraża na kontakt z elementami pod napięciem, co może prowadzić do poważnych wypadków. Wiele osób pomija ten krok, sądząc, że praca nad wyłączonymi przewodami jest wystarczająco bezpieczna, co jest niezgodne z podstawowymi zasadami pracy z urządzeniami elektrycznymi. Zgodnie z najlepszymi praktykami, każda praca w obszarze elektryki powinna zaczynać się od wyłączenia zasilania. Warto również zwracać uwagę na oznaczenia i procedury stosowane w danym środowisku pracy, które ułatwiają zachowanie odpowiednich standardów bezpieczeństwa.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie wspólnego kolektora, który odznacza się

A. wysokim wzmocnieniem napięciowym
B. niskim wzmocnieniem prądowym
C. niską rezystancją wejściową
D. wzmocnieniem napięciowym bliskim jedności
Wybór odpowiedzi dotyczących małej rezystancji wejściowej, małego wzmocnienia prądowego czy dużego wzmocnienia napięciowego jest wynikiem powszechnych nieporozumień związanych z działaniem wzmacniaczy w konfiguracji wspólnego kolektora. W przypadku wtórnika emiterowego, rezystancja wejściowa jest w rzeczywistości wysoka, co umożliwia efektywne przyjmowanie sygnałów z wyższych impedancji. Stąd, sugerowanie, że wtórnik emiterowy ma małą rezystancję wejściową, jest mylące i niezgodne z rzeczywistością. Ponadto, stwierdzenie, że wtórnik emiterowy charakteryzuje się małym wzmocnieniem prądowym, jest również nieprecyzyjne, ponieważ wzmocnienie prądowe w tej konfiguracji jest zazwyczaj bliskie jedności, co oznacza, że prąd wyjściowy jest niemal równy prądowi wejściowemu. Z kolei duże wzmocnienie napięciowe jest sprzeczne z fundamentalnymi zasadami działania wtórnika emiterowego, który ma na celu przede wszystkim stabilizację napięcia, a nie jego wzmocnienie. Wzmacniacze te działają na zasadzie ścisłego dopasowania napięcia, co czyni je niezwykle przydatnymi w aplikacjach wymagających precyzyjnego zarządzania sygnałem. Osoby, które nie rozumieją tych podstawowych zasad, mogą łatwo wprowadzić się w błąd, myśląc o wtórniku emiterowym jako o typowym wzmacniaczu, co prowadzi do błędnych wniosków.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Aby zrealizować pomiar efektywności energetycznej zasilacza stabilizowanego pracującego w trybie ciągłym, należy użyć dwóch

A. omomierzy
B. amperomierzy
C. woltomierzy
D. watomierzy
Wybór watomierzy jako narzędzi do pomiaru sprawności energetycznej zasilacza stabilizowanego o działaniu ciągłym jest uzasadniony ich specyficzną funkcjonalnością. Watomierz pozwala na bezpośredni pomiar mocy czynnej, co jest kluczowe w ocenie efektywności energetycznej urządzeń elektrycznych. Mierząc moc, można obliczyć sprawność, dzieląc moc wyjściową przez moc wejściową zasilacza. Przykładowo, w zastosowaniach przemysłowych, gdzie zasilacze są używane do zasilania silników czy systemów automatyki, stosowanie watomierzy pozwala na monitorowanie zużycia energii i identyfikację potencjalnych oszczędności. Zgodnie z najlepszymi praktykami branżowymi, regularne pomiary i analiza sprawności energetycznej mogą prowadzić do optymalizacji kosztów operacyjnych oraz zmniejszenia wpływu na środowisko.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. krótszy od pół okresu sygnału sterującego
B. wynoszący połowę okresu sygnału sterującego
C. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
D. wynoszący pełen okres sygnału sterującego
Odpowiedzi sugerujące, że prąd w tranzystorze wzmacniacza klasy A płynie przez krótszy czas niż pełen okres sygnału sterującego, opierają się na nieporozumieniu dotyczącym zasad działania tego typu wzmacniaczy. Klasa A, w przeciwieństwie do klas B czy C, nie wyłącza się w trakcie cyklu sygnału. Wzmacniacz klasy A działa w trybie, w którym tranzystor jest zawsze włączony, co oznacza, że prąd płynie nieprzerwanie przez cały okres sygnału. Wzmacniacze klasy B i C mają swoje zastosowania w aplikacjach wymagających większej efektywności energetycznej, jednak w takich przypadkach pojawiają się zniekształcenia, ponieważ tranzystory są aktywne tylko w połowie lub mniejszym czasie cyklu. Zrozumienie tych różnic jest kluczowe, zwłaszcza w kontekście projektowania systemów audio, gdzie jakość dźwięku wymaga minimalnych zniekształceń. Typowe błędy myślowe związane z tym zagadnieniem to mylenie wzmacniaczy klasy A z innymi klasami, co prowadzi do błędnych wniosków o ich działaniu. Z perspektywy praktycznej, wybór wzmacniacza klasy A w zastosowaniach audio może być podyktowany chęcią uzyskania lepszej jakości dźwięku, ale wiąże się też z wyższym zużyciem energii i większymi stratami cieplnymi.

