Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 5 czerwca 2025 12:12
  • Data zakończenia: 5 czerwca 2025 12:29

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Schodowego
B. Dzwonkowego
C. Hotelowego
D. Krzyżowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 2

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 16 A, charakterystyka B, krotność In = 3 do 5
B. In = 16 A, charakterystyka C, krotność In = 5 do 10
C. In = 6 A, charakterystyka C, krotność In = 5 do 10
D. In = 6 A, charakterystyka B, krotność In = 3 do 5
Wybrany wyłącznik nadprądowy o prądzie znamionowym In = 6 A z charakterystyką C oraz krotnością In w przedziale 5 do 10 jest odpowiedni do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym 5,5 A. Charakterystyka C oznacza, że wyłącznik jest przystosowany do tolerowania dużych prądów rozruchowych, które mogą występować podczas uruchamiania silnika indukcyjnego. Silniki klatkowe często mają prąd rozruchowy wielokrotnie przekraczający ich prąd znamionowy, co czyni wyłącznik z charakterystyką C idealnym wyborem. Krotność In w przedziale 5 do 10 pozwala na bezpieczne i efektywne działanie wyłącznika, zabezpieczając obwód przed skutkami przeciążeń, ale jednocześnie zapewniając możliwość rozruchu silnika. W praktyce oznacza to, że wyłącznik nie zadziała podczas normalnego rozruchu silnika, a zadziała w przypadku rzeczywistego przeciążenia lub zwarcia. Stosując się do zasad normy PN-EN 60947-2, można zapewnić optymalne działanie oraz bezpieczeństwo instalacji elektrycznej.

Pytanie 3

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Kabelkowe
B. Rdzeniowe
C. Szynowe
D. Uzbrojone
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 4

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 500 V
C. 1000 V
D. 250 V
Wybór niewłaściwego napięcia probierczego przy pomiarach rezystancji izolacji może wynikać z niepełnego zrozumienia zasad bezpieczeństwa oraz specyfiki obwodów SELV i PELV. Użycie napięcia 100 V, na przykład, może być niewystarczające do skutecznego zdiagnozowania stanu izolacji. Praktyka pokazuje, że takie niskie napięcie nie jest w stanie ujawnić potencjalnych usterek, które są krytyczne dla bezpieczeństwa. W przypadku obwodów o napięciu roboczym, które wymagają wyższego poziomu izolacji, napięcie probiercze powinno być dostosowane do tych wymagań, co w przypadku SELV i PELV oznacza wartość nie mniejszą niż 250 V. Użycie napięcia 500 V lub 1000 V, z kolei, może prowadzić do uszkodzenia bardzo wrażliwych podzespołów w niektórych zastosowaniach, co jest szczególnie ważne w obwodach niskonapięciowych. Właściwe dobieranie napięcia probierczego to kluczowy element w zapewnieniu bezpieczeństwa systemów elektrycznych, a nieprzestrzeganie tych zasad może prowadzić do poważnych konsekwencji. Wiele osób błędnie zakłada, że wyższe napięcia są zawsze lepsze, jednak w rzeczywistości należy kierować się normami oraz zaleceniami producentów, aby zminimalizować ryzyko uszkodzeń oraz zapewnić bezpieczeństwo eksploatacyjne obwodów elektrycznych.

Pytanie 5

Co oznacza symbol PE na przewodach elektrycznych?

A. Przewód neutralny
B. Przewód uziemiający
C. Przewód fazowy
D. Przewód ochronny
Symbol PE na przewodach elektrycznych oznacza przewód ochronny. Jest to kluczowy element każdej instalacji elektrycznej, ponieważ zapewnia bezpieczeństwo użytkownikom i chroni urządzenia przed uszkodzeniem w przypadku awarii. W praktyce przewód ochronny jest używany do uziemienia różnych urządzeń elektrycznych, co zapobiega gromadzeniu się ładunków elektrostatycznych i minimalizuje ryzyko porażenia prądem. Normy dotyczące instalacji elektrycznych, takie jak PN-HD 60364, podkreślają znaczenie poprawnego uziemienia i użycia przewodów ochronnych. Takie przewody są zazwyczaj oznaczone żółto-zielonym kolorem i nie powinny być używane do innych celów niż ochrona. Dzięki stosowaniu przewodów ochronnych, możliwe jest odprowadzenie niebezpiecznych prądów zwarciowych do ziemi, co jest standardową praktyką w branży elektrycznej. Z praktycznego punktu widzenia, przewód ochronny jest nieodłącznym elementem instalacji w każdym domu, biurze czy zakładzie przemysłowym.

