Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 30 maja 2025 16:48
  • Data zakończenia: 30 maja 2025 16:54

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Silnik tłokowy
B. Siłownik obrotowy
C. Zbiornik ciśnieniowy
D. Sprężarka tłokowa
Sprężarka tłokowa wyróżnia się parametrami, które zostały podane w pytaniu. Napięcie 230 V i moc 1,1 kW są typowe dla sprężarek, które często są zasilane z sieci jednofazowej, co czyni je łatwymi do zastosowania w różnych środowiskach, od warsztatów po małe zakłady przemysłowe. Ciśnienie robocze 8 bar jest standardowe dla sprężarek tłokowych, które są szeroko wykorzystywane do zasilania narzędzi pneumatycznych, takich jak wkrętarki czy młoty udarowe. Wydajność ssawna 200 l/min oraz wydajność wyjściowa 115 l/min wskazują na efektywność pracy sprężarki, co jest kluczowe w zastosowaniach wymagających ciągłego dostarczania sprężonego powietrza. Dodatkowo, pojemność zbiornika 24 l pozwala na akumulację sprężonego powietrza, co poprawia stabilność ciśnienia w systemie. Prędkość obrotowa 2850 obr/min jest standardowa dla sprężarek tłokowych, co podkreśla ich wydajność i zdolność do szybkiego generowania ciśnienia. Sprężarki tłokowe są na ogół preferowane w zastosowaniach, gdzie wymagana jest duża moc i wydajność, co czyni je niezastąpionymi w wielu branżach."

Pytanie 2

Nieprzerwane monitorowanie wibracji silnika elektrycznego w systemie napędowym oraz analiza spektrum drgań umożliwiają wczesne zidentyfikowanie

A. przerw w obwodzie zasilania silnika
B. zwarcia w uzwojeniach stojana lub wirnika
C. pogorszenia stanu izolacji uzwojeń stojana lub wirnika
D. uszkodzenia łożysk
Ciągły pomiar wibracji silnika elektrycznego oraz analiza widma drgań są kluczowymi technikami w diagnozowaniu stanu technicznego maszyn. Uszkodzenia łożysk to jeden z najczęściej występujących problemów w układach napędowych, które mogą prowadzić do poważnych awarii, a ich wczesne wykrycie pozwala na zapobieganie kosztownym przestojom produkcyjnym. Zastosowanie analizy drgań umożliwia identyfikację charakterystycznych częstotliwości, które są związane z uszkodzonymi łożyskami. Na przykład, jeśli łożysko ulega degradacji, generuje drgania o specyficznych częstotliwościach, które można zidentyfikować i monitorować. W praktyce, standardy takie jak ISO 10816 dotyczące pomiaru drgań maszyn, dostarczają wytycznych dotyczących interpretacji wyników. Dzięki tej metodzie inżynierowie mogą podejmować decyzje dotyczące konserwacji w oparciu o rzeczywisty stan maszyny, co znacząco zwiększa efektywność zarządzania utrzymaniem ruchu w zakładach przemysłowych.

Pytanie 3

Która z poniższych zasad dotyczących rysowania schematów elektrycznych jest fałszywa?

A. Symbole łączników rysuje się w momencie ich działania
B. Schematy tworzy się w stanie podstawowym (bezprądowym)
C. Symbole zabezpieczeń przedstawia się w stanie spoczynku (podstawowym)
D. Cewka oraz styki przekaźnika posiadają identyczne oznaczenia
Odpowiedź jest poprawna, ponieważ zasady rysowania schematów elektrycznych określają, że symbole łączników, takich jak wyłączniki czy przyciski, powinny być przedstawiane w stanie spoczynku, a nie w stanie pracy. Rysowanie tych symboli w stanie pracy może prowadzić do nieporozumień, gdyż nie oddaje rzeczywistego stanu, w jakim urządzenia będą funkcjonować w normalnych warunkach. W praktyce, na przykład podczas tworzenia schematu dla instalacji elektrycznej, istotne jest, aby zapewnić jasność i przejrzystość, co ułatwia późniejsze analizowanie i wykonywanie prac serwisowych. Zgodnie z normami, takimi jak PN-EN 60617, symbole powinny być przedstawione zgodnie z ustalonymi standardami, co zwiększa bezpieczeństwo i efektywność w komunikacji technicznej. Rysowanie symboli w stanie spoczynku pozwala na jednoznaczne zrozumienie, jakie urządzenia są włączone lub wyłączone, co jest istotne dla prawidłowego funkcjonowania całego systemu elektrycznego.

Pytanie 4

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Szelki bezpieczeństwa
B. Okulary ochronne
C. Obuwie izolacyjne
D. Hełm ochronny
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 5

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. podłączyć mikroskop ręczny z monitorem LCD
B. zajrzeć do otworu z wiązką lasera w kablu
C. podłączyć reflektometr
D. zajrzeć do otworu z wiązką lasera w modemie
Podłączenie mikroskopu ręcznego do monitora LCD na początku konserwacji instalacji światłowodowej to naprawdę ważny krok. Pozwala to na dokładne sprawdzenie włókien światłowodowych. Mikroskopy zapewniają powiększenie, które ułatwia zauważenie mikrouszkodzeń i zanieczyszczeń, co może mieć wpływ na jakość sygnału. Z mojego doświadczenia, inspekcja wizualna włókien przed dalszymi czynnościami to standard w branży telekomunikacyjnej i zgadza się z wytycznymi od ITU. Dzięki mikroskopowi można odkryć różne problemy, jak nieodpowiednie zakończenia włókien, odpryski czy zarysowania. Takie rzeczy mogą spowodować straty sygnału albo przerwy w transmisji. Im wcześniej znajdziemy problemy, tym szybciej można je naprawić i zaoszczędzić pieniądze. Użycie mikroskopu ręcznego to umiejętność, która przyda się każdemu technikowi zajmującemu się instalacją i konserwacją światłowodów. Przykładowo, jak wykryjesz zanieczyszczenia, to technik może je wyczyścić specjalnymi materiałami, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 6

Jaką grupę oznaczeń powinno się wykorzystać do przedstawienia przyłącza czterodrogowych rozdzielaczy hydraulicznych na schemacie układu hydraulicznego?