Pytanie 25

Temperatura złącza diody osiąga 80 °C przy mocy strat wynoszącej 100 mW, a temperatura otoczenia wynosi 20 °C. Jaką całkowitą rezystancję termiczną ma ta dioda od złącza przez obudowę do otoczenia?

A. 600 K/W
B. 200 K/W
C. 1 000 K/W
D. 800 K/W
Poprawna odpowiedź wynika z zastosowania podstawowych zasad obliczania rezystancji termicznej, która jest kluczowym parametrem w kontekście zarządzania ciepłem w komponentach elektronicznych. Aby obliczyć rezystancję termiczną, używamy wzoru: Rth = (Tj - Ta) / P, gdzie Tj to temperatura złącza, Ta to temperatura otoczenia, a P to moc strat. W naszym przypadku mamy Tj = 80 °C, Ta = 20 °C oraz P = 100 mW. Wstawiając te wartości do wzoru, otrzymujemy: Rth = (80 °C - 20 °C) / 0,1 W = 600 K/W. W praktyce, ta wiedza jest niezwykle istotna w projektowaniu układów elektronicznych, gdzie odpowiednie odprowadzanie ciepła wpływa na stabilność i żywotność komponentów. W przypadku diod, zrozumienie rezystancji termicznej pozwala inżynierom na dobór odpowiednich materiałów i metod chłodzenia, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 26

Diody LED w kolorze niebieskim z wartością katalogową napięcia przewodzenia UD= 2 V oraz maksymalnym prądem przewodzenia ID= 15 mA powinny być podłączone do zasilacza o napięciu stałym Uz = 24 V. Jakie wartości powinien mieć dodatkowy rezystor Rz, który będzie współpracował z diodą w układzie szeregowym, aby nie przekroczyć dopuszczalnej wartości prądu diody oraz maksymalnej mocy P, wydzielającej się na rezystorze Rz?

A. Rz=150 Ω, P=1W
B. Rz=150 Ω, P=1W
C. Rz=1,5 kΩ, P=0,5 W
D. Rz=1,5 kΩ, P=0,25 W
Wybór wartości rezystora Rz na poziomie 1,5 kΩ oraz mocy 0,5 W jest poprawny, ponieważ zapewnia on odpowiednie warunki do pracy diody LED. Przy napięciu zasilania Uz = 24 V oraz napięciu przewodzenia diody UD = 2 V, różnica napięcia, która musi być wydana na rezystorze wynosi 24 V - 2 V = 22 V. Korzystając z prawa Ohma, możemy obliczyć wartość prądu I przez diodę, przyjmując maksymalną wartość prądu przewodzenia diody I_D = 15 mA. Zatem rezystor Rz obliczamy z wzoru: Rz = U/R = 22 V / 0,015 A = 1466,67 Ω, co zaokrąglamy do standardowej wartości 1,5 kΩ. Ponadto, moc wydzielająca się na rezystorze Rz można obliczyć jako P = I² * Rz = (0,015 A)² * 1500 Ω = 0,3375 W, co jest poniżej 0,5 W, co oznacza, że zastosowany rezystor o mocy 0,5 W wystarczy. Takie podejście pozwala na bezpieczne działanie diody LED oraz rezystora, co jest zgodne z dobrą praktyką projektowania obwodów elektronicznych, gdzie zawsze powinno się uwzględniać marginesy bezpieczeństwa.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. ferromagnetyka miękkiego
B. materiału paramagnetycznego
C. ferromagnetyka twardego
D. materiału diamagnetycznego
Wybór magnesów w budowie głośników dynamicznych ma kluczowe znaczenie dla ich funkcjonowania. Materiały paramagnetyczne, ferromagnetyki twarde i diamagnetyki nie są odpowiednie do zastosowań w głośnikach dynamicznych z kilku powodów. Materiały paramagnetyczne, takie jak aluminium czy platyna, mają bardzo słabe właściwości magnetyczne i nie są w stanie stworzyć wystarczająco silnego pola magnetycznego, co skutkuje niewystarczającą mocą akustyczną i niską wydajnością. W zastosowaniach audio najważniejszymi cechami magnesu są jego siła i efektywność w oddziaływaniu na cewkę głośnika. Ferromagnetyki twarde, takie jak stal, mają z kolei wysoką retencję magnetyczną, co oznacza, że po namagnesowaniu pozostają magnesami przez długi czas. To utrudnia ich użycie w głośnikach, gdzie konieczne są szybkie zmiany pola magnetycznego. Ponadto, materiały diamagnetyczne, jak miedź czy bizmut, są w stanie generować pole magnetyczne przeciwnie do zewnętrznego, co również nie wspiera efektywności głośnika. W praktyce, wybór niewłaściwego materiału może prowadzić do zniekształceń dźwięku, obniżenia jakości odtwarzania oraz ograniczenia pasma przenoszenia, co jest sprzeczne z zasadami projektowania głośników. Dlatego istotne jest, aby projektanci głośników kierowali się sprawdzonymi praktykami branżowymi oraz korzystali z ferromagnetyków miękkich, co pozwala na uzyskanie wysokiej jakości dźwięku i lepszej dynamiki.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20

