Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 31 maja 2025 15:49
  • Data zakończenia: 31 maja 2025 16:18

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Zgrzewanie
B. Spawanie
C. Klejenie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 2

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór dławiąco zwrotny
B. zawór szybkiego spustu
C. zawór podwójnego sygnału
D. przełącznik obiegu
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 3

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Czarnym
B. Niebieskim
C. Żółtym
D. Brązowym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 4

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana całego łożyska
B. zmniejszenie luzów łożyska
C. zmniejszenie nadmiaru smaru w łożysku
D. wymiana osłony łożyska
Wymiana całego łożyska jest odpowiednim rozwiązaniem w przypadku stwierdzenia zwiększonego hałasu, gdyż najczęściej oznacza to, że łożysko uległo uszkodzeniu lub zużyciu. W praktyce, łożyska toczne są zaprojektowane do pracy z minimalnym luzem i w odpowiednio smarowanych warunkach. Gdy zauważamy hałas, to zazwyczaj jest skutkiem odkształceń materiałowych lub uszkodzenia elementów tocznych, co może prowadzić do dalszych uszkodzeń mechanicznych w obrębie układu napędowego. W takim przypadku wymiana całego łożyska eliminuje ryzyko wystąpienia kolejnych awarii w przyszłości. Dobrą praktyką w branży jest również przeprowadzanie analizy przyczyn źródłowych usterki, co pozwala na zrozumienie, dlaczego łożysko uległo uszkodzeniu, co może być związane z niewłaściwym smarowaniem, luzami, czy też eksploatacją w warunkach przekraczających specyfikacje producenta. Wymiana łożyska powinna być przeprowadzana zgodnie z obowiązującymi standardami, takimi jak ISO 281, które określają metodologię doboru i oceny łożysk, co zwiększa niezawodność całego urządzenia.

Pytanie 5

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. przerwanym przewodem pneumatycznym
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. siłownikiem
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 6

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 7

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. symetryczny ekranowany (tzw. skrętka ekranowana)
B. symetryczny nieekranowany (tzw. skrętka nieekranowana)
C. koncentryczny
D. światłowodowy
Kabel światłowodowy to naprawdę świetny wybór do sterowania sieciowego w systemach mechatronicznych. Szczególnie jeśli chodzi o przesył danych na długie odległości i zmniejszenie wpływu zakłóceń elektromagnetycznych. Wiesz, światłowody przesyłają sygnały jako impulsy świetlne, co sprawia, że są mniej podatne na zakłócenia niż tradycyjne kable miedziane. W automatyce przemysłowej, gdzie odległości między sprzętem mogą być naprawdę duże, to się przydaje. Kable te są odporne na zakłócenia elektryczne, więc idealnie nadają się do miejsc, gdzie są mocne pola elektromagnetyczne, jak w pobliżu maszyn elektrycznych. W dodatku mamy standardy komunikacyjne, takie jak 10GBASE-SR, które pokazują, że światłowody są super efektywne i wydajne, zwłaszcza na większych dystansach. Choć koszt zakupu jest wyższy na początku, długofalowo to się opłaca, bo są bardziej niezawodne i tańsze w eksploatacji.

Pytanie 8

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. wielkości
B. kształtu
C. poziomu złożoności
D. kolejności montażu
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 9

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Falownika.
B. Czujnika optycznego.
C. Sterownika PLC.
D. Silnika.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 10

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z pakietu blach elektrotechnicznych nie izolowanych od siebie
B. z litego materiału magnetycznego izotropowego
C. z litego materiału magnetycznego anizotropowego
D. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.