A. X, Y, Z, W
B. 1, 2, 3, 4
C. P, T, A, B
D. 1, A, 2, B
Odpowiedź P, T, A, B jest poprawna, ponieważ te oznaczenia są powszechnie akceptowane w branży hydraulicznej do opisu przyłączy czterodrogowych rozdzielaczy hydraulicznych. Oznaczenie 'P' reprezentuje przyłącze ciśnieniowe, z którego dochodzi olej pod ciśnieniem do rozdzielacza. 'T' odnosi się do przyłącza powrotnego, które skupia olej z powrotem do zbiornika, a 'A' i 'B' to przyłącza robocze, które kierują olej do siłowników lub innych elementów wykonawczych w układzie. Zastosowanie tych oznaczeń pozwala na jasne i zrozumiałe schematy, co jest niezbędne w skomplikowanych układach hydraulicznych. Standardy ISO oraz normy branżowe, takie jak ISO 1219, potwierdzają użycie tych oznaczeń jako najlepszej praktyki w inżynierii hydraulicznej. Na przykład, w przemyśle maszynowym, stosowanie tych oznaczeń przyczynia się do efektywności diagnostyki i konserwacji systemów hydraulicznych, co jest kluczowe dla minimalizacji przestojów i zwiększenia wydajności operacyjnej.

Pytanie 7

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
D. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 8

Jaki jest podstawowy cel stosowania programowalnych sterowników logicznych (PLC) w systemach mechatronicznych?

A. Zwiększenie masy urządzeń
B. Automatyzacja procesów przemysłowych
C. Zmniejszenie zużycia energii
D. Poprawa estetyki urządzeń
Programowalne sterowniki logiczne, znane jako PLC, są kluczowym elementem automatyki przemysłowej. Ich głównym zadaniem jest automatyzacja procesów przemysłowych. PLC są wykorzystywane do sterowania różnymi urządzeniami w zakładach produkcyjnych, co pozwala na zredukowanie potrzeby manualnej interwencji człowieka, zwiększenie wydajności oraz precyzji operacji. Automatyzacja przy użyciu PLC prowadzi do zwiększenia produktywności, zmniejszenia kosztów operacyjnych i minimalizacji błędów ludzkich. Współczesne PLC są bardzo elastyczne i można je programować, aby spełniały specyficzne wymagania różnych procesów produkcyjnych. W systemach mechatronicznych, PLC łączy różne komponenty w jeden spójny system, co jest niezbędne w nowoczesnych liniach produkcyjnych. Dzięki temu możliwe jest nie tylko optymalizacja procesów, ale również monitorowanie i diagnostyka systemów w czasie rzeczywistym, co znacznie poprawia jakość i efektywność produkcji.

Pytanie 9

Właściwości takie jak moc silnika, liczba cylindrów, stopień sprężania, pojemność zbiornika, efektywność oraz ciśnienie są typowe dla

A. sprężarki tłokowej
B. siłownika pneumatycznego
C. pompy hydraulicznej
D. silnika hydraulicznego
Błędne odpowiedzi wskazują na pewne nieporozumienia dotyczące tego, jak różne urządzenia działają w kontekście sprężania i hydrauliki. Na przykład, pompy hydrauliczne są inne niż sprężarki tłokowe, bo one głównie przesyłają cieczy pod ciśnieniem. Nie korzystają z takich parametrów jak liczba cylindrów czy stopnie sprężania, które są istotne dla sprężarek. Silniki hydrauliczne zamieniają energię hydrauliczną na mechaniczną, więc też nie obejmują parametrów sprężających. Siłowniki pneumatyczne z kolei używają ciśnienia powietrza do ruchu, co sprawia, że też nie wpisują się w ten temat. Często popełniamy błąd, myląc funkcje tych urządzeń oraz nie dostrzegamy ich specyficznych wymagań technicznych. Zrozumienie tych różnic jest naprawdę ważne, żeby dobrze dobierać sprzęt w przemyśle oraz skutecznie pracować w bardziej skomplikowanych systemach hydraulicznych i pneumatycznych.

Pytanie 10

Jaki program jest wykorzystywany do generowania rysunków trójwymiarowych?

A. PCschematic
B. STEP 7
C. FluidSim
D. AutoCAD
AutoCAD to jeden z najpopularniejszych programów do projektowania, który umożliwia tworzenie zarówno rysunków 2D, jak i 3D. Jego funkcjonalność obejmuje szeroki zakres narzędzi, które wspierają projektantów w tworzeniu skomplikowanych modeli trójwymiarowych. Dzięki możliwości pracy w trzech wymiarach, AutoCAD jest wykorzystywany w wielu branżach, takich jak architektura, inżynieria mechaniczna czy projektowanie wnętrz. Przykładowo, architekci mogą tworzyć realistyczne wizualizacje budynków, co ułatwia prezentację projektów klientom oraz wprowadzenie ewentualnych poprawek na etapie koncepcyjnym. Dodatkowo, AutoCAD wspiera współpracę z innymi programami CAD, co jest zgodne z najlepszymi praktykami w branży projektowej. Umożliwia to integrację z innymi danymi i modelami, co znacznie usprawnia proces projektowania.

Pytanie 11

W jakich częściach sieci SFC wykorzystuje się oznaczenia literowe N, S, D?

A. W symbolach kroków.
B. W opisach zmiennych.
C. W kwalifikatorach działania.
D. W oznaczeniach tranzycji.
Kwalifikatory działania w sieci SFC (Sequential Function Chart) pełnią kluczową rolę w definiowaniu warunków, które muszą być spełnione, aby dany krok mógł zostać aktywowany. Symbole literowe N, S i D oznaczają kolejno: N - normalny, S - startowy, D - definitywny. W praktyce, te symbole są wykorzystywane do oznaczania różnych stanów i przejść w procesie automatyzacji, co jest zgodne z normą IEC 61131-3, definiującą języki programowania dla urządzeń automatyki. Przykładem zastosowania może być system sterowania w zakładzie produkcyjnym, gdzie kwalifikatory te pomagają określić, czy urządzenie powinno być uruchomione w konkretnych warunkach, co zwiększa bezpieczeństwo operacji i efektywność działania. Zrozumienie tych symboli jest istotne dla każdego inżyniera automatyki, aby odpowiednio implementować logikę sterowania i dostosowywać ją do wymagań procesów przemysłowych.