Pytanie 6

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 8,0 Ω
B. 2,3 Ω
C. 4,6 Ω
D. 7,7 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 7

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193C25
B. S191C25
C. S193B25
D. S191B25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 8

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA

A. P304 40-100-AC
B. P304 40-30-AC
C. P202 25-30-AC
D. P302 25-10-AC
Wybór odpowiedzi, która nie jest zgodna z rzeczywistymi wartościami prądu zadziałania wyłączników różnicowoprądowych, może wynikać z kilku typowych błędów analitycznych. Często zdarza się, że osoby analizujące dane mają trudności w poprawnym zinterpretowaniu wartości zmierzonych. Na przykład przy wyłącznikach, które osiągają wartości zadziałania bliskie granicznym, niektórzy mogą mylnie założyć, że są one w pełni zgodne z wymaganiami, nie zwracając uwagi na fakt, że ich wartości nie mieszczą się w określonych normach. Dobrze jest pamiętać, że każdy wyłącznik różnicowoprądowy musi spełniać ściśle określone normy, aby zapewnić odpowiedni poziom ochrony, który jest kluczowy w zapobieganiu zagrożeniom elektrycznym. W przypadku omawianego wyłącznika, jego prąd zadziałania wynoszący 12 mA jest poniżej minimalnej wymaganej wartości 15 mA. Ignorowanie takich szczegółów może prowadzić do fałszywego poczucia bezpieczeństwa, co jest niebezpieczne w praktycznych zastosowaniach, zwłaszcza w sytuacjach, gdzie narażeni są ludzie lub drogie urządzenia. Przeprowadzając testy, warto stosować się do wytycznych zawartych w normach, takich jak PN-EN 60947-2, które szczegółowo określają wymagania dotyczące bezpieczeństwa. Właściwa analiza wyników oraz ciągłe monitorowanie stanu wyłączników różnicowoprądowych powinno być standardową praktyką w każdym obiekcie, aby zapewnić ich niezawodność.

Pytanie 9

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
B. Wykorzystywanie urządzeń o zbyt dużej mocy
C. Użycie wyłącznika o zbyt długim czasie reakcji
D. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
Długi czas działania wyłącznika nie jest główną przyczyną częstego zadziałania RCD. Wyłączniki różnicowoprądowe są tak skonstruowane, żeby działały w określonym czasie, kiedy wykryją problemy z prądem upływowym. Więc długi czas zadziałania bardziej może dotyczyć innych zabezpieczeń, jak wyłączniki nadprądowe, które mają swoje własne parametry. Zwarcie między przewodem L a N w ogóle nie powoduje zadziałania RCD, bo nie wytwarza prądu upływowego do ziemi, co jest kluczowe do aktywacji RCD. Również używanie urządzeń o zbyt dużej mocy nie ma związku, bo RCD nie reaguje na przeciążenie, tylko na różnice w prądzie. Często błędne rozumowanie prowadzi do mylenia funkcji różnych zabezpieczeń elektrycznych i braku połączenia między rodzajem zwarcia a reakcją RCD, co może prowadzić do niewłaściwej diagnostyki i realnych zagrożeń.

Pytanie 10

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,8 s
C. 0,1 s
D. 0,4 s
Wielu specjalistów może mieć trudności z ustaleniem prawidłowego maksymalnego czasu wyłączenia w układach sieci typu TN, co prowadzi do wyboru nieodpowiednich odpowiedzi. Na przykład, wybór 0,1 s jako maksymalnego czasu wyłączenia może wynikać z nieporozumienia dotyczącego typowych wartości stosowanych w różnych instalacjach elektrycznych. W rzeczywistości, czas ten jest zbyt krótki, by mógł być stosowany w standardowych warunkach użytkowych. Zbyt szybkie wyłączenie może nie pozwolić na prawidłowe działanie urządzeń zabezpieczających, co z kolei naraża na ryzyko zarówno użytkowników, jak i same instalacje. Z kolei 0,2 s oraz 0,8 s również są błędnymi wartościami, ponieważ nie odpowiadają wymaganiom normy, która została opracowana na podstawie analiz ryzyka i doświadczeń w zakresie ochrony przed porażeniem prądem elektrycznym. Czas 0,2 s może prowadzić do sytuacji, w których niebezpieczne napięcie utrzymuje się zbyt długo, a 0,8 s nie zapewnia wystarczającej ochrony. W praktyce, wartością 0,4 s uznano kompromis pomiędzy efektywnością działania zabezpieczeń a bezpieczeństwem użytkowników, co czyni tę wiedzę kluczową dla osób zajmujących się projektowaniem i nadzorem nad instalacjami elektrycznymi.