A. czujnik rezystancyjny.
B. termistor.
C. termoparę.
D. czujnik pirometryczny.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 32

Jakim standardem bezprzewodowej wymiany danych powinno charakteryzować się urządzenie elektroniczne, aby mogło dokonywać płatności zbliżeniowych?

A. UNIQUE
B. MIFARE
C. HITAG
D. NFC
NFC, czyli Near Field Communication, to technologia bezprzewodowej wymiany danych, która działa na bardzo krótkich odległościach, zazwyczaj poniżej 10 centymetrów. Jest to kluczowy standard wykorzystywany w płatnościach zbliżeniowych, ponieważ zapewnia szybkie i bezpieczne połączenie między urządzeniem mobilnym a terminalem płatniczym. Przykładem zastosowania NFC jest płatność za pomocą smartfona w punktach sprzedaży, gdzie użytkownik zbliża swoje urządzenie do terminala, by zrealizować transakcję. NFC wykorzystuje również mechanizmy zabezpieczeń, takie jak szyfrowanie danych oraz autoryzację transakcji, co sprawia, że jest to rozwiązanie uznawane za bezpieczne w kontekście płatności. W praktyce, NFC znajduje zastosowanie nie tylko w transakcjach finansowych, ale także w biletach elektronicznych, kartach lojalnościowych oraz wymianie danych między urządzeniami. W dobie cyfryzacji, umiejętność zrozumienia i korzystania z technologii NFC staje się niezwykle istotna, co czyni ją standardem branżowym w dziedzinie płatności mobilnych oraz Internetu rzeczy.

Pytanie 33

Jakie parametry zasilacza są potrzebne do zasilenia 3 metrów taśmy LED, jeśli moc jednego metra taśmy wynosi 4,8 W, a napięcie zasilania taśmy LED to 12 V?

A. 12 V/1,2 A 9 W
B. 12 V/1,2 A 6 W
C. 12 V/1,5 A 12 W
D. 12 V/1,5 A 15 W
Aby zasilić 3 metry taśmy LED o mocy 4,8 W na metr przy napięciu zasilania 12 V, należy obliczyć całkowite zapotrzebowanie na moc. Moc taśmy LED wynosi 4,8 W/m, więc dla 3 metrów mamy 4,8 W/m * 3 m = 14,4 W. Zasilacz powinien dostarczać moc większą niż zapotrzebowanie taśmy, aby zapewnić stabilność oraz wydajność. Wybierając zasilacz 12 V/1,5 A, otrzymujemy moc 12 V * 1,5 A = 18 W, co w pełni pokrywa wymagane 14,4 W. Dobre praktyki zalecają, aby zasilacz miał zapas mocy na poziomie przynajmniej 20% w stosunku do obliczonego zapotrzebowania, co przy 14,4 W daje nam 17,28 W. Dlatego zasilacz o parametrach 12 V/1,5 A 15 W jest odpowiedni, a jego wykorzystanie jest zgodne ze standardami zapewniającymi długotrwałą i bezpieczną pracę taśm LED w różnych zastosowaniach, takich jak oświetlenie wnętrz czy dekoracje. Zastosowanie zasilacza z odpowiednim zapasem mocy pozwala uniknąć problemów związanych z przegrzewaniem i zmniejsza ryzyko uszkodzenia komponentów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W tabeli podano parametry katalogowe wybranych diod LED. Uszereguj rosnąco względem napięcia przewodzenia diody LED czterech różnych barw.