Pytanie 11

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 24
B. 60
C. 30
D. 75
Odpowiedź 60 działek jest prawidłowa, ponieważ w celu obliczenia, ile działek wskaże woltomierz przy napięciu 24 V, należy najpierw ustalić, na ile jednostek odpowiada zakres 30 V woltomierza o 75 działkach. Każda działka na skali woltomierza odpowiada napięciu równemu 30 V / 75 działek = 0,4 V na działkę. Następnie, aby obliczyć, ile działek odpowiada napięciu 24 V, dzielimy 24 V przez wartość jednej działki: 24 V / 0,4 V/działkę = 60 działek. Takie podejście jest zgodne z praktykami stosowanymi w pomiarach elektrotechnicznych, gdzie dokładność i znajomość charakterystyki używanego sprzętu są kluczowe. Woltomierz analogowy jest przydatnym narzędziem w diagnostyce układów elektronicznych, a jego prawidłowe odczytywanie skali pozwala na szybką ocenę stanu urządzeń oraz systemów. Przykładem zastosowania jest kontrola elementów w instalacjach automatyki przemysłowej, gdzie precyzyjne pomiary napięcia mogą zapobiegać uszkodzeniom sprzętu oraz zapewniać ich efektywność operacyjną.

Pytanie 12

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
B. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
C. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
D. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 13

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wyprostować skrzywiony wentylator lub osłonę
B. dokręcić śruby mocujące osłonę wentylatora
C. wycentrować wirnik w stojanie
D. wymienić łożyska silnika
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 14

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. sześciokrotnie
B. dziewięciokrotnie
C. dwukrotnie
D. trzykrotnie
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 15

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Otwarty odpowietrznik filtra wlewowego
B. Niewystarczające smarowanie tłoczyska
C. Zablokowany zawór przelewowy
D. Nieszczelność instalacji
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 16

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. tensometr.
B. galwanometr.
C. prądnica tachometryczna.
D. resolver.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.

Pytanie 17

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 7,70 A
B. 10,00 A
C. 5,77 A
D. 13,33 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 18

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 4,5 V
B. 7,5 V
C. 3,0 V
D. 10,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 19

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
B. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
C. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
D. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 20

Montaż realizowany według zasady całkowitej zamienności polega na

A. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
B. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
C. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
D. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
Montaż zgodny z zasadą całkowitej zamienności oznacza, że wszystkie części składowe danego zespołu są produkowane z bardzo wąskimi tolerancjami wymiarowymi. Dzięki temu, każda z części może być wymieniana bez konieczności dodatkowej obróbki. Taki sposób produkcji jest kluczowy w branżach, gdzie precyzja i niezawodność są priorytetem, na przykład w przemyśle lotniczym czy motoryzacyjnym. W praktyce oznacza to, że przy wymianie części, takich jak elementy silnika czy układu napędowego, nie zachodzi potrzeba ich dopasowywania ani regulacji, co znacznie przyspiesza czas montażu. Standardy, takie jak ISO 286 dotyczące tolerancji wymiarowych oraz norma AS9100 w przemyśle lotniczym, podkreślają znaczenie tego podejścia, ponieważ mają one na celu zapewnienie wysokiej jakości oraz bezpieczeństwa produktów. Dostosowanie procesu produkcji do zasady całkowitej zamienności pozwala również na obniżenie kosztów, ponieważ zmniejsza się ryzyko błędów montażowych oraz reklamacji związanych z niewłaściwym działaniem części.

Pytanie 21

Osoba, która doświadczyła porażenia prądem elektrycznym, nie oddycha, natomiast krążenie krwi jest prawidłowe. Jakie czynności należy wykonać w odpowiedniej kolejności podczas udzielania pierwszej pomocy?