Pytanie 12

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 32 urządzenia
B. 64 urządzenia
C. 24 urządzenia
D. 31 urządzeń
Odpowiedź 31 urządzeń jest prawidłowa, ponieważ standard AS-i w wersji 2.0 rzeczywiście pozwala na podłączenie maksymalnie 31 urządzeń podporządkowanych do jednego urządzenia nadrzędnego (master). Taki system jest powszechnie stosowany w automatyce przemysłowej, gdzie istnieje potrzeba efektywnego zarządzania dużą liczbą elementów wykonawczych i czujników. W praktyce, to oznacza, że jedno urządzenie master może obsługiwać różnorodne aplikacje, takie jak kontrola oświetlenia, monitorowanie procesów czy zarządzanie napędami. Ponadto, standard AS-i zapewnia łatwość konfiguracji i integracji z innymi systemami automatyki, co czyni go popularnym wyborem w złożonych instalacjach. Zrozumienie możliwości sieci AS-i oraz jej ograniczeń jest kluczowe dla inżynierów, projektantów systemów i techników zajmujących się automatyzacją, aby móc skutecznie projektować i wdrażać rozwiązania w różnych warunkach przemysłowych.

Pytanie 13

Jakiego typu czujnik powinno się użyć do pomiaru masy?

A. Tensometryczny
B. Triangulacyjny
C. Optyczny
D. Pojemnościowy
Wybór czujników, które nie nadają się do pomiaru masy, to często skutek tego, że nie za bardzo rozumiemy, jak one działają. Na przykład czujniki triangulacyjne służą do mierzenia odległości, więc nadają się bardziej do lokalizacji obiektów niż do ważeń. Używanie ich do pomiaru masy to błąd, bo one nie potrafią przetwarzać sił działających na przedmioty. Czujniki optyczne z kolei opierają się na analizie światła i są fajne do wykrywania obiektów, ale jeśli chodzi o wagę, to nie mają większego sensu. Tak samo czujniki pojemnościowe, które działają na zmianach pojemności elektrycznej, są używane w innych przypadkach, jak na przykład w ekranach dotykowych, ale nie w pomiarze masy. Użycie złego czujnika może naprawdę źle wpłynąć na pomiary, co potem przekłada się na jakość produkcji i ogólną efektywność. Warto zrozumieć, że każdy czujnik ma swoje konkretne przeznaczenie i powinien być zgodny z zasadami fizyki oraz wymaganiami danego pomiaru. Ignorowanie tego może prowadzić do różnych pomyłek, które kosztują czas i pieniądze.

Pytanie 14

Jaki rodzaj czujnika wykorzystuje się do pomiaru odległości w zastosowaniach przemysłowych?

A. Temperaturowy
B. Magnetyczny
C. Piezoelektryczny
D. Ultradźwiękowy
Czujniki ultradźwiękowe są często używane do pomiaru odległości w zastosowaniach przemysłowych. Działają one na zasadzie emitowania fal dźwiękowych o wysokiej częstotliwości i mierzenia czasu, jaki zajmuje odbicie tych fal od obiektu do czujnika. Dzięki temu można precyzyjnie określić odległość do badanego obiektu. Czujniki ultradźwiękowe są bardzo uniwersalne i mogą mierzyć odległości od kilku centymetrów do kilku metrów, w zależności od specyfikacji urządzenia. W przemyśle stosuje się je w automatyzacji procesów produkcyjnych, takich jak kontrola poziomu cieczy, wykrywanie obecności obiektów czy nawet w systemach bezpieczeństwa do detekcji zbliżających się obiektów. Znajdują one zastosowanie w różnych branżach, od motoryzacyjnej po spożywczą. Istotnym atutem tych czujników jest ich niezależność od koloru i materiału obiektu, co czyni je bardziej uniwersalnymi w porównaniu z czujnikami optycznymi. Ważne jest również to, że czujniki ultradźwiękowe są odporne na kurz i brud, co jest istotne w trudnych warunkach przemysłowych.

Pytanie 15

Zakład produkcyjny zlecił unowocześnienie automatu wiertarskiego, który jest napędzany silnikiem indukcyjnym z czterostopniową przekładnią pasową, służącą do regulacji prędkości obrotowej wrzeciona wiertarki. Unowocześnienie ma na celu zamianę przekładni mechanicznej na urządzenie elektroniczne. Który z poniższych elementów powinien być użyty do realizacji tego przedsięwzięcia?

A. Prostownik jednopołówkowy niesterowany
B. Przetwornicę napięcia
C. Przetwornik analogowo-cyfrowy
D. Przemiennik częstotliwości
Przemiennik częstotliwości to naprawdę ważne urządzenie, które pozwala na regulację prędkości silnika indukcyjnego w sposób elektroniczny. Dzięki niemu możemy dokładniej dopasować prędkość obrotową wrzeciona wiertarki, co jest kluczowe w produkcji, gdzie różne prędkości wiertzenia są na porządku dziennym. Widzisz, w przemyśle korzysta się z takich rozwiązań, bo to pozwala zaoszczędzić energię i zwiększyć efektywność maszyn. W przeciwieństwie do tradycyjnych przekładni mechanicznych, które mają kilka stałych prędkości, przemienniki umożliwiają płynne przechodzenie między różnymi zakresami prędkości. To jest super przydatne w sytuacjach, gdzie elastyczność jest niezbędna. Nowoczesne przemienniki mają też fajne funkcje, na przykład chronią silnik przed przeciążeniem, co sprawia, że cały system jest bardziej niezawodny. Warto także wspomnieć, że używanie tych urządzeń jest zgodne z normą IEC 60034 dotyczącą maszyn elektrycznych, co gwarantuje ich jakość i bezpieczeństwo.

Pytanie 16

Który z parametrów nie jest uwzględniony w specyfikacji technicznej frezarki numerycznej CNC?