Pytanie 11

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Ochronne obniżenie napięcia
C. Podwójna lub wzmocniona izolacja
D. Izolowanie miejsca pracy
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 12

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
B. Klasę ochronności przed porażeniem energią elektryczną
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Minimalny przekrój przewodów podłączonych do zacisków
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 13

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. uszkodzenie urządzenia elektrycznego
C. przeciążenie systemu elektrycznego
D. zwarcie w systemie elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 14

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 5-10 krotności prądu znamionowego
B. 1-20 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 15

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Imbusowym.
C. Nasadowym.
D. Płaskim.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 16

Na izolatorach wsporczych instaluje się przewody

A. uzbrojone
B. rdzeniowe
C. kabelkowe
D. szynowe
Przewody rdzeniowe zazwyczaj odnoszą się do kabli, które mają jeden lub więcej rdzeni przewodzących, jednak nie są stosowane w kontekście izolatorów wsporczych. Ich głównym zastosowaniem są instalacje, gdzie wymagana jest większa elastyczność i mniejsze obciążenia mechaniczne, co nie jest typowe dla izolatorów wsporczych. Przewody uzbrojone z kolei są to przewody, które mają dodatkowe wzmocnienia mechaniczne, często stosowane w trudniejszych warunkach, ale również nie znajdują zastosowania w izolatorach wsporczych, które wymagają specyficznych rozwiązań. Wreszcie, przewody kabelkowe, które są wykorzystywane w instalacjach kablowych, posiadają różne osłony i są wbudowane w ziemię lub inne struktury, co również nie jest odpowiednie dla izolatorów wsporczych, które zasadniczo podtrzymują przewody w przestrzeni powietrznej. Błędem jest zatem mylenie terminologii i funkcji różnych typów przewodów, co może prowadzić do nieefektywnego projektowania oraz stosowania niewłaściwych elementów w systemach elektroenergetycznych. Właściwe zastosowanie technologii jest kluczowe dla zapewnienia nieprzerwanej i bezpiecznej dostawy energii elektrycznej.

Pytanie 17

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. OMY
B. AsXSn
C. YKY
D. GsLGs
Odpowiedź AsXSn jest poprawna, ponieważ odnosi się do przewodów samonośnych, które są szeroko stosowane w instalacjach energetycznych. Przewody te są zaprojektowane z myślą o przenoszeniu energii elektrycznej na dużych odległościach, co wymaga zastosowania materiałów o wysokiej odporności na warunki atmosferyczne oraz wytrzymałości mechanicznej. Oznaczenie AsXSn wskazuje na konstrukcję przewodu, w której zastosowano aluminium (As) oraz stal ocynkowaną (Sn) jako materiał osłonowy, co zapewnia odpowiednie parametry elektryczne oraz mechaniczne. Przewody samonośne są wykorzystywane w liniach energetycznych, gdzie ich konstrukcja pozwala na montaż bez dodatkowych podpór, co zmniejsza koszty instalacji i utrzymania. W branży energetycznej, stosowanie przewodów samonośnych zgodnie z normami PN-EN 50182 i PN-EN 60228 jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania sieci energetycznych.