A. sztuczne oddychanie oraz masaż serca
B. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania i masaż serca
C. udrożnienie dróg oddechowych, wykonanie sztucznego oddychania
D. ustawienie na boku, sztuczne oddychanie
Wybór innych odpowiedzi wskazuje na pewne nieporozumienia dotyczące kolejności działań przy udzielaniu pomocy osobie porażonej prądem elektrycznym. Na przykład, w sytuacjach, w których krążenie jest zachowane, ale oddech jest zatrzymany, kluczowe jest najpierw zapewnienie drożności dróg oddechowych, a następnie przystąpienie do sztucznego oddychania. Wybór odpowiedzi, która pomija ten krok, może prowadzić do poważnych konsekwencji zdrowotnych, takich jak niedotlenienie mózgu, które może nastąpić w ciągu kilku minut. Ułożenie na boku, które można znaleźć w niektórych odpowiedziach, jest istotne w kontekście ochrony dróg oddechowych, jednak stosuje się je głównie w przypadku, gdy pacjent wykazuje oznaki świadomego oddychania lub po epizodach wymiotów, a nie w sytuacji całkowitego zatrzymania oddechu. Dodatkowo, przeprowadzanie masażu serca w sytuacji, gdy krążenie jest zachowane, jest nieuzasadnione i może prowadzić do niepotrzebnych uszkodzeń klatki piersiowej oraz zaburzeń rytmu serca. Takie podejścia mogą wskazywać na niepełne zrozumienie zasad pierwszej pomocy, co może zagrażać życiu poszkodowanego. W sytuacji udzielania pomocy przedlekarskiej, kluczowe znaczenie ma znajomość właściwej sekwencji działań, co opiera się na wiedzy z zakresu medycyny ratunkowej i wytycznych resuscytacyjnych.

Pytanie 22

Silniki, które mają największy moment rozruchowy to

A. synchroniczne prądu przemiennego
B. szeregowe prądu stałego
C. asynchroniczne prądu przemiennego
D. bocznikowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 23

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. przełączania obiegu
B. regulacji ciśnienia
C. szybkiego spustu
D. podwójnego sygnału
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.

Pytanie 24

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
B. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
C. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
D. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 25

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
B. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
C. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
D. HT - ester syntetyczny, najlepiej ulegający biodegradacji
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 26

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Bocznikowy
B. Bezszczotkowy
C. Szeregowy
D. Obcowzbudny
Silnik prądu stałego szeregowy jest najlepszym wyborem do obsługi bardzo ciężkiej przepustnicy ze względu na swoje właściwości charakterystyczne. Jego konstrukcja powoduje, że w momencie rozruchu generuje on znaczny moment obrotowy, co jest kluczowe przy napędzie elementów wymagających dużej siły. W silniku szeregowym uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co sprawia, że przy niskich prędkościach obrotowych, gdy przepustnica jest obciążona, prąd w obwodzie wzbudzenia jest wysoki, co prowadzi do zwiększenia pola magnetycznego i efektywnego momentu obrotowego. Przykłady zastosowania silników szeregowych to napędy w systemach transportowych, dźwigach oraz w aplikacjach, gdzie wymagana jest znaczna moc przy niskich prędkościach. Zgodnie z normami branżowymi, wykorzystanie silników szeregowych w takich zastosowaniach jest powszechnie akceptowane i polecane z uwagi na efektywność energetyczną oraz niezawodność działania.

Pytanie 27

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Spawanie gazowe
B. Spawanie elektryczne
C. Lutowanie twarde
D. Lutowanie miękkie
Lutowanie twarde, spawanie gazowe oraz spawanie elektryczne to techniki, które ze względu na procesy, jakie wykorzystują, nie są odpowiednie w sytuacji, gdy temperatura nie może przekraczać 450°C. Lutowanie twarde polega na łączeniu materiałów przy użyciu stopów lutowniczych, których temperatura topnienia jest znacznie wyższa niż w przypadku lutowania miękkiego, zwykle przekraczająca 450°C. To sprawia, że materiały mogą ulegać nieodwracalnym zmianom, co jest niedopuszczalne w wielu aplikacjach. Spawanie gazowe oraz spawanie elektryczne to procesy, które polegają na wytwarzaniu wysokotemperaturowego łuku elektrycznego lub ognia, co prowadzi do miejscowego topnienia materiału i zmiany jego właściwości fizycznych. Przy tych metodach temperatura w miejscu łączenia często znacznie przekracza 450°C, co może prowadzić do odkształceń, utraty wytrzymałości oraz innych negatywnych skutków dla komponentów. Typowym błędem myślowym jest zakładanie, że każda z tych technik jest odpowiednia w każdej sytuacji. Niezrozumienie różnicy w temperaturach procesów lutowniczych i spawalniczych może prowadzić do nieodwracalnych uszkodzeń materiałów, a także do niezgodności z wymaganiami jakościowymi i standardami branżowymi, które regulują procesy łączenia w różnych gałęziach przemysłu.