Parametry katalogowe wybranych diod LED
  • Soczewka w kolorze żółtym
  • Długość emitowanej fali: 589 nm
  • Jasność: 40 mcd
  • Kąt świecenia: 60°
  • Parametry pracy:
    IF: 25 mA, VF: 2,0 V
  • Soczewka w kolorze zielonym
  • Długość emitowanej fali: 571 nm
  • Jasność: 100÷150 mcd
  • Kąt świecenia: 50°
  • Parametry pracy:
    IF: 20 mA, VF: 2,3÷2,5 V
  • Soczewka w kolorze czerwonym
  • Długość emitowanej fali: 625-645 nm
  • Jasność: 450÷800 mcd
  • Kąt świecenia: 70°
  • Parametry pracy:
    IF: 20 mA, VF: 1,8÷1,9 V
  • Soczewka w kolorze niebieskim
  • Długość emitowanej fali: 470 nm
  • Jasność: 1000 mcd
  • Kąt świecenia: 30°
  • Parametry pracy:
    IF: 25 mA, VF: 3,2 V

A. Niebieska, czerwona, żółta, zielona.
B. Niebieska, czerwona, zielona, żółta.
C. Czerwona, zielona, żółta, niebieska.
D. Czerwona, żółta, zielona, niebieska.
Twoja odpowiedź jest poprawna, ponieważ poprawnie uszeregowałeś diody LED według ich napięcia przewodzenia. Dioda czerwona, z napięciem 1,8-1,9 V, charakteryzuje się najniższym napięciem, co czyni ją pierwszą w kolejności. Następnie znajduje się dioda żółta o napięciu 2,0 V, która jest wyższa od czerwonej, ale niższa od kolejnych kolorów. Dioda zielona, z napięciem 2,3-2,5 V, zajmuje trzecie miejsce, a na końcu jest dioda niebieska z napięciem 3,2 V. Zrozumienie tego porządku jest niezbędne przy projektowaniu obwodów z diodami LED, ponieważ właściwe dobranie diod do zastosowania wymaga znajomości ich parametrów elektrycznych. Przykładowo, w aplikacjach oświetleniowych, gdzie kluczowe są oszczędności energetyczne oraz długowieczność komponentów, dobór diod LED o odpowiednich napięciach przewodzenia jest istotny dla zapewnienia stabilności obwodu. Dlatego warto zwracać uwagę na te parametry podczas projektowania układów elektronicznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Zawarta w programie sekwencja powoduje zmianę stanu diody LED co

A. 10 s
B. 0,1 s
C. 1 s
D. 0,01 s
Odpowiedź "1 s" jest prawidłowa, ponieważ zmiana stanu diody LED co 1 sekundę jest typowym czasem, który umożliwia łatwe zauważenie zachowania diody przez obserwatora. W kontekście programowania mikrokontrolerów, takim jak Arduino, wykorzystuje się funkcje czasowe, aby precyzyjnie kontrolować czas, w którym dioda jest włączona lub wyłączona. Przykład zastosowania takiego cyklu można zobaczyć w prostych projektach, gdzie dioda LED jest używana jako wskaźnik stanu urządzenia lub jako sygnalizator. Zgodnie z dobrymi praktykami, czas ten powinien być na tyle długi, aby użytkownik miał możliwość zauważenia zmiany stanu, ale jednocześnie nie za długi, aby nie wpływać na responsywność urządzenia. Dodatkowo, w przypadku komunikacji w systemach IOT, częstotliwość zmiany stanu diody może wskazywać na różne stany operacyjne, co jest istotne dla użytkowników, którzy muszą szybko ocenić status systemu. Warto również zauważyć, że zbyt krótki czas zmiany stanu, na przykład 0,1 s lub 0,01 s, może prowadzić do efektu migotania, co jest niewygodne dla oka ludzkiego oraz nieefektywne w kontekście zarządzania energią.

Pytanie 40

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Pozwala na podłączenie pamięci zewnętrznej.
B. Daje możliwość aktualizacji oprogramowania tunera.
C. Służy do łączenia urządzeń audio-video.
D. Funkcjonuje jako czytnik kart dostępu.
Moduł CI (Common Interface) w tunerze satelitarnym pełni kluczową rolę jako czytnik kart kodowych, co umożliwia dostęp do zaszyfrowanych kanałów telewizyjnych. System ten pozwala na korzystanie z różnych usług dostarczanych przez operatorów telewizji, którzy wykorzystują karty dostępu, aby chronić swoje treści przed nieautoryzowanym dostępem. W praktyce oznacza to, że użytkownik może włożyć kartę z subskrypcją do modułu CI, co umożliwia dekodowanie sygnału i tym samym oglądanie programów telewizyjnych. Moduł CI jest zgodny z różnymi standardami, takimi jak DVB (Digital Video Broadcasting), co zapewnia jego szeroką kompatybilność z wieloma modelami tunerów i telewizorów. Dzięki temu rozwiązaniu, użytkownicy nie są zmuszeni do korzystania z zewnętrznych dekoderów, co upraszcza instalację i obsługę ich systemów telewizyjnych. Warto również zauważyć, że metoda ta jest stosowana nie tylko w telewizji satelitarnej, ale również w kablowej, co czyni ją uniwersalnym rozwiązaniem w branży telekomunikacyjnej.