Pytanie 18

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik krzyżowy
B. Łącznik schodowy podwójny
C. Łącznik schodowy pojedynczy
D. Łącznik świecznikowy
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 19

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. niebieski
B. zielony
C. szary
D. żółty
Wybór niewłaściwego koloru wkładki topikowej może prowadzić do poważnych problemów w instalacjach elektrycznych. Odpowiedzi wskazujące na niebieski, szary, czy żółty kolor są nieprawidłowe, co wynika z nieznajomości standardów dotyczących oznaczeń wkładek topikowych. Niebieski kolor najczęściej kojarzony jest z wkładkami o prądzie znamionowym 10 A, co czyni go niewłaściwym dla wartości 6 A. Kolor szary z reguły odnosi się do wkładek o większym prądzie, a żółty często oznacza wkładki o wartości 16 A. Tego typu błędy wskazują na nieprawidłowe postrzeganie systemu kolorów, co może być efektem braku znajomości norm IEC 60127 oraz ogólnych zasad doboru elementów zabezpieczających w instalacjach elektrycznych. Właściwe oznaczenia kolorystyczne mają kluczowe znaczenie dla bezpieczeństwa, ponieważ niewłaściwie dobrana wkładka może nie zadziałać w przypadku przeciążenia, co prowadzi do ryzyka uszkodzenia urządzeń lub pożaru. Dlatego tak ważne jest, aby zapoznać się z obowiązującymi standardami i praktykami, aby uniknąć takich typowych błędów myślowych, które mogą mieć poważne konsekwencje w rzeczywistych warunkach operacyjnych.

Pytanie 20

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. współpracujący z przekaźnikiem sygnalizacyjnym
B. współpracujący z przekaźnikiem czasowym
C. wyposażony w aparat różnicowoprądowy
D. współpracujący z bezpiecznikiem topikowym
Co do pozostałych odpowiedzi, to niestety nie pasują one do tego, jak powinny działać zabezpieczenia elektryczne. Wyłącznik z przekaźnikiem sygnalizacyjnym nie jest do ochrony przed przeciążeniem, bo on raczej wskazuje, co się dzieje w obwodzie, a nie zabezpiecza go. Takie przekaźniki informują o stanie urządzeń, ale nie przerywają obwodu, gdy coś pójdzie nie tak. Jeśli chodzi o przekaźnik czasowy, to on ma zupełnie inne zastosowanie, zajmuje się automatyzacją, a nie ochroną. W zasadzie, przekaźniki czasowe mogą włączać lub wyłączać obwody w określonym czasie, ale nie chronią ich przed przeciążeniem. A co do aparatu różnicowoprądowego, to też jest jakieś nieporozumienie, bo jego zadaniem jest wykrywanie różnicy prądów między przewodami fazowymi a neutralnym, co zapobiega porażeniu prądem, a nie przeciążeniom. Mimo że aparaty różnicowoprądowe są bardzo ważne dla bezpieczeństwa, to nie zastępują zabezpieczeń przed przeciążeniem. Ważne jest, żeby rozumieć te różnice, bo to klucz do sprawnego działania instalacji elektrycznych i ich ochrony przed awariami. Dlatego warto stosować odpowiednie zabezpieczenia zgodnie z ich przeznaczeniem.

Pytanie 21

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Zmniejszenie zużycia energii
B. Ochrona przed przeciążeniami
C. Zdalne sterowanie obwodami elektrycznymi
D. Kontrola temperatury przewodów
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 22

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
B. oznaczyć miejsce pracy
C. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
D. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 23

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H05VV-K 3×1,5
B. H03VV-F 3×0,75
C. H05VV-U 2×1,5
D. H03VVH2-F 2×0,75
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 24

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Szczypce długie, nóż monterski, szczypce czołowe
B. Nóż monterski, szczypce boczne, szczypce monterskie
C. Nóż monterski, szczypce boczne, zestaw wkrętaków
D. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
Odpowiedź 'Nóż monterski, szczypce boczne, komplet wkrętaków' jest prawidłowa, ponieważ te narzędzia są kluczowe do wykonywania połączeń przewodów typu DY w instalacjach elektrycznych. Nóż monterski umożliwia precyzyjne ścięcie izolacji z przewodów, co jest niezbędne do ich prawidłowego połączenia. Szczypce boczne są używane do cięcia przewodów oraz wyginania ich końcówek, co jest istotne przy montażu w puszkach rozgałęźnych. Komplet wkrętaków, który zawiera wkrętaki o różnych rozmiarach i typach, jest niezbędny do mocowania złączek śrubowych, co zapewnia solidne i trwałe połączenie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi wpływa na bezpieczeństwo instalacji oraz jej zgodność z obowiązującymi przepisami. Przykładowo, źle przeprowadzone połączenia mogą prowadzić do zwarć, co może zagrażać bezpieczeństwu użytkowników. Dlatego znajomość i umiejętność użycia odpowiednich narzędzi jest niezbędna w pracy każdego elektryka.