Pytanie 28

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Kątomierz
B. Poziomnica
C. Mikrometr
D. Klepsydra
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 29

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 15 000 bar
B. 15 bar
C. 150 bar
D. 1 500 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 30

Czym charakteryzuje się filtr dolnoprzepustowy?

A. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
C. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 31

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 130 N
B. 150 N
C. 140 N
D. 160 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 32

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Termistor.
C. Warystor.
D. Gaussotron.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 33

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. pojawu przerwy w obwodzie elektrycznym
B. dotknięcia odizolowanych części będących pod napięciem
C. wystąpienia zwarcia doziemnego
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 34

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109

A. 3600 Ω
B. 360 Ω
C. 36 Ω
D. 36 000 Ω
Odpowiedź 36 Ω jest poprawna, ponieważ oznaczenia kolorów na rezystorze wskazują wartość rezystancji zgodnie z ogólnie przyjętą normą kodów kolorów rezystorów. Kolor pomarańczowy oznacza cyfrę 3, natomiast niebieski oznacza cyfrę 6. Czarny pasek na końcu wskazuje, że nie ma wartości mnożnika, co w tym przypadku oznacza, że wynik należy odczytać jako 36. Taka interpretacja jest kluczowa w elektronice, gdzie rezystory o dokładnych wartościach są niezbędne do zapewnienia poprawnego funkcjonowania układów elektronicznych. Przykładowo, w obwodach zasilających, dokładne wartości rezystancji są istotne dla regulacji prądu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy urządzeń. Wiedza na temat kodów kolorów jest nie tylko przydatna w praktyce, ale również stanowi fundament dla bardziej zaawansowanych zastosowań w projektowaniu układów elektronicznych.

Pytanie 35

Watomierz jest urządzeniem do pomiaru mocy

A. biernej
B. chwilowej
C. pozornej
D. czynnej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 36

Na podstawie przedstawionej noty katalogowej termostatu HONEYWELL 3455RC określ temperaturę otwarcia oraz amplitudę.

Typ czujnikatermostat
Konfiguracja wyjściaNC
Temperatura otwarcia18°C
Temperatura zamknięcia-1°C
Prąd pracy maks.10A
Napięcie pracy maks.240V AC
Przyłączekonektory
6,4mm

A. Temperatura otwarcia 18°C, amplituda 19°C
B. Temperatura otwarcia -1°C, amplituda 18°C
C. Temperatura otwarcia 18°C, amplituda 17°C
D. Temperatura otwarcia 18°C, amplituda -1°C
Odpowiedź jest poprawna! Temperaturę otwarcia ustawiono na 18°C, a amplituda wynosi 19°C. Z tego wynika, że termostat HONEYWELL 3455RC zaczyna działać, gdy temperatura osiągnie 18°C. Amplituda wskazuje, że różnica między temperaturą otwarcia a zamknięcia to 19°C. W takim razie, temperatura zamknięcia powinna wynosić -1°C. Te parametry mają duże znaczenie w projektowaniu systemów HVAC, bo precyzyjne zarządzanie temperaturą jest ważne, żeby użytkownicy czuli się komfortowo i żeby oszczędzać energię. Na przykład, w systemach grzewczych dobrze skalibrowany termostat pomaga uniknąć niepotrzebnego zużycia energii i poprawia efektywność grzewczą. A odpowiednio dobrane parametry termostatów wpływają na to, jak działają systemy klimatyzacyjne i grzewcze, co jest istotne w naszej branży.

Pytanie 37

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 22°30'
B. 11°15'
C. 5°38'
D. 2°49'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.

Pytanie 38

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Sprawdzanie parzystości
B. Cykliczna redundancja
C. Weryfikacja sumy kontrolnej
D. Pomiar napięcia sygnału przesyłanego
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 39

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić membranę
B. wymienić uszczelkę
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. zmierzyć rezystancję cewki
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 40

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. objętości cieczy
B. ciśnienia cieczy
C. temperatury powietrza
D. napięcia elektrycznego
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.