A. Maksymalna prędkość ruchu dla poszczególnych osi [m/s]
B. Liczba wrzecion [szt.]
C. Dokładność pozycjonowania [mm]
D. Gramatura wtrysku [g/cykl]
Freza numeryczna CNC jest zaawansowanym narzędziem wykorzystywanym w obróbce skrawaniem, a jej specyfikacja techniczna obejmuje kluczowe parametry, które wpływają na wydajność i precyzję obróbki. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi są przykładami kluczowych wskaźników, które bezpośrednio wpływają na jakość i efektywność procesu produkcyjnego. Na przykład, wyższa powtarzalność pozycjonowania skutkuje lepszą dokładnością wykonania detali, co jest niezbędne w przemysłowej produkcji precyzyjnych komponentów. Z kolei maksymalna prędkość ruchu osi określa, jak szybko maszyna może przemieszczać narzędzie robocze, co w przypadku produkcji seryjnej przekłada się na krótszy czas realizacji zleceń. Gramatura wtrysku [g/cykl] dotyczy procesów wtrysku tworzyw sztucznych, a nie obróbki skrawaniem, dlatego nie stanowi ona parametru specyfikacji frezarki CNC. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i optymalizacji procesów produkcyjnych w zakładach przemysłowych.

Pytanie 17

W planowanym systemie hydraulicznym kontrola energii czynnika roboczego powinna odbywać się na zasadzie objętościowej. Osiąga to

A. pompa hydrauliczna o stałej wydajności
B. pompa hydrauliczna o zmiennej wydajności
C. zawór bezpieczeństwa
D. zawór przelewowy
Pompa hydrauliczna o zmiennej wydajności jest kluczowym elementem w układach hydraulicznych, które wymagają precyzyjnego sterowania objętościowym przepływem czynnika roboczego. Dzięki tej konstrukcji możliwe jest dostosowanie wydajności pompy do aktualnych potrzeb systemu, co zapewnia optymalne wykorzystanie energii oraz efektywność pracy urządzeń hydraulicznych. W praktyce, pompy o zmiennej wydajności znajdują zastosowanie w wielu branżach, takich jak przemysł budowlany, motoryzacyjny czy lotniczy, gdzie wymagane są różne poziomy ciśnienia i przepływu w zależności od specyficznych zadań. Standardy branżowe, takie jak ISO 4413, podkreślają znaczenie precyzyjnego sterowania w układach hydraulicznych, co bezpośrednio wpływa na bezpieczeństwo i niezawodność operacyjną. Dzięki zaawansowanej technologii, pompy te często są wyposażone w systemy monitorowania i automatyzacji, co dodatkowo zwiększa ich wydajność. Warto również pamiętać, że stosowanie pompy o zmiennej wydajności może prowadzić do zmniejszenia zużycia energii oraz obniżenia kosztów eksploatacyjnych, co jest istotnym aspektem zarządzania nowoczesnymi układami hydraulicznymi.

Pytanie 18

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. JMP FUN_1
B. RET FUN_1
C. CAL FUN_1
D. LD FUN_1
Operator CAL jest kluczowym elementem w języku IL (Instruction List) służącym do wywoływania bloków funkcyjnych w programach sterowników PLC. Użycie operatora CAL dla bloku funkcyjnego FUN_1 oznacza, że program sterujący aktywuje kod zapisany w tym bloku, co jest niezbędne do realizacji określonych zadań w systemie automatyki. W praktyce operator CAL umożliwia modularne podejście do programowania, co jest zgodne z najlepszymi praktykami w inżynierii oprogramowania. Dzięki takiej modularności, programy stają się bardziej czytelne i łatwiejsze do utrzymania. Warto zauważyć, że odpowiednie użycie bloków funkcyjnych i ich wywoływanie za pomocą operatorów jest zgodne z normami IEC 61131-3, które regulują programowanie sterowników PLC. Stosując operator CAL, inżynierowie mogą efektywnie dzielić swoje programy na mniejsze, łatwiejsze do zarządzania komponenty, co z kolei sprzyja lepszej organizacji i wydajności systemu.

Pytanie 19

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 10EH
B. 1A4H
C. 1F3H
D. 2B3H
Odpowiedź 2B3H jest poprawna, ponieważ liczba binarna 1010110011 składa się z 10 cyfr binarnych, co odpowiada potrzebie przekształcenia jej na 2 cyfry szesnastkowe. W systemie heksadecymalnym każda cyfra reprezentuje 4 bity, co oznacza, że do reprezentacji 10 bitów (2^10 = 1024) wystarczą 3 cyfry szesnastkowe, ale w tym przypadku zdefiniowaliśmy ją w sposób, który dokładnie odpowiada. Pierwsza cyfra '2' w heksadecymalnym systemie reprezentuje wartość 2 * 16^1, a druga cyfra 'B' oznacza 11 * 16^0, co daje 2*16 + 11 = 32 + 11 = 43 w systemie dziesiętnym. Kolejnym krokiem jest zrozumienie, jak swobodnie można przechodzić pomiędzy systemami liczbowymi, co jest kluczową umiejętnością w informatyce, szczególnie w programowaniu i projektowaniu systemów cyfrowych. Przykładowo, umiejętność konwersji między tymi systemami jest niezbędna w pracy z adresami pamięci w komputerach czy komunikacji w sieciach komputerowych.

Pytanie 20

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. C
B. T
C. Q
D. M
Wybór innych odpowiedzi skutkuje nieporozumieniami związanymi z funkcjonowaniem zmiennych w programowaniu sterowników PLC. Symbol "C", który często kojarzy się z cewek, w rzeczywistości nie jest używany do reprezentacji zmiennych wewnętrznych sterownika, a zatem jego wybór świadczy o nieporozumieniu dotyczącym klasyfikacji typów zmiennych. Kolejny symbol, "Q", odnosi się do wyjść cyfrowych w systemach automatyki, co również nie jest związane z wewnętrznymi zmiennymi pamięci. Użycie "T" sugeruje mylenie typów zmiennych; ten symbol z reguły odnosi się do liczników lub timerów, które pełnią zupełnie inną rolę w logice programowania automatyki. Wybierając niewłaściwy symbol, można doprowadzić do błędów w logice programu, co wykazuje krytyczne znaczenie zrozumienia struktury i funkcji zmiennych. W praktyce, znajomość symboli i ich odpowiednich zastosowań jest kluczowa dla prawidłowego projektowania systemów automatyki. Wiele osób myli te symbole, co prowadzi do nieefektywnego programowania oraz problemów z diagnostyką błędów. Dla inżynierów automatyki istotne jest, aby dobrze rozumieć różnice pomiędzy typami zmiennych oraz ich przeznaczeniem, aby unikać typowych pułapek w programowaniu.

Pytanie 21

Jakie urządzenie opisuje parametr określany jako liczba stopni swobody?

A. Manipulator
B. Prasa hydrauliczna
C. Pralka automatyczna
D. Kserokopiarka
Manipulator to urządzenie, które charakteryzuje się liczbą stopni swobody, co oznacza, że może poruszać się w wielu kierunkach i na różnych płaszczyznach. Liczba ta wskazuje, ile niezależnych ruchów manipulator może wykonać, co jest kluczowe w kontekście automatyzacji i robotyki. Przykładowo, w robotyce przemysłowej manipulatory stosowane są do precyzyjnego montażu, gdzie wymagana jest zdolność do ruchu w wielu osiach. Manipulatory z sześcioma stopniami swobody potrafią wykonywać ruchy podobne do ruchów ludzkiej ręki, co niezwykle zwiększa ich funkcjonalność. Ważne jest, aby projektowanie robotów uwzględniało standardy ergonomiczne oraz normy bezpieczeństwa, takie jak ISO 10218 dotyczące robotów przemysłowych, aby zapewnić ich efektywność i bezpieczeństwo w użytkowaniu. Wiedza na temat liczby stopni swobody jest kluczowa dla inżynierów i specjalistów zajmujących się automatyzacją, ponieważ pozwala na optymalne dobieranie i programowanie manipulatorów do konkretnych zadań produkcyjnych.

Pytanie 22

Jakie typy silników są wykorzystywane w drukarkach atramentowych do ruchu głowicy?

A. Silniki indukcyjne klatkowe
B. Silniki liniowe
C. Silniki indukcyjne synchroniczne
D. Silniki krokowe
Silniki krokowe są preferowanym rozwiązaniem w drukarkach atramentowych ze względu na ich zdolność do precyzyjnego kontrolowania ruchu głowicy drukującej. W odróżnieniu od innych typów silników, silniki krokowe działają na zasadzie podziału pełnego obrotu na mniejsze kroki, co pozwala na dokładne i kontrolowane pozycjonowanie. Taki mechanizm jest kluczowy w aplikacjach wymagających wysokiej precyzji, jak drukowanie, gdzie każdy krok może decydować o jakości końcowego wydruku. Przykładowo, zastosowanie silników krokowych w technologii druku atramentowego pozwala na minimalizację przesunięć i błędów, co jest szczególnie istotne w przypadku złożonych wzorów czy grafik. Dodatkowo, silniki te charakteryzują się dobrą dynamiką, co pozwala na płynne przewożenie głowicy, a ich budowa jest dostosowana do wymagań wydajnościowych typowych dla drukarek. Zastosowanie silników krokowych w branży druku jest zgodne z najlepszymi praktykami, co czyni je standardem w tym obszarze.

Pytanie 23

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym

A. nie będzie chronione przed wodą.
B. posiadać będzie najwyższy stopień ochrony przed pyłem.
C. nie będzie chronione przed pyłem.
D. posiadać będzie najwyższy stopień ochrony przed wodą.
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 24

Która z podanych sieci w systemach mechatronicznych funkcjonuje jako sieć bezprzewodowa?

A. ModbusTCP
B. ZigBee
C. Ethernet/IP
D. Profinet
ZigBee jest siecią bezprzewodową, która działa w oparciu o standard IEEE 802.15.4. Jest to protokół zaprojektowany z myślą o komunikacji w małych, niskonapięciowych urządzeniach, co czyni go idealnym rozwiązaniem dla aplikacji IoT (Internet of Things) oraz systemów automatyki domowej. ZigBee charakteryzuje się niskim poborem mocy, co pozwala na długotrwałe działanie zasilanych bateryjnie urządzeń. Przykłady zastosowań ZigBee obejmują inteligentne oświetlenie, systemy monitorowania środowiska oraz urządzenia wearable. W kontekście mechatroniki, ZigBee może być wykorzystywane do komunikacji między różnymi komponentami systemów automatyki w sposób, który minimalizuje potrzebę okablowania. Warto również zaznaczyć, że ZigBee obsługuje topologie sieci typu mesh, co zwiększa zasięg i niezawodność komunikacji, a także umożliwia łatwe dodawanie nowych urządzeń do istniejącej sieci.

Pytanie 25

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. |
B. S
C. Q
D. R
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 26

Jakie zalecenie dotyczące weryfikacji ciągłości obwodu ochronnego urządzeń zaprojektowanych w I klasie ochronności powinno być zawarte w dokumentacji eksploatacyjnej urządzeń elektrycznych?

A. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem fazowym wtyczki
B. Pomiar wykonuje się pomiędzy stykiem fazowym wtyczki, a metalowymi elementami obudowy urządzenia
C. Pomiar wykonuje się pomiędzy stykiem ochronnym wtyczki, a metalowymi elementami obudowy urządzenia
D. Pomiar wykonuje się pomiędzy stykiem ochronnym, a stykiem neutralnym wtyczki
Pomiar ciągłości obwodu ochronnego dla urządzeń wykonanych w I klasie ochronności jest kluczowy dla zapewnienia bezpieczeństwa ich użytkowania. Właściwe wykonanie tego pomiaru polega na sprawdzeniu ciągłości połączenia między stykiem ochronnym wtyczki a metalowymi elementami obudowy urządzenia, ponieważ obwód ochronny ma za zadanie odprowadzenie ewentualnych prądów upływowych do ziemi, co skutecznie zapobiega porażeniu prądem. Zgodnie z normami, takimi jak PN-IEC 60364, każdy element metalowy, mogący stać się naładowany w przypadku uszkodzenia izolacji, musi być odpowiednio uziemiony. W praktyce, wykonując ten pomiar, możemy użyć urządzenia pomiarowego, które umożliwia sprawdzenie oporności między tymi punktami. Niska wartość oporności wskazuje na dobrą ciągłość obwodu ochronnego. Dobrą praktyką jest również regularne przeprowadzanie takich pomiarów w ramach konserwacji urządzeń, aby zapewnić ich bezpieczeństwo i sprawność.

Pytanie 27

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. Aplikacja oparta na architekturze NET Framework.
B. System SCADA.
C. Panel operatorski HMI.
D. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
Panel operatorski HMI (Human-Machine Interface) jest kluczowym elementem w nowoczesnych systemach automatyki przemysłowej, umożliwiającym operatorom interakcję z maszynami i procesami produkcyjnymi. Jego podstawową funkcją jest wprowadzanie i monitorowanie parametrów pracy maszyn bezpośrednio na urządzeniu, co jest niezwykle istotne w sytuacjach, gdy przestrzeń robocza jest ograniczona. W odróżnieniu od rozbudowanych systemów SCADA, które wymagają stacji komputerowej do nadzoru i sterowania, panele HMI mają kompaktową budowę, co umożliwia ich łatwe umiejscowienie w obiektach produkcyjnych. Przykładami zastosowania paneli HMI mogą być linie montażowe, gdzie operatorzy mogą szybko reagować na zmiany w procesie, wprowadzać korekty oraz monitorować stany awaryjne. W kontekście standardów branżowych, panele HMI wspierają interoperacyjność z różnymi protokołami komunikacyjnymi, co jest zgodne z dobrymi praktykami inżynieryjnymi w automatyce przemysłowej. Dodatkowo, panele te często posiadają funkcje diagnostyczne, co zwiększa efektywność utrzymania ruchu.

Pytanie 28

Jakie są różnice między blokiem funkcyjnym przerzutnika RS a blokiem przerzutnika SR w PLC?

A. Przewagą sygnałów Set i Reset
B. Czasem reakcji
C. Odwróceniem sygnałów Set i Reset
D. Ilością stanów pośrednich
Zauważ, że wybrałeś poprawną odpowiedź, bo jest istotna różnica między przerzutnikiem RS a SR. W przerzutniku RS sygnał Set zawsze ma pierwszeństwo. To znaczy, że jak go aktywujesz, to wyjście idzie w stan wysoki. Dopiero gdy Set nie działa, możemy mówić o sygnale Reset. Ta zasada jest naprawdę ważna, zwłaszcza w automatyce. Na przykład, w różnych systemach sterowania, chcemy, żeby urządzenie znowu zaczęło działać po wyłączeniu. Dzięki przerzutnikowi RS to jest całkiem proste i bezpieczne. No i wiesz, standardy jak IEC 61131-3 mówią o tym, jak powinny działać programy do PLC, więc dobrze znać te różnice, żeby nie popełnić błędów przy projektowaniu systemów. Moim zdaniem, im lepiej rozumiesz te kwestie, tym lepiej zaprojektujesz swoje układy.

Pytanie 29

Aby umożliwić wymianę informacji między urządzeniami sieciowymi, niezbędne jest zaangażowanie wszystkich elementów w sieci komunikacyjnej o określonej topologii

A. pierścienia
B. gwiazdy
C. magistrali
D. drzewa
Topologia pierścienia wymaga, aby każde urządzenie w sieci brało udział w przesyłaniu danych, co czyni ją unikalną w porównaniu do innych topologii. W sieci opartej na tej topologii wszystkie urządzenia są połączone w zamknięty krąg, co oznacza, że dane poruszają się w jednym kierunku, przechodząc przez każde urządzenie aż do dotarcia do końcowego odbiorcy. Przykładem zastosowania topologii pierścienia mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. Dzięki temu, że każde urządzenie może przekazywać dane dalej, zwiększa się efektywność komunikacji, ale także wzrasta ryzyko awarii całej sieci w przypadku przerwania połączenia. Dlatego w projektowaniu takich sieci zaleca się stosowanie dodatkowych rozwiązań, jak np. mechanizmy detekcji błędów i redundancji, aby zminimalizować skutki ewentualnych awarii.

Pytanie 30

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
B. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
C. linie gięcia przedmiotów ukazanych w rozwinięciu
D. powierzchnie elementów, które są poddawane obróbce powierzchniowej
Wybór odpowiedzi, która wskazuje, że linie dwupunktowe cienkie oznaczają widoczne krawędzie i wyraźne zarysy przedmiotów w widokach i przekrojach, jest błędny, ponieważ te elementy są zazwyczaj reprezentowane przez linie ciągłe grube. Zrozumienie konwencji rysunków technicznych jest kluczowe, ponieważ każda linia pełni określoną funkcję, a ich niewłaściwe stosowanie może prowadzić do poważnych błędów w interpretacji dokumentacji. Co więcej, powierzchnie elementów podlegających obróbce powierzchniowej, które w rysunkach technicznych oznaczane są najczęściej liniami przerywanymi, również nie są reprezentowane przez linie dwupunktowe cienkie. W ten sposób można zauważyć, że błędne rozpoznanie tych elementów może prowadzić do nieporozumień w procesie produkcyjnym. Ponadto, przejścia jednej powierzchni w drugą w miejscach łagodnie zaokrąglonych są zazwyczaj oznaczane innymi rodzajami linii, co również można pomylić, jeśli nie zna się podstawowych zasad rysunku technicznego. W ten sposób, niewłaściwa interpretacja linii i ich znaczenia na rysunkach może prowadzić do poważnych konsekwencji, jak błędne wykonanie elementów, co naraża na straty finansowe oraz czasowe. Dlatego niezwykle istotne jest przyswojenie wiedzy na temat oznaczeń stosowanych w rysunkach technicznych oraz ich znaczenia w praktyce inżynierskiej.

Pytanie 31

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Większym o 10% od ciśnienia roboczego
B. Ciśnieniu testowemu 6 bar
C. Maksymalnym ciśnieniu, które występuje w trakcie pracy
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Poprawna odpowiedź "Maksymalnym ciśnieniu, jakie występuje podczas pracy." odnosi się do kluczowego aspektu przeprowadzania prób szczelności w układach hydraulicznych. Podczas normalnej eksploatacji, układ hydrauliczny jest narażony na różne obciążenia, a maksymalne ciśnienie odzwierciedla najwyższe wartości, jakie mogą wystąpić w czasie pracy. Przeprowadzenie próby szczelności na tym poziomie ciśnienia zapewnia, że wszystkie elementy układu, takie jak przewody, złącza czy siłowniki, są w stanie wytrzymać ekstremalne warunki i nie dojdzie do wycieków. W praktyce, stosowanie maksymalnego ciśnienia jako wartości testowej jest zgodne z normami branżowymi, takimi jak ISO 4413, które podkreślają znaczenie bezpieczeństwa i niezawodności układów hydraulicznych. W przypadku wykrycia jakichkolwiek nieszczelności podczas takiej próby, można podjąć odpowiednie kroki naprawcze, zanim układ zostanie oddany do użytku, co jest kluczowe dla bezpieczeństwa operacji.

Pytanie 32

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
B. Jest określany przez producenta maszyny w trakcie jej projektowania
C. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
D. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
Prawidłowa odpowiedź wskazuje, że punkt zerowy przedmiotu toczenia w obrabiarce CNC może być ustalony w dowolnym miejscu, chociaż zaleca się lokalizację na osi przedmiotu. Ustalenie punktu zerowego jest kluczowym krokiem w procesie obróbczy, ponieważ od tego punktu rozpoczyna się cała operacja toczenia. W praktyce, umiejscowienie punktu zerowego na osi przedmiotu pozwala na uzyskanie większej precyzji i powtarzalności obróbki. Zgodnie z dobrą praktyką, operatorzy powinni upewnić się, że punkt ten jest dobrze zdefiniowany, aby uniknąć błędów, które mogą prowadzić do odrzucenia części. Wiele nowoczesnych obrabiarek CNC oferuje funkcje automatycznej detekcji punktu zerowego, co może znacznie usprawnić proces przygotowania maszyny. Dobrze ustalony punkt zerowy ma również kluczowe znaczenie w kontekście dalszych operacji, takich jak frezowanie czy wiercenie, gdzie precyzyjna lokalizacja narzędzia względem przedmiotu jest niezbędna do osiągnięcia wysokiej jakości obróbki.

Pytanie 33

Aby zmienić kierunek obrotu wirnika silnika bocznikowego prądu stałego bez przesterowania maszyny, co należy zrobić?

A. zmienić kierunek prądu w uzwojeniu komutacyjnym
B. zmienić kierunek prądu w uzwojeniu wzbudzenia
C. zmienić kierunek prądu w uzwojeniu twornika
D. zamienić miejscami dwa przewody podłączone do źródła zasilania
Zmiana zwrotu prądu w uzwojeniu twornika jest kluczowa dla kierunku obrotów wirnika silnika bocznikowego prądu stałego. W tym typie silnika, wirnik umieszczony w polu magnetycznym wytwarzanym przez uzwojenie wzbudzenia, obraca się w wyniku oddziaływania na niego siły elektromotorycznej. Zmiana kierunku prądu w uzwojeniu twornika nie tylko modyfikuje kierunek pola magnetycznego, ale także wpływa na wytwarzaną siłę napędową, co jest niezbędne dla odwrócenia kierunku obrotów. W praktyce, zmiana kierunku obrotów może być używana w aplikacjach takich jak wózki widłowe czy napędy elektryczne, gdzie sterowanie kierunkiem obrotów jest niezbędne dla efektywności i bezpieczeństwa operacyjnego. Wiedza ta jest zgodna z najlepszymi praktykami w dziedzinie elektrotechniki, gdzie precyzyjne zarządzanie prądem i polem magnetycznym zapewnia optymalną wydajność urządzeń elektrycznych.

Pytanie 34

W systemach hydraulicznych, jaki jest główny powód stosowania zaworów bezpieczeństwa?

A. Zmniejszenie kosztów eksploatacji
B. Ochrona układu przed nadmiernym ciśnieniem
C. Zwiększenie przepływu cieczy roboczej
D. Poprawa jakości filtracji
Zawory bezpieczeństwa w systemach hydraulicznych pełnią kluczową rolę w ochronie układów przed nadmiernym ciśnieniem. Ich podstawowym zadaniem jest zapobieganie uszkodzeniom elementów układu, które mogą prowadzić do awarii czy niebezpiecznych sytuacji. Zawory te działają na zasadzie odprowadzania nadmiaru ciśnienia, gdy przekroczy ono określoną wartość, co w praktyce zapobiega eksplozji przewodów czy uszkodzeniu pomp. Wyobraź sobie, że ciśnienie w układzie zaczyna gwałtownie rosnąć - w tym momencie zawór bezpieczeństwa otwiera się i pozwala na ucieczkę nadmiaru płynu, przywracając bezpieczne warunki pracy. Jest to standardowe rozwiązanie zgodne z normami bezpieczeństwa, które znacznie przedłuża żywotność systemu i chroni pracowników oraz urządzenia. W branży mechatronicznej jest to szczególnie ważne, ponieważ układy hydrauliczne są często używane w maszynach i urządzeniach, które muszą działać niezawodnie w trudnych warunkach. Zastosowanie zaworów bezpieczeństwa jest powszechną praktyką i stanowi podstawę projektowania bezpiecznych systemów hydraulicznych, co jest kluczowym elementem wiedzy w kwalifikacji ELM.06.

Pytanie 35

Jakie minimalne parametry bitowe powinien mieć przetwornik A/C, aby w zakresie pomiarowym
0 mA ÷ 20 mA osiągnąć rozdzielczość w zaokrągleniu równą 0,01 mA?

A. 10 bitowy
B. 12 bitowy
C. 11 bitowy
D. 16 bitowy
Aby zapewnić rozdzielczość równą 0,01 mA w zakresie pomiarowym od 0 mA do 20 mA, niezbędne jest zastosowanie przetwornika A/C, który potrafi obsłużyć co najmniej 2000 poziomów kwantyzacji. Przetwornik 11-bitowy, oferujący 2048 poziomów kwantyzacji, spełnia to wymaganie, ponieważ umożliwia osiągnięcie pożądanej dokładności. W praktyce oznacza to, że dla każdego odczytu prądu możemy precyzyjnie określić wartości w odstępach 0,01 mA, co jest kluczowe w wielu zastosowaniach, np. w automatyce przemysłowej, gdzie precyzyjne pomiary są niezbędne do zapewnienia wydajności i bezpieczeństwa systemów. Warto pamiętać, że stosowanie przetworników o wyższej rozdzielczości przyczynia się do lepszego monitorowania procesów oraz minimalizowania ryzyka wystąpienia błędów pomiarowych. W branży zaleca się wybór urządzeń z nadmiarem rozdzielczości, co pozwala na większą elastyczność w przyszłych aplikacjach oraz lepsze dopasowanie do zmieniających się wymagań.

Pytanie 36

Kontrola instalacji hydraulicznej obejmuje

A. pomiar natężenia prądu zasilającego pompę
B. wymianę filtra oleju w systemie
C. ocenę stanu przewodów
D. zmianę rozdzielacza
Odpowiedź "sprawdzenie stanu przewodów" jest poprawna, ponieważ w ramach oględzin instalacji hydraulicznej kluczowe jest ocenienie stanu technicznego systemu. Oględziny powinny obejmować kontrolę szczelności przewodów, co jest niezwykle ważne dla zapobiegania wyciekom oraz zapewnienia efektywności całego układu. Ponadto, sprawdzając przewody, należy ocenić ich stan izolacji, co ma na celu uniknięcie potencjalnych uszkodzeń mechanicznych, które mogą być spowodowane różnymi czynnikami, takimi jak korozja czy działanie wysokiego ciśnienia. Dobre praktyki branżowe zalecają regularne przeprowadzanie takich oględzin, aby spełniały one normy bezpieczeństwa i efektywności, a także przedłużały żywotność systemu hydraulicznego. Przykładem zastosowania tej wiedzy może być rutynowa inspekcja w zakładach przemysłowych, gdzie niewłaściwy stan przewodów może prowadzić do poważnych awarii oraz wysokich kosztów naprawy.

Pytanie 37

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. dokonywania regulacji
B. usuwania kurzu
C. oceny zużycia styków
D. sprawdzania dokręcenia śrub zacisków
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 38

Ile par biegunów powinno mieć uzwojenie stojana silnika o wielu prędkościach, aby po podłączeniu do źródła zasilania 230/240 V, 50 Hz jego wał obracał się z prędkością zbliżoną do 1500 obr/min?

A. cztery
B. dwie
C. trzy
D. jedna
Aby silnik wielobiegowy mógł działać z prędkością bliską 1500 obr/min przy zasilaniu 230/240 V i częstotliwości 50 Hz, uzwojenie stojana powinno mieć dwie pary biegunów. Prędkość obrotowa silnika synchronicznego jest określona równaniem: n = (120 * f) / P, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość zasilania w Hz, a P to liczba par biegunów. Podstawiając wartości: n = 1500, f = 50, otrzymujemy P = (120 * 50) / 1500, co daje 4. Ponieważ liczba biegunów to P, mamy 2 pary biegunów (2P = 4). Taka konfiguracja silnika jest standardowa w zastosowaniach, które wymagają stabilnej prędkości obrotowej, jak w napędach elektrycznych w przemyśle. Zrozumienie wpływu liczby biegunów na prędkość obrotową jest kluczowe dla inżynierów zajmujących się projektowaniem systemów elektroenergetycznych oraz automatyki, gdzie precyzyjne kontrolowanie prędkości jest niezbędne dla wydajności procesu.

Pytanie 39

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Roboczej
B. Programu
C. Użytkowej
D. Systemowej
Wybór innych bloków pamięci, takich jak Programu, Użytkowej czy Roboczej, odzwierciedla brak zrozumienia podstawowej architektury sterowników PLC oraz zasad ich działania. Blok Programu jest zarezerwowany dla logiki działania aplikacji, gdzie definiowane są sekwencje operacji, ale nie przechowuje on informacji o rzeczywistych stanach fizycznych wejść. Z kolei blok Użytkowej, który może zawierać dodatkowe funkcje lub instrukcje zdefiniowane przez użytkownika, nie ma dostępu do danych o stanach wejść. Natomiast blok Roboczej jest używany do przechowywania danych tymczasowych i nie ma związku z zarządzaniem stanami wejść lub wyjść. Typowym błędem myślowym jest przekonanie, że wszystkie bloki pamięci są równorzędne i mogą pełnić te same funkcje. Należy pamiętać, że każdy blok ma swoje specyficzne zastosowanie i funkcjonalność. Właściwe zrozumienie podziału pamięci w sterownikach PLC jest kluczowe dla skutecznego programowania i diagnozowania systemów automatyki. Wiedza ta jest również zgodna z normami takimi jak IEC 61131, które definiują struktury oraz sposób zarządzania pamięcią w systemach sterujących.

Pytanie 40

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Przekazać sterownik do serwisu
B. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
C. Zweryfikować zasilanie silnika
D. Skontrolować stan czujnika krańcowego
Sprawdzanie stanu czujnika krańcowego jako pierwsza czynność w diagnozowaniu problemów z automatycznymi bramami przesuwnymi jest niezwykle istotne. Czujnik krańcowy pełni kluczową rolę w systemie, informując sterownik o tym, że brama osiągnęła maksymalną pozycję otwartą lub zamkniętą. Jeśli czujnik nie działa prawidłowo, brama nie otrzyma sygnału do zatrzymania, co może prowadzić do niebezpiecznych sytuacji. Dobrą praktyką jest regularne serwisowanie systemu, w tym sprawdzanie funkcjonowania czujników, co może zapobiec poważnym usterkom. W przypadku stwierdzenia uszkodzenia czujnika, jego wymiana jest zalecana, aby zapewnić pełną funkcjonalność bramy. Co więcej, w standardach bezpieczeństwa dla automatycznych bram, takich jak normy EN 13241-1, podkreśla się znaczenie sprawności czujników, co ma kluczowe znaczenie dla ochrony osób i mienia w pobliżu bramy.