Pytanie 25

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Regulator temperatury.
C. Przekaźnik czasowy.
D. Przekaźnik priorytetowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 26

Jakiego typu miernik należy zastosować do pomiaru rezystancji uziemienia systemu odgromowego?

A. Multimetru
B. Mostka rezystancyjnego
C. Miernika rezystancji uziemienia
D. Miernika rezystancji izolacji
Miernik rezystancji uziemienia to naprawdę przydatne narzędzie, które wykorzystywane jest do pomiaru rezystancji punktu uziemienia. To bardzo ważne w przypadku systemów odgromowych, bo dobra rezystancja to bezpieczeństwo. W odróżnieniu od multimetru, który może robić dużo różnych rzeczy, miernik rezystancji uziemienia jest stworzony specjalnie do tych pomiarów, szczególnie w trudnych warunkach, gdzie różne rzeczy, jak na przykład wilgoć, mogą wpłynąć na wyniki. Przykładowo, używa się go, żeby sprawdzić, czy system odgromowy działa jak należy, zanim zacznie działać albo po jakichś zmianach. Ważne, żeby rezystancja była na poziomie mniejszym niż 10 omów, zgodnie z normami takimi jak PN-EN 62305. To pokazuje, jak istotne są regularne przeglądy, żeby zajechać ryzyko porażenia prądem i lepiej chronić się przed wyładowaniami atmosferycznymi.

Pytanie 27

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik kolejności faz.
D. Przekaźnik czasowy.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 28

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Odbiorczych
B. Pomocniczych
C. Wytwórczych
D. Przesyłowych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 29

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zniszczenie przewodu ochronnego PE
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Zwarcie bezpiecznika wewnętrznego urządzenia
D. Uszkodzenie izolacji przewodu zasilającego urządzenie
Przepalenie bezpiecznika wewnątrz urządzenia oraz przerwa w uzwojeniach silnika, mimo że mogą prowadzić do problemów z działaniem urządzenia, nie stwarzają bezpośredniego zagrożenia porażenia prądem, ponieważ bezpiecznik jest elementem zabezpieczającym, który po wykryciu nadmiernego prądu automatycznie przerywa obwód. Z kolei przerwa w uzwojeniach silnika powoduje, że silnik przestaje działać, a nie występuje niebezpieczne napięcie na jego obudowie. Uszkodzenie przewodu ochronnego PE, chociaż stanowi istotny problem, w kontekście urządzenia II klasy ochronności nie powinno prowadzić do bezpośredniego zagrożenia, ponieważ urządzenia te są zaprojektowane tak, aby w przypadku awarii nie występowało niebezpieczne napięcie na obudowie. Kluczowym błędem myślowym jest niewłaściwe zrozumienie działania systemów ochrony. W urządzeniach II klasy ochronności, stosowanie podwójnej izolacji w celu zapobiegania porażeniom elektrycznym, sprawia, że nawet w przypadku uszkodzenia elementów wewnętrznych, nie powinno dojść do wystawienia na działanie niebezpiecznego napięcia. Zrozumienie zasad działania zabezpieczeń oraz klasyfikacji urządzeń elektrycznych jest kluczowe dla zapewnienia właściwego bezpieczeństwa w użytkowaniu sprzętu elektrycznego.

Pytanie 30

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
B. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
C. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 31

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 4 A i 3 bieguny
C. 9 A i 4 bieguny
D. 3 A i 4 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 32

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z aluminium w formie linki
B. Z miedzi w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie drutu
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 33

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 250 V
C. 2 500 V
D. 1 000 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 34

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 40 mA
B. IΔ = 20 mA
C. IΔ = 30 mA
D. IΔ = 10 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 35

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Miernika parametrów instalacji
B. Omomierza cyfrowego
C. Neonowego wskaźnika napięcia
D. Czujnika zaniku fazy
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 36

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 5 lat
B. 4 lata
C. 8 lat
D. 6 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 37

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP20
B. IP33
C. IP44
D. IP55
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 38

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
C. Silnik będzie zasilany prądem w przeciwnym kierunku
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 39

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Instalacja dodatkowego gniazda elektrycznego
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Zmiana rodzaju zastosowanych przewodów
D. Wymiana uszkodzonych źródeł światła
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 40

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,57
C. 0,99
D. 0,69